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ABSTRACT Overcrowded hospitals in its different process’s levels is a very common issue all over the
globe. Research through different works have studied this problem from different angles. Most of those
focused on a very specific part of the internal flows. This study presents a mathematical model aiming to
reflect patient flow and resources usage. This model presents a new perspective on how it is possible to
organize a hospital flow for inpatients of different pathologies. It is based on Non-Homogenous Discrete
Time Markovian chains. It takes into consideration the patient’s pathology, survival function and the current
beds distribution and discharges. To model the different variations of a patient’s flow, our work uses an actual
case study to validate that our mathematical model based on Markov Chains can represent a real scenario of
patients flow in a hospital and can predict the resources occupancy. We used as entry to this model the arrival
distribution of patients as represented in the NHS dataset. Served patients and overflowing patients relate
proportionally to admission rate based on how much time every diagnosis and preliminary treatment will
take, then using the previous beds availability ration will permit, with knowledge of all present patients in the
system, calculate the beds occupancy in the actual time. Only based on inputs from the NHS database, bed
occupancy can be calculated using our model. Then compare this calculus with published data of the bed’s
occupancy in the NHS. in the period between March 2020 and February 2021. The results of the simulation
model were then compared to the dataset using the chi-square goodness of fit test. Non-homogenous discrete
Markovian model, survival function, patient’s pathology, time-dependent, pathology, primary allocations,
secondary allocations.

INDEX TERMS Non-homogenous discrete Markovian model, survival function, patient’s pathology, time-
dependent, pathology, primary allocations, secondary allocations.

I. INTRODUCTION
The public health determines, in accordance with existing
constraints, the overall vision that aim to diseases prevention,
decreasing mortality rates and increasing the well-being and
services given by healthcare institutions to patients. However,
according to the European Action Plan for Strengthening
Public Health Capacities and Services in 2012-2020 [1],
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many challenges must be taken into consideration like ageing
population, increasing levels of chronic diseases and the
tremendous demographic growth. While in North Africa and
Middle East, the access to healthcare services, which are
concentrated in urban areas due to marginal infrastructures in
rural areas, particularly makes the management of available
resources very difficult as confirmed by the health finance
and governance report [2]. Furthermore, and according to an
article published November 2019 [3], England has recorded
the worst ever levels of waiting times and key targets for
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service quality satisfaction, treatment and waiting times have
been missed for almost three years, this according to local
facilities is due to huge demands with a recorded 4.42
million patients on the waiting line with only 83.6% of
accident and emergency patients admitted within 4 hours.
In the monthly published reports of the National Health
Services [4], it is reported a rate of 4.9% as a mortality rate
among ambulatory patients back in 2019. On a recent study
published by the Economic injury [5], increased waiting
times does not only have an impact on patient’s condition
but also on the hospital’s cost to care those patients with
an average of 6%. While in United States and according to
the National Center for Health Statistics [6] a total number
of 2 839 205 resident deaths were recorded in 2018. 73.8%
of those deaths were referred to 10 leading causes like
heart diseases, cancer, unintentional injuries, influenza &
pneumonia, suicide, and kidney diseases. This along with
extreme shortage of qualified physicians in rural areas as
well as big cities-40 physicians per 100000 in rural areas
and 53 per 100000 in cities- [7]. In Australia waiting times
for elective surgery and emergency department care are
increasing according to the Australian Institute of Health
and Welfare report in December 2018 [8]. The same report
announced that elective surgery waiting times have increased
from 36 days back in 2013 to 40 days in 2017 and
2018. While the number of presentations to the public
health institution’s emergency departments reached 8 million
in 2017 and 2018 –which is an average of 22000 presentations
daily- 72% of them were seen by a professional on time.
While 52% of those patients were assigned to three most
seen categories (resuscitation, emergency and urgent) due to
injury, poisoning and other external causes. The report also
confirmed that these distributions depend strongly on the state
and territory and available infrastructures. As recorded by
the Australian government [9] there were 160 909 deaths
in 2017, 46% of them are potentially avoidable if they
would have received medical care on time and other pattern
of death causes were encoded correctly. In 2019, Canada
also reported [10] a median waiting time of approximately
21 weeks for surgical and other therapeutic treatments,
while the orthopedic surgery, plastic surgery, ophthalmol-
ogy, and neurosurgery seem to have the longest waiting
times with 10 weeks as a maximum variation. In 2020,
the United Nations-World Population Prospects published
a ranking by deaths rates report [11], where Germany,
Greece, Japan, France, Canada, and Singapore have reported
11.392%, 11.035%, 10.865%, 9.365%, 7.803%, and 4.752%
as mortality rates, respectively. In fact, based on cohort
studies and experimental works, research started looking for
a determinant relationship between patients not admitted or
waits too long for surgery or in the ED and their risks for
eventual complications that can even lead to death.

In Ontario, Canada back in 2011 [12], a population-
based cohort study included 21 925 275 visits recorded
in the years between 2003 and 2007, 1487 094 were
emergent patients and in the rest (more than 20 000 000)

87% were left without being seen or seen and discharged.
Based on logistic regression models to statistically analyze
the collected data, it was clearly shown that the risk of
death notably increases with each additional hour of mean
waiting times. Another study [13] focused on the emergency
medical services response time and its potential causality
relationship with mortality rate in case of life-threatening
events. Based on a retrospective cohort study of adults in
danger situations for a period of one year, the study aimed
to define whether a response time of 8 minutes can be a
threshold for associated mortalities. The response time was
calculated from the moment the 911 call was received in
a medical priority dispatch system to the moment where
advanced life support team is on scene. Unsurprisingly, 7.1%
patients with a response time>8 minutes died comparatively
with 6.4% patients with a response time <8 minutes. In the
Chilean community, a team of experts had let a cohort
study [14] including patients with non-prioritized conditions
while registration in hospitals. The data included a waiting
list of 987497 patients in 77 healthcare institutions from
2008 to 2015. The study showed that despite geographical
disparities and health centers differences, waiting time
variability have significant impact on death rate. In the other
hand, as the efforts to decrease the length of stay are getting
bigger, the concerns of rising the readmission rates are also
worrying. Premature discharge can be one of leading causes
to readmission as shown bymany studies based on cohort and
longitudinal approaches [15], [16]. Recently, the coronavirus
outbreak first appeared in Wuhan China on the 31st of
December 2019 had made all healthcare institutions and
administrations under scope and huge pressure. In 16 mars
2020, the World Health Organization [17] reported a total
number of 167515 confirmed cases 81077 of them recorded
in China 86438 outside China in more than 100 country all
over the world. 6606 as total reported deaths, 48% of them in
China.

Hence, a problem arises contain different goals to aim that
may be contradictory and can cause if not taken from different
aspects multiple penalties. First, decrease waiting times so
the consequences of such factor on patient’s condition and on
hospital processes costs can be reduced. Second, Discharge
the right patients in the right time, to avoid increasing the
readmission rates, and at the same time, free enough beds for
admitted patients.

The objective of the current paper is to provide hospital
management system with a tested generic mathematical
model with managerial insights that may serve as reference
for future analytical studies that may concern decision
making, statistical analyzing or operational management. Our
approach uses a non-homogenous discrete timeMarkov chain
and queuing theory properties. The core of our approach
is based on dividing the treatment process into three main
levels: the first level which is preliminary diagnosis then the
second: treatment process (prescriptions, laboratory analysis,
physical monitoring, inpatient’s further diagnosis) and then in
the third-place discharge. The main objective in every level
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is to theoretically decide the number of served patients and
overflowing patients and the hospital’s capacity to serve all
patients. The paper is organized in three main sections; the
first presents related works and techniques used in healthcare
processes management and mathematical modeling. And the
second depicts our proposed model with all used concepts
and recommendations.While the third section includes a case
study based on NHS database to validate our model. The
paper is then ended with a conclusion and future insights.

II. RELATED WORKS
Modelling is a very recurrent topic back in the last
century with a very bi-major orientations. First, estab-
lishing a scheme-oriented design for future healthcare
facilities [18], [19] to decide the number of required beds,
human resources, and medical furniture’s with studying the
future possibilities of augmentation and pic demands. Those
studies are generally based on an agreed balance between
environmental characteristics and annual targets. Second,
readjusting resources usage to maximize performances of
pre-existing hospitals [20], [21]. In achieving the second goal
two methodological strategies are used: 1) methods to model
the system in consideration and 2) methods to study and
validate those models.

In general, Hospitals operations management system
addresses decision making to continuously establish the most
efficient resources policies tomaximize its capacity and in the
same time guarantee services quality.

From its first appearance in the 18th century with AK
Erlang to define needed resources to meet acceptable phone
service [22], queuing theory was used in many studies and
works aiming in most cases to deal with delays caused by the
differences between a given service demand and the ability
of a system to respond to this demand.

In healthcare applications, queuing theory is based gen-
erally on three main factors; the patient’s arrival rate which
reflects the unplanned arrival frequency of a patient at a
given time, available resources called servers and the services
rate which reflects the time taken for a patient to be seen,
diagnosed, and treated [23]. In the university of Tsukuba
hospital in Japan, a conducted study [24], targeted obstetric
patient flows in low and high-risk delivery wards. The study
used hospital internal logistic data of two years. Using an
(Markovian patient’s arrival distribution and finite resources)
M/M/m and (Markovian distribution of patient’s arrival,
general resources usage, infinite resources) M/G/∞ to reflect
the probability distribution of total patients in each ward,
the study confirmed the Little’s law of queuing theory. Two
years later, in 2018, [25] used different queuing theory
models’ variations to determine operation performances like
beds utilization rate, waiting times and demand behavior
assessment. The model was based on six months data
recorded in university hospital and concluded as results that
the balance between admissions and type of pathologies can
be a possible way to optimize resources usage. In the same
year, a teammanagement and chiefmedical officers in Lehigh

Valley Health Network [26] confirmed the value of queuing
model in theory as it can statistically provide alignment
and focus on future insights. They also assumed the very
important role of medical staff to implement such guidance
in operational state.

From the other side, the appearance of Markov chains
in 1906 by Andrei Andreevich Markov [27], [28] has allowed
probabilistic modelling using stochastic matrices. Although,
in healthcare applications, very few models were found to
have focus on patient’s flow using Markovian mathematical
modelling as a tool. Main studies have used Markov chains
in admission scheduling and resources planning by keeping
track of patient pathways. [29] Considered a data driven
study in London hospital based on Markov chain modelling
to design an appropriate admission policy in accordance
with future resources usage. The study demonstrated non-
homogenous Markov chain can be an effective decision
support tool for care planners and policy makers. An update
of the same study came out one year later, to correct the use
of a continuous time Markov chain [30]. The study considers
patient’s arrivals rates variations. The authors based their
novel approximation on a 16-year period as a historic data
from the same hospital as previous study.

III. DYNAMICS OF THE PROPOSED MODEL
A. PROBLEM DESCRIPTION
In its report [31], last updated in 2020, the Agency for
Healthcare Research and Quality published a guide for
hospitals to improve patient flow and reduce particularly
the emergency department crowding. The report mentioned
nearly half of hospitals in the US operating at or above their
capacity and approximately 500 000 ambulances obliged to
drive away from near hospitals because of crowding. It also
reported several performances and quality measurements that
most hospitals must take and update at a regular basis.

In any healthcare facility or institution, the performance of
the first contact with medical care providers is very crucial.

In this study, a generic mathematical modelling where an
organizational structure can iteratively change in accordance
with the number of arriving patients and available resources
was considered. The distribution of resources like beds,
doctors and equipment might change in accordance with
a discrete time nonhomogeneous Markov chain. Such is a
very critical task to do especially in natural catastrophes and
pandemics like Coronavirus outbreak. Even though minor or
greater changes in the resource’s distributionmight take place
daily like patient’s allocation, which must be decided con-
sidering the patient’s condition, survival function-reflecting
a patient’s chances to survive within a specified period of
time- and nature of treatments. Furthermore, this decision,
if considered as the best in each moment must be re-
evaluated following the patient’s situation updates and other
arrivals. From one side, a patient’s arrival to healthcare
facilities occupies medical resources which can endure other
patient’s length of stay. From the other side, in case of
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admission, the patient’s hospitalization is either primary
or secondary. This means, that a patient is allocated to
a preferred bed, and this can happen if a bed is already
available, or another inpatient have been allocated to other
wards. In case of secondary hospitalizations, the patient’s
is faced with a shortage of beds in preferred ward and
can be allocated to an alternative bed waiting for adequate
beds to be free. In both cases, patients in critical situations
like those contaminated with the coronavirus need special
care. The system under scope is a three phased or leveled
system. It contains preliminary diagnosis and treatments,
deeper diagnosis and treatments and a discharge phase. In the
second level, the system contains different wards of different
specialties and pathologies treated, surgical blocks, scans
rooms and general diagnosis rooms, etc.

B. MATHEMATICAL MODELING OF THE
HEALTHCARE SYSTEM
Taking all the above considerations into account, the main
goal of this study is to present to crowded hospitals an
efficient mathematical model. Figure 1 shows the different
patient’s flow considered in our model.

FIGURE 1. Flow chart of different possible pathways of a patient in
hospital.

Therefore, it is very important to be able to model and
statically quantify the performance of every new arriving
patient’s pathway. In the following, and as shown in figure 1,
we make a distinction between elective and ambulatory
patients in the first level.

As it has been proven by many works, studies and reports,
the patient’s arrival distribution to emergency department
may be different depending on the season, the day of the
week, the geographical structure and demographic patterns
in the hospital’s area [32], [33]. It also, according to a
2016 overview of the healthcare cost and utilization project,
depends on the revenue, age, sex and patient’s residence
location [34]. For this reason, Time was randomly divided
into different portions (that can be a day or a week depending
on a hospital crowding frequency) into a D non-equilibrium

time intervals denoted = {I1, I2 . . . , ID}. We also define
L = {Level1, Level2, Level3, Level4, Level5} which reflect
the degree of severity of a patient arriving in emergency
department. The previous classification was made based on
the saint Mary’s regional medical center classification [35].
The five levels can be, Level1: resuscitation of life saving
intervention, Level2: emergency, Level3: urgent, Level4:
semi-urgent, level5: non-urgent. It is the determination of
the severity’s level that orients a patient’s next interventions
steps.

In the other side, the arrival of scheduled patients is a
non-static parametric distribution as there is many reasons
that may change or cause tardiness of a patient’s decision to
go to a hospital. We categorize these factors in three main
blocks: financial, natural, and cultural [36]. Let us consider
the following:

Pi,l(Id ) ∈ N: Patient i arrival with a degree of severity l into
the ED in dth interval.
M (1, . . . , k, . . . , M) represents the number of pathologies

or specialties that can be treated in a hospital.
Ej,k,d ∈ N: The variable reflecting the jth patient

appointment with pathology k in the dth interval.
Pr(Ej,k,d(t)): The probability that patient of pathology k

who took an appointment j will show up at t in the dth interval.
1-Pr(Ej,k,d(t)): the probability of patient’s absence or

tardiness.∑
i∈N

∑
l∈{1...5} Pi,l(Id): The number of patients arriving in

ED with different severity levels during the time interval Id.

Ni,l (.) = Pi,l (Id )+ P̃i,l (Id−1d ) ; ∀i ∈ N, l ∈ 1, . . . , 5

Ni,l (.) represents the vector representing the number of
patients in the ED waiting to be served as a sum of newly
arriving patients and others from previous Id intervals.
Let us also define

∑∑
χi,l as the total number of

service completions and
∑∑

X̃i,l the sum of patients of
different levels currently in service.

In the same way we denote λj,k (Id ) as the arrival rate of
patients of type k arriving as scheduled in the dth interval and
µj,k (Id−1d ) as service rate of patients arriving in previous
intervals and still not served.∑∑

Yj,k : the number of elective patients currently in
service.

To model the resources consumption, we use a concept
called typical treatment process. It defines the consumption
amount of a pathology k on resources.

R = {r1, . . . rk , . . . , rM }: where rk=
occupied resources in department k

all available resources in k is the rate of a resource
consumption by patients with k pathology.

The following PSki,j ∈ Rk×k matrix table represents the
output from the first level, which is preliminary diagnosis
and treatment, composed of; first, served and in service
ambulatory and elective patients and second, waiting patients
to be seen or preliminary diagnosed. The rk is the ratio
equal to used resources (beds) in a specified ward divided
by total number of beds in that ward. Which means that it
is always < 1. The sequence L1->L2 represents scores from
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1 to 5 given to admitted patients. multiplied by these scores,
overflowing patients are in most cases those with scores 1 or
2 (less urgent).

PSki,j :



Xi,l + Ni,l
if rk < 1 with l ∈ (L1,L2,L3,L4,L5)[

λj,k (Id )+ µj,k (Id−1d )+ Yj,k
]
∗ (1− rk)

if rk < 1Od=

(
µj,k (Id ) ∗ Pi,l (Id )+ P̃i,l (Id )

+(1− Pr(Ej,k,d (t))) ∗ Ej,k,d
)

if rk = 1

whereO represents the number of overflowing patients from
time interval Id .
This overflow is calculated considering patients in hospital

and still not served and scheduled patients not arriving in
time. In our model, we assume that all causes leading to
overflow can be headed back to very long diagnosis times.

Let T ki,j be the service time necessary to preliminary
diagnosis for a patient in ED or elective patient of type k and
|Id | be the length of time interval Id . We assume that:∑

k

N∑
i,j

(
T ki,j
)
∗ PSki,j > |Id |

Now taking consideration of patients served and admitted
to be inpatients, Let us considerW = M the number of wards
and Uq,k (Id ) =

number of patient of pathology k allocated to ward q
total number of beds in ward q

the bed occupancy function reflecting if a ward q is occupied
by a patient of pathology or condition type k. q the number
of beds in ward q. Of course, by this, we are assuming that
every admitted patient occupies one bed.

Also denote Fq(Id ) = q −
∑

k Uq,k (Id ) the number of
free beds in ward q. The Dq,k reflects beds distribution in the
time interval Id.

Dq,k (Id ) =


 U11(Id ) · · · U1M (Id )

...
. . .

...

UM1(Id ) · · · UMM (Id )

 ,
× (F1(Id ),F2(Id ), . . . ,FM (Id )))

where (U11(Id ),U22(Id ), . . . ,UMM (Id )|k = q) the number of
patients with primary hospitalizations in interval Id.

αk ≡ αq,k =

∑W
q=1

∑M
k=1 Uq,k (Id )∑W

q=1
∑M

k=1 Dq,k (Id )
: The rate of primary

hospitalized patients.

βq,k =

∑
Dq,k (Id )−

∑W
q=1

∑M
k=1 Uq,k (Id )−

∑W
q=1 Fq(Id )∑W

q=1
∑M

k=1 Dq,k (Id )
: The rate

of secondary hospitalization.
The distribution of the newly arriving patient to the

different ward follows the below shown process.{
PSki,j ∗ αk if Fk > 0 for k ∈ M

PSki,j ∗ βq,k if Fk = 0 and Fq 6=k > 0 for q ∈ M

In matrix above, a newly arriving patients is allocated
to preferred ward in case there exist free beds. Otherwise,
the patient is oriented to another ward until preferred ward
is freed.

FIGURE 2. Beds distribution in function of arriving patients, internal
distribution and discharge policy.

FIGURE 3. Variations in length of stay in each ward.

A patient’s mutation, as shown in figure 2, can be in
between two secondary hospitalizations or from a secondary
hospitalization to primary one. In all cases, the patient’s
condition, and ability to be in a different ward must be
considered. In our Markovian model, the beds distribution is
beds distribution in past state plus current admitted patients
minus discharges.

In the following, the time spent by a patients of type k as
an inpatient in ward q denoted τ kq,k . Let also denote Nd as the
total number of inspections in an interval d.

We define Qnq,k as the number of patients of type k in
ward q right after the nth inspection. We can assume that
inspections and discharge patterns can be described by the
same distribution and are the same from an operational
perspective. The dynamics of such distribution can be cited
as follow:
Qn+1q,k (αk = 1) = Qnq,k + (1−

∑
kεM

βq,k ) ∗
(
Pki,j
)n+1

)

−ξn+1q for every k

Qn+1q,k (αk < 1) = Qnq,k + (1− αk) ∗
(
Pki,j
)n+1
− ξn+1k

With ξn+1q is the number of patients discharged in the
(n+ 1)th inspection and0N =

∑N
n=0,∀ q,∀ k ξ

n+1
q . In the same

way, a decision to discharge a patient considers the patient’s
pathology, condition and period already spent as an inpatient.
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The main goal of expressing the number of inspections
per period is to relate this factor with service rate and
occupancy function. Thus, in used data, we will have to
divide the 24h into specific interval and set a mean number of
inspections. This will help derive a discharge rate per period
which will give visibility on how many primary and sec-
ondary hospitalizations are made and how many patients to
admit.

IV. STATISTICAL TESTING OF THE DTNHMC
As previously defined all needed parameters: occupancy
function of beds, how many inspections for discharge,
primary and secondary hospitalization rates, etc. we will
be able to simulate how every department in a facility
can be used. To solve the medical resources allocation
problem, we model patients flows as well as ‘‘consumed’’
resources’ density functions by a discrete non-homogenous
Markov chain presented in section 2. From these density
functions, specific probabilities of wards occupancy and
discharges as well as the expected outcomes and next arriving
patients will be derived. Such is the focus of our modeling
technique.

As the presented modeling approach considers a certain
number of static resources in the healthcare system, infinite
number of patients -considering the limited resources- will
lead to a system stagnation. Let uik be maximum number of
patients of type k that can be hospitalized in ward q (wqk).
Let also Lq and UPq define the lower and upper bounds on
the total amount of patients hospitalized in ward q.

The non-availability probability P(Uqk ) of Fk strictly
determined beds determines the probability of an event in
which each bed (or medical resource in general) does not
allow the admission of a patient. This probability can be
determined with respect to the occupancy:

P
(
Uqk

)
=

M∑
k=(wq−ti)

P((wk−
∑

Uq,k )|Uk ) with
∑

Uq,k≤wk

where P((wk −
∑
Uq,k )|Uk ) is the conditional non-

availability probability of a selected number of beds in a
selected ward, determined under the assumption that the total
number of busy beds Uq,k reserved to admit patient of k type
can be used for other patients. The lower limit of the sum in
Equation above determines the minimum number of beds that
can induce rejection of patients.

A. CASE STUDY: HOSPITAL EPISODE STATISTICS-NHS
1) DATA DESCRIPTION
Hospital Episode Statistics (HES) is a database containing
details of all admissions, A and E attendances and outpatient
appointments at the National Health Service (NHS) hospitals
in England.

In the year from March 2020 to February 2021 there were:

• 16.0million finished consultant episodes (FCEs), 55.7%
(8.9 million) of which included at least one procedure

or intervention, and 4.7 million of which were day
cases.

Monthly HES data for Outpatients
• 100.2 million outpatient appointments made, with
75.9 million (75.8%) of these attended by the patient.

• 5.6 million outpatient appointments not attended by the
patient, representing 5.6% of all appointments.

Analysis of the arrival rates reveals that the arrival patterns
of the most patients fit a Poisson process. The only exception
was noticed for elective surgery patients. Those patients were
scheduled in specific days (from Monday to Friday). While
beds occupancy that can be otherwise represented by LOS
(Length of Stay)which reflects for how long a given resources
are used a high proportion of long LOS in different wards
related to all patients. This might lead to actual consideration
of outliers. Such consideration can compromise the accuracy
of our model. To solve such issue and in the same keep
all dataset elements, the actual relationships or correlation
between LOS and age, sex and disease were analyzed. As a
result, aged patients with cardiovascular diseases, strokes and
trauma are the more likely to stay longer. It doesn’t matter
their sex.

2) BED OCCUPANCY
It is collected during a patient’s time at hospital as part of
the Commissioning Data Set (CDS). This is submitted to
NHS Digital for processing and is returned to healthcare
providers as the Secondary Uses Service (SUS) data set
and includes information relating to payment for activity
undertaken. It allows hospitals to be paid for the care they
deliver. This same data can also be processed and used for
non-clinical purposes, such as research and planning health
services. Because these uses are not to do with direct patient
care, they are called ’secondary uses’. All data used in the
current work is collected from the NHS’s official digital
platform [4].

HES data covers all NHS Clinical Commissioning
Groups (CCGs) in England, including:
• private patients treated in NHS hospitals.
• patient’s resident outside of England
• care delivered by treatment centers (including those in
the independent sector) funded by the NHS

Each HES record contains a wide range of information about
an individual patient admitted to an NHS hospital, including:
• clinical information about diagnoses and operations
• patient information, such as age group, gender and
ethnicity

• administrative information, such as dates and methods
of admission and discharge

• geographical information such as where patients are
treated and the area where they live.

So far, our calculation of the bed occupancy has taken account
of the daily variations represented in NHS in form of four
quarters to represent a year. Beds fill up and empty out in
function of patients’ arrivals (as shown in figure below),
admission rate and discharge rate.
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FIGURE 4. Bed occupancy-arriving patients in nine considered
departments and of four-year quarter (detailed data source can be found
in [4]).

TABLE 1. NHS observed bed occupancy (day and overnight in the year
2019-2020) compared to our expected bed occupancy.

A study by [37], has demonstrated a high correlation
between bed occupancy and longer Emergency department
waiting times. As with a nearly 100% bed occupancy,
the percentage of patients in ED waiting longer than four
hours increased by 9%. The study also listed: Hospital
length of stays over 21 days, higher emergency admissions
and lower discharges to be main factors of inconveniently
higher waiting times. The study included 138 English
NHS healthcare providers of which daily situation reports
(Sitrep), hospital episode statistics and electronic staffing
records data over 90 days between December 2016 and
February 2017 were extracted.

Taking the previous assumptions into consideration,
we apply the actual probability distribution on a switched
single time-interval (day on -night off and then day off-
night on). Such assumption will allow to first consider the
system as inactive at night, then as inactive during day.
Table 1 represents the different beds resources occupancy for
every department. Thus, our Markov chain can be considered
as steady state process [38], [39]. Let π be the steady

state probability distribution of the Discrete Time [40], [41]
Markovian chain that fills in the following balance equation:

πQ = 0

where
∑

xi∈S πi = 1 and Q is the infinitesimal generator
matrix. Such equation can be transposed and rewritten in the
form of a linear equation: Ax= b. Thus we getQTπT = 0→
QTπT = (D− X − Y ) πT = 0 where D, X, and Y are the
diagonal, lower and upper strictly triangular matrices of QT .
Where Q can be written as Q = A1 ∗ u′ + A2 with A1 and A2
can be expressed as follow:

A1 =



−1 0 . . . 0

1 −1
. . .

...

0 1
. . . 0

...
. . .

. . .
...

0 . . . −1 0
−1 −1 . . . −2



A2 =



0 0 . . . 0

0 −2µ 2µ
...

. . . −3µ 3µ 0

0
. . .

. . . 0
... −Sµ Sµ 0

0
. . .

. . . 0
0 . . . 0 Sµ

0 . . . 0 Sµ −Sµ


With S is the number of servers. And µ the current number

of patients waiting to be served. And µ′ the total number
of patients to be served from both elective and emergency
paths. Using overrelaxation technique, the following values
were determined the values of π using python program-
ming. We found: 5 = [0.53,0.41, 0.67, 0.88, 0.79, 0,91,
0.93, 0.77, 0.99].

We conducted a statistical test to assess our model’s fitness
with observations on ward occupancy. To our knowledge,
there exists no standard technique to test the fitness of a
DTMC with a complexity as considered in our work. Thus,
this section presents a discrete event simulation approach that
combines a simulation of the DTMC behavior and compares
this to hospital data on ward occupancy. To begin with, our
null hypothesis is that the observed values are generated
by the DTMC process. If that is the case, we would expect
the observed frequency of occupied beds to be quite like
the marginal distributions of π for each ward. A standard
approach would be to test the observed frequencies against
the corresponding expected frequencies from the DTMC.
We conducted a simulation approach on each separated
department. The total number of used resources by all
patient types combined (elective and patients from emergency
department) was then deduced from the total number of
resources (beds in this case). The proportion of expected used
beds can be seen in figure below.
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TABLE 2. Studies using DES, Markov chains and queuing theory to model patients flow.

Bed occupancy rates are often arbitrary and depend on
multiple factors, including the number of admissions from the
emergency department and other hospital wards, scheduled
surgery, and patient types and their LOS in the different
department. The rationalization of beds is a difficult daily
task that becomes even more complicated when resources
are limited. There is no consistent evidence regarding the
outcome of current official patient admission and discharge
guidelines, which must be adapted to individual wards
and hospital contexts [42], [43]. Admission and discharges
policies are important not only in resource management
terms but also in terms of patient care outcome. Shortage
of beds is an independent factor when deciding not to
admit patients to any of the available wards [44]. Several
studies show that in the event of bed shortage, admissions
and discharges are triaged. This increases the number of
rejected admission requests, increases the severity threshold
for admission, and shortens LOS [45], [46]. However,
assuming the same degree of severity, the prognosis is better
for patients admitted as a primary hospitalization than for
those with secondary hospitalization. Other consequences
of an excessive bed occupation rate are scheduled surgery
cancellations, transfers to other centers, or wards oversizing.
Therefore, a simulation model with the capacity to mimic
real bed requirements taking all implied factors into account
(type of hospital, unit-specific admission and discharge
criteria, adjustments considering the requirement/availability
ratio) constitutes a useful tool for effective hospital bed
management. The stochastic nature of patient flow could
lead to an underestimation of the resources required in
busy units. In the past, 85% mean bed occupancy used
to be considered optimum. However, the mean could be
misleading, because, unless the daily occupancy distribution

is considered, it fails to capture long periods in which
high bed occupancy may result in an unacceptable rate
of rejected admissions because of shortage of beds. Thus,
to cover potential activity peaks, several empty beds should
be available [47]. While simulation has been extensively used
in other healthcare problems [48], [49], including ICU bed
management [50]. However, most studies are approaching
mathematical modeling and simulation as two different
approaches. Table 2 represents a comparative review of some
of these studies.

Thus, the objective of this study was to develop a reliable
model to reflect the daily bed occupancy rate in the different
wards based on a high accuracy Markovian model, and
thus avoid the bed availability problem and below-optimum
occupancy rates and the unnecessary costs these entail. Our
model is based on a complex statistical analysis that, despite
its complexity, uses properly defined, easily collectible,
common wards management variables. In methodologic
terms, we think that this model offers several advantages
over other commonly used models (as shown in table 2).
We modeled admissions by patient type using variations of
the Poisson distribution. It also offers accurate resources
usage prediction using fewer inputs.

Table 1 represents the actual resultingmean bed occupancy
of all wards considered.

The results obtained for the simulated daily occupancy
rate can be summarized as follows. Patients with high
emergency are urgent situations are the first to be served
as shown with Figure 5. a, and Figure 5.b the system
tries to serve patients with high of risk of mortality first.
As the number of patients increases, the waiting time also
increases as limited resources constraints were defined while
simulating.
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FIGURE 5. Simulation results. a. represents the arrival rate of every
previously defined emergency levels following a Poisson process. b. the
cumulative function of admitted patients with assumption of no lost
patients. c. represents the average number of occupied beds patients in
all departments. d. is the number of patients in queue for a bed.

While studying such complex systems with limited
resources, it is important to keep good fluctuation near the

median value. Suh is the case of beds in hospitals with
high admission rate. Figure 5.c represent the results of our
DES based on the previous mentioned Markov chain. It is
important to mention that in previous of high admission rate,
the triage of patients with high priority to be admitted is very
important. Figure 5.d suggests how our system must deal
with such case. The number of patients in queue represent
the number of patients with secondary hospitalizations and
waiting to be relocated to the ward specialty to treat their
disease which referred to as primary hospitalization.

FIGURE 6. Cumulative density function of the observed and expected bed
occupancy.

As it might be deduced from Table 2 and Figure 6,
our Markovian model with the pre-defined probability
distributions seem to be of good fit to real world scenarios.

V. CONCLUSION
We have demonstrated how Markov chains and queuing
theory can be an effective to model patient’s flow and to
forecast needed beds in different hospital’s wards. The study
used a Nonhomogeneous Discrete time Markov chain to
represent the different flow variations. Thus, to validate this
model, discrete event simulationswere used. it gives as results
the frequencies of a server and resources utilization. The
results of the simulation were then compared to the average
bed occupancy in the National Health Services database using
the chi-square technique.

The methodology developed in this work enables estima-
tion of the main characteristics of access to service of patients
and hospital managers as well as medical care providers:
forecasting of the arrival rate of patients and bed occupancy
in function of patient’s arrival and their priority.

We assumed that the hospital can be described with
Nonhomogeneous Discrete time Markov chain. We also
assumed this process can be compared to a steady state
distribution of a M/M/s Queuing system. The results of the
global equation of the steady state distribution were solved
using arrival and service rate. The two parameters follow
an exponential distribution. The resulting vector was then
used to find the transition matrix coefficients. the results
after simulation have shown enormous correlation between
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arrival rate, level of emergency and occupancy rate of beds
as shown in figure 5. Then the coefficients of the transition
matrix were compared to the actual (observed) rates of the
real data records of the NHS using chi-square goodness fit.
Managers and healthcare providers must have look then to
‘‘bottle neck’’ departments such critical care, cardiology, and
trauma. These are the most crowded wards with very high bed
occupancy rates. A very good policy can be to set a median
value of admission rate to keep smooth fluctuation around the
mean value of occupation rate. This might help stabilize the
system’s dynamics and deliver better medical care to patients.
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