
Received June 6, 2021, accepted July 8, 2021, date of publication July 20, 2021, date of current version July 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3098621

A Visual Analytics Interface for Formulating
Evaluation Metrics of Multi-Dimensional
Time-Series Data
REI TAKAMI 1,2, HIROKI SHIBATA 1, (Member, IEEE), AND
YASUFUMI TAKAMA 1, (Member, IEEE)
1Graduate School of System Design, Tokyo Metropolitan University, Tokyo 191-0065, Japan
2Yahoo Japan Corporation, Tokyo 102-8282, Japan

Corresponding authors: Rei Takami (takamiray@gmail.com) and Yasufumi Takama (ytakama@tmu.ac.jp)

This work was supported in part by JSPS KAKENHI under Grant 19K22896.

ABSTRACT A visual analytics (VA) interface for formulating evaluation metrics of multi-dimensional
time-series data is proposed. Evaluation metrics such as key performance indicators (KPI) are expected
to play an important role in quantitatively evaluating current situations and the quality of target objects.
However, it is difficult for even domain experts to formulate metrics, especially for data with complexity
related to dimensionality and temporal characteristics. The proposed interface is designed by extending the
concept of semantic interaction to consider the temporal characteristics of target data. It represents metrics
as a linear combination of data attributes and provides a means for adjusting it through interactive VA. On an
animated scatter plot, an analyst can directly manipulate several visualized objects, i.e., a node, a trajectory,
and a convex hull, as the group of nodes and trajectories. The result of manipulating the objects is reflected
in the linear combination of attributes, which corresponds to an axis of the scatter plot. Using the axes
as the output of the analysis, analysts can formulate a metric. The effectiveness of the proposed interface is
demonstrated through an example and evaluated by two user experiments on the basis of hypotheses obtained
from the example.

INDEX TERMS Data visualization, data analysis, evaluation metrics, graphical user interfaces,
human–computer interaction, time-series data, visual analytics.

I. INTRODUCTION
A visual analytics (VA) interface for formulating evaluation
metrics for multi-dimensional time-series data is proposed.
In many domains, such as medical, sports, and business
intelligence, the importance of multi-dimensional time-series
data is increasing. To utilize those data, evaluation met-
rics such as key performance indicators (KPI) [1] play an
important role in various tasks involving decision making
[2] and hypothesis generation: they are used to quantitatively
evaluate current situations, the quality of target objects, etc.
This paper defines an evaluation metric as an interpretable,
attribute-based representation of user-defined criteria. As an
example of this type of metric, sabermetrics, which is the
empirical analysis of baseball, provides several metrics for
evaluating the performance of batters by combining multiple
basic data (attributes) [3].

Evaluation metrics should be formulated to be meaningful
in a target domain emphasizing interpretability rather than
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accuracy. They are therefore generally formulated by domain
experts. However, metrics based on subjective knowledge
may include confirmation bias: the analysts subconsciously
pay particular attention to a phenomenon that confirms
a pre-existing hypothesis [4]. On the contrary, metrics defined
only on the basis of data may lead to overfitting prob-
lems. Visual analytics (VA) [5] is expected to support
the process of formulating metrics (‘‘metrics formulation,’’
hereafter) by considering both the evidence obtained from
data and the cognitive ability of a domain expert. When
VA is applied to multi-dimensional time-series data, pre-
processing such as dimensionality reduction and clustering
is required to reduce the dimension of the data. However,
domain experts lack knowledge about the algorithms used
for that preprocessing, so they have difficulty in selecting an
appropriate algorithm for the preprocessing, adjusting those
parameters, and confirming the effect of the parameters on
the preprocessing results [6]. To overcome this difficulty,
a human-in-the-loop approach, namely, semantic interac-
tion, has been proposed [7]. A system based on the con-
cept of semantic interaction interprets the intention of the
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user’s direct manipulation of visualized objects, adjusts
the parameters of the model in accordance with the esti-
mated intention, and gives feedback to the user by redraw-
ing the visualized objects [8]. However, to the authors’
knowledge, explicitly incorporating semantic interaction into
multi-dimensional time-series data has not yet been stud-
ied. To extend semantic interaction for multi-dimensional
time-series data, this paper assumes three requirements:
(R1) flexible adjustment of temporal range of parame-
ter based on both characteristics of specific time point
and entire time range; (R2) incremental metrics formu-
lation on a single view; and (R3) addressing specific
problems when directly manipulating visualized time-series
data [9].

As for existing studies on VA that explicitly consider the
relationship between different attributes ofmulti-dimensional
data, a method for formulating linear functions and projecting
multi-dimensional data into low-dimensional space defined
by the user’s examples was proposed by Gleicher [10]. Met-
rics formulation can also be interpreted as the construction
of ranking criteria that define relative importance of each
data instance. As an example of VA for constructing ranking
criteria, an interface called Podium, which re-learns rank-
ing criteria on the basis of how the user sorts the results
of tabular visualization of ranking results, was proposed by
Wall et al. [11]. However, these studies do not support
the task of metrics formulation explicitly, and they do not
consider characteristics specific to time-series data, such as
temporal trends [12] and trade-offs between visualization
methods [13].

In this paper, to support metrics formulation of
multi-dimensional time-series data by interactive VA,
semantic interaction is extended to satisfy the above-
mentioned R1-R3. In particular, a VA interface that expresses
the metrics as a linear combination of attributes at an arbi-
trary time point or range is proposed. Via that VA inter-
face, instances of target data are projected onto a 2D space
(scatter plot), each axis of which corresponds to a basis for
a metric. An instance in a dataset is represented as three
types of visualized objects that are manipulatable by users:
(1) a node representing an instance at a specific time point;
(2) a trajectory representing the time-series of an instance;
and (3) a convex hull representing a group of nodes and
trajectories. Different types of visualized objects are asso-
ciated with different temporal and spatial ranges: a node
with a specific temporal and/or spatial point, a trajectory
with a time range, and a convex hull with a spatial region;
this association contributes to the efficient exploration of the
target data. Visualized objects of instances can be moved to
arbitrary positions on a scatter plot so that the data distri-
bution on the scatter plot reflects the criteria that the user
supposes. The positions of objects on the scatter plot are
modeled with global and local parameters, which are used
to update the axes. By iteratively adjusting these parameters,
the analyst can incrementally acquire ideas for metrics
formulation.

As an example of applying the proposed interface to
real-world data, metrics formulation using statistical data of
a baseball game are presented hereafter. On the basis of the
hypothesis obtained through the example, the effectiveness
of the proposed interface was experimentally evaluated. The
participants in the experiment were asked to use the proto-
type interface to find similar instances of multi-dimensional
time-series data and adjust the linear functions correspond-
ing to the axes of the scatter plot. The experimental results
show that the prototype interface enables exploration of
multi-dimensional time-series data by appropriately combin-
ing target visualized objects. Using the proposed interface,
the participants could efficiently reflect their intentions as a
data distribution on the scatter plot.

The proposed interface is the first attempt at applying VA
to metrics formulation of multi-dimensional time-series data.
The main contributions of this paper are summarized as
follows:

• A VA interface to support metrics formulation of
multi-dimensional time-series data based on the concept
of semantic interaction is proposed.

• The design principles necessary to formulate evaluation
metrics for time-series data are organized as an ana-
lytical framework that extends the concept of semantic
interaction to time-series data.

• An example of an application to metrics formulation of
statistical data of a baseball game is shown to illustrate
the effective usage of the proposed interface.

• The results of user experiments show the effectiveness
of the proposed interface.

The concept of the analytical framework was proposed
in [14], in which the prototype interface and the example are
described. To supplement that paper, this paper describes the
proposed interface in further detail and presents the results of
the user experiments.

II. RELATED WORK
A. VISUAL ANALYTICS
For the purpose of data-driven decision making, it is neces-
sary to understand the characteristics of data, form hypothe-
ses about the analysis strategy, and select the algorithm
appropriately for the analysis. Visualization techniques are
used to interpret the intrinsic properties of large amounts
of data and enable decision making [15]. However, when
analyzing large complex data, such as multi-dimensional and
time-series data, it is necessary to reduce the amount of data
and the number of attributes by preprocessing [16]. It is also
said to be difficult to conduct effective data analysis with only
a single visualization. Therefore, VA, which provides ameans
to interact with data-visualization results in a way that assists
sensemaking and analytical reasoning on the basis of domain
knowledge, has been studied [5].

When executing complex VA tasks, domain experts eval-
uate the validity of analytical results on the basis of their
knowledge [17]. However, if they lack expertise in algorith-
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mic models, such as dimensionality reduction, issues con-
cerning fundamental usability [8] of VA will occur.

For promoting tighter collaboration between humans and
computers, mixed-initiative systems have been proposed and
applied domains such as machine learning and agent systems.
Through a user interface, a domain expert can understand
the intermediate results of a computational model through
visualization and adjust the model according to that under-
standing. The computer improves the model on the basis of
the expert’s purpose inferred from the interaction [18], [19].
However, as for existing mixed-initiative systems, users may
control the parameters of the models by using an indirect
UI such as a toolbar [20]. To appropriately set the param-
eters of the model through such UIs, users must know a
reasonable range of values. Thus, adjusting the parameters
is a difficult task for domain experts when the visualization
results generated by preprocessing differ from the experts’
intentions [6], [7]. To deal with these issues, recent stud-
ies proposed a mixed-initiative VA approach that can adjust
the parameters through the user’s direct manipulation of the
initial output of the VA [21]. For example, differing from
the above-mentioned conventional mixed-initiative approach
that specifies parameters indirectly, an analytical framework,
called ‘‘semantic interaction,’’ based on direct manipulation
of visualized objects, was proposed by Endert et al. [7].
Semantic interaction has been applied to text mining [22] and
dimensionality reduction of multi-dimensional data [23].

B. VISUALIZING MULTI-DIMENSIONAL DATA
Due to limitations on screen area and human cognitive ability,
it is difficult to display multi-dimensional data in more than
three dimensions directly on a screen [16]. Various methods
for visualizing multi-dimensional data have therefore been
proposed. These visualization methods can be categorized
as two main groups: one is to preserve the attributes of
the raw data and visualize them in terms such as parallel
coordinates and scatterplot matrices; the other is to cre-
ate a low-dimensional representation by synthesizing mul-
tiple attributes of the raw data [24]. As an example of the
latter method, dimensionality reduction involves projecting
multi-dimensional data into a low-dimensional space, where
the coordinates of the target low-dimensional space contain
characteristics such as the similarity between data in the
original space [25].

The relationship between data and the overall trend of
data can be easily grasped from the scatter plot obtained
by applying dimensionality reduction [26]. However, dimen-
sionality reduction may produce visualization results that are
not consistent with the intention of the analysis. For that
reason, a method to adjust a projection algorithm on the basis
of domain knowledge through user interactions has been stud-
ied [27], [28]. However, many of these algorithms do not take
into account the temporal characteristics of data. As for algo-
rithms for visualizing multi-dimensional time-series data,
a method of dimensionality reduction for stream data based
on incremental principal component analysis (PCA), which

calculates the projection of added and updated data instances,
was proposed by Fujiwara et al. [29].
Parameter adjustments on the basis of concepts such as

semantic interaction have been applied to both linear dimen-
sionality reduction [30], [31] and nonlinear dimensionality
reduction [32], [33]. InterAxis [31] is a VA interface that
allows users to adjust a linear combination of attributes that
corresponds to an axis in amanner that allows them to empha-
size a target visualized object. Semantic interaction has also
been utilized to assist experts in specific domains with their
analysis and decision-making tasks, such as security [34]
and understanding machine-learning models [35]. However,
existing studies are limited to sensemaking on the basis of
exploratory analysis, and they do not assume that the adjusted
parameters of models are used to formulate evaluation met-
rics. Furthermore, to the authors’ knowledge, semantic inter-
action has not been applied to multi-dimensional time-series
data in any existing studies.

C. VISUALIZING TIME-SERIES DATA
Data whose attribute values change with time, such
as regularly collected statistical data, sensor data, and
stock-exchange data, are examples of time-series data [12].
The temporal aspect of such data, namely, a timestamp,
is stored in a database as one of the attributes. In the case
of multi-dimensional data, however, the characteristics of the
temporal aspect differ from those of the other attributes, and
they need to be taken into account when preprocessing [36]
and visualizing the data [37]. In this paper, it is assumed
that M -dimensional time-series data D = {dtnm} consists of
N instances withM attributes recorded at specific time points,
each given as t . Many methods for visualizing time-series
data have been proposed [13], and they can be categorized
as two types: static visualization, by which the temporal
changes of data values are represented as visual objects on
a static view, and dynamic visualization, by which the tem-
poral changes are represented as the movement of objects
by playback of animation [13]. Examples of static visualiza-
tion include line charts, small multiples [38], and trajectory
representation (traces) [39]. Although dynamic visualization
has some advantages in terms of presenting and understand-
ing trends in data, it is not suitable for detailed analysis
because it causes overlooking problems [40]. On the con-
trary, although static visualization is effective for exploratory
data analysis, it suffers from the problem of visual clutter
when large amounts of data are visualized [38]. Therefore,
in some studies, an animation is combined with trajectories
and line charts to take advantage of both types of visualization
methods [9], [41] [42].

If the time-series data has a multi-dimensional nature,
it becomes difficult to simultaneously visualize data attributes
and their temporal characteristics. Projection methods [43]
are often employed to mitigate that difficulty [37]. As for the
visualization proposed by Patashnik et al. [44], the charac-
teristics of time-series data (such as burst) are emphasized
in preprocessing and the result of dimensionality reduction
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for each time point is superimposed in a single static view.
A trajectory is used to visualize a subset of the data that have
large changes in the view. It is easy to apply the concept of
semantic interaction to such a single view. However, an anal-
ysis focusing on a specific time range becomes difficult.

It is also possible to apply projections at each time point
and visualize them separately. However, the cost of param-
eter adjustment is increased inevitably, and it is difficult to
confirm the validity of the adjusted parameter for the global
trend of a dataset. Therefore, when applying semantic inter-
action to multi-dimensional time-series data, it is important
to select an appropriate visual encoding that can support
the understanding of both the overview of the entire time
range and detailed characteristics at a specific time point or
range [45].

D. FORMULATION OF EVALUATION METRICS
As noted in Sec. I, evaluation metrics are defined as an inter-
pretable and attribute-based representation of user-defined
criteria: they are used to quantify the degree of compatibility
of data to a human’s subjective criteria. Evaluation metrics
are utilized in various domains with different forms, such as
thresholds for determining positive and negative examples
in classification tasks, criteria for determining rankings in
multi-criteria decision problems [46], metrics for decision
making in epidemiology [47], and sabermetrics [3]. Other
examples of evaluation metrics are the KPI [1] and perfor-
mance metrics for employees in the business field [48].

As one of the guidelines for formulating such metrics,
SMART criteria (‘‘specific,’’ ‘‘measurable,’’ ‘‘achievable,’’
‘‘relevant,’’ and ‘‘time-bounded’’) have been advocated [49].
To formulate metrics that follow such guidelines, metrics
should be based on data and formulated through continuous
improvement [49]. For data-driven metrics formulation, it is
important to assess the metrics’ quality and compare alterna-
tive metrics [50]. However, when the number of alternative
metrics and data attributes is large, it is difficult for domain
experts to comprehensively compare and analyze those
metrics.

Regarding VA interfaces for metrics formulation, as men-
tioned in Sec. I, formulations of projection functions [10]
and rankings criteria [11] for multi-dimensional data have
been proposed. As an example of visually supporting
KPI analysis, an interface that combines a node-link diagram
and matrix-based visualization — to represent complex rela-
tionships amongmultiple KPIs and their constituent attributes
in manufacturing production systems — was proposed by
Brundage et al. [51]. In that proposal, however, they do not
mention how to formulate new metrics based on the anal-
ysis results. As for explicitly dealing with the metrics for-
mulation, a formulation process consisting of the following
three tasks was proposed by Chen et al. [2]: first, analysts
collect data with labeled information, which have a large
number of attributes that may be used as metrics, and apply
attribute-selection algorithms so that they can identify the
attributes that strongly contribute to the prediction of labels.

Second, on the basis of the analysts’ domain knowledge,
they qualitatively confirm the accuracy of the label prediction
when the selected attributes are used as evaluation metrics.
They stop this step when they find a few attributes consisting
of evaluationmetrics. Third, they formulate candidatemetrics
by combining the attributes selected in the previous steps and
determine the final metrics on the basis of their effectiveness
regarding real-world data. However, to the authors’ knowl-
edge, aVA interface formetrics formulation that considers the
temporal characteristics of target data has not been studied.

III. PROPOSED FRAMEWORK
A. REQUIREMENT
To formulate evaluation metrics for time-series data, a con-
ceptual framework that extends semantic interaction to cover
the temporal characteristics of target data is proposed in this
section. The framework is assumed to satisfy the following
three requirements.

1) CONSIDERATION OF TEMPORAL CHARACTERISTICS (R1)
To formulate evaluation metrics for multi-dimensional
time-series data, it is necessary to consider the temporal
characteristics of the data. For example, when such data is
being monitored, a fixed threshold for detecting anomalies is
not enough formonitoring over a long period; that is, different
thresholds should be used for a time range having differ-
ent temporal characteristics. As another example, to clarify
the temporal characteristics of multi-dimensional time-series
data for such tasks as prediction, smoothing, and normal-
ization, are often applied to remove noisy fluctuation [36].
However, to apply those techniques without losing important
temporal characteristics, analysts have to discriminate noise
from true temporal variation of data at each time point. If ana-
lysts attempt that discrimination by using an existing interface
based on semantic interaction, they need to analyze data
independently at each time point. As a result, the interaction
cost for adjusting and validating the results of the analysis will
increase. On the contrary, applying uniform parameters to the
entire time range is not reasonable when the temporal trend
of data changes in the middle of the time range. For example,
in the case of sabermetrics, players tend to have extremely
high or low statistics early in the baseball season due to
the relatively small number of plate appearances and innings
pitched. Therefore, using the same metrics throughout the
season is not practical to make a valid evaluation of player’s
performances [52], [53]. We think that these problems can be
solved if users can adjust the parameters for an arbitrary time
range. Therefore, in accordance with the analyst’s intention,
the framework needs to allow the analyst to flexibly change
the time range in which the parameters can be adjusted.

2) INCREMENTAL FORMULATION OF METRICS (R2)
To effectively formulate metrics using the VA interface,
it must be possible to adjust the parameters incrementally
while checking the validity of the VA results by referring
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to the user’s domain knowledge. These processes can be
supported by the concept of semantic interaction described
in Sec. II-A. As for existing VA interfaces utilizing semantic
interaction [22], [31], the parameters of the models used
for data visualization are adjusted in a single view without
switching views; accordingly, the analyst can incrementally
adjust the parameters while checking the feedback from a
computer reflected in the visualization. To apply such inter-
action, multi-dimensional time-series data also needs to be
visualized in a single view. However, users have to not only
adjust the parameters at each time point but also formulate
metrics with reference to the adjusted parameters in the
entire time range (or a specific time range) while preventing
overfitting to a specific time point. If existing visualization
methods, as described in Sec. II-C, are applied, it is difficult
to visualize the temporal trends over the entire time range and
data distribution at each time point in a single view. When
switching playback points by animation, the context of the
semantic interactions at other time points is lost because visu-
alized objects and their associated parameters are updated.
Although static visualization such as trajectory representation
can visualize the temporal change of an instance in a single
view, it suffers from the problem of visual clutter [9]. Small
multiples can visualize multiple time points at the same time.
However, when the number of time points increases, users
need to confirm each view side-by-side, and that confir-
mation increases the interaction cost. Therefore, to support
metrics formulation incrementally, it is necessary to visualize
multi-dimensional time-series data in a single view in a form
that preserves the context of data and suppresses visual clutter
so that the analysts can give feedback on that view only.

3) ANALYTICAL PROBLEMS SPECIFIC TO
TIME-SERIES DATA (R3)
The following three problems should be solved when apply-
ing semantic interaction to time-series data [9]: (1) the col-
lision of interactions on the temporal aspect, which occurs
between updating the placement of visualized objects by
animation and the displacement of visualized objects with
the user’s direct manipulation; (2) the collision of interac-
tions between the temporal and spatial aspects, which occurs
between two aspects (temporal or spatial) that can be inter-
preted from the same interaction (e.g., selection operation);
and (3) unavailability of a uniquely effective visualization
method for understanding the temporal characteristics of
multi-dimensional time-series data and suppressing visual
clutter [13]. To effectively manipulate visualized objects on
the basis of semantic interaction, it is necessary to combine
several visualization methods according to the purpose of the
analysis and the characteristics of target data.

B. OVERVIEW OF PROPOSED FRAMEWORK
The proposed framework focuses on multi-dimensional
time-series data with a fixed number of attributes as its target
data. As mentioned in Sec. II-C, the data is represented as
D = {dtnm}, where t , n, and m are respectively indices of

time points, instances (on), and attributes. Length of the time
series is T , number of instances is N , and each instance
has M attributes. Similar to the existing studies mentioned
in Sec. II-D [2], it is assumed hereafter that the pro-
cess of metrics formulation consists of the following three
steps:

1) Preprocessing: data collection, attribute selection, and
normalization

2) Understanding the characteristics of processed attributes
through visual analysis on the basis of the results of
step (1)

3) Definition of evaluation metrics on the basis of the
results of step (2) and the analyst’s domain knowledge

The proposed framework covers step (2) and makes it pos-
sible to create a starting point for formulating interpretable
and data-driven evaluation metrics in step (3). Regarding the
target multi-dimensional time-series data, monthly or yearly
statistical data is focused on hereafter. It is supposed that the
length of time series T should be short enough to grasp the
characteristics of data at each t and the entire time range.
That is, directly analyzing raw data such as sensor data and
purchase history for customers of e-commerce service is out
of the scope of the framework.

After being subjected to dimensionality reduction, the tar-
get data are visualized as a 2D scatter plot at each time
point (t), and temporal characteristics are expressed by ani-
mation. In the same manner as existing VA interfaces apply-
ing semantic interaction, visualized objects on the scatter plot
can be directly manipulated with interactions such as drag
and drop [54]. The visualized objects used in the prototype
interface are described in Sec. III-E. Each axis of the scat-
ter plot is represented as a linear combination of instances’
attributes, which is updated by direct manipulation of the
visualized objects by the user. As will be shown in Sec. V,
different axes can be used to reflect the different viewpoints
of the analysts. While manipulating the data distribution on
the scatter plot, users can understand the distribution of the
target data and its temporal characteristics. When they obtain
the data distribution that reflects their subjective criteria,
the linear combination of attributes corresponding to the axis
is used as a metric or a starting point for formulating metrics.
Although a linear combination of attributes cannot repre-
sent a nonlinear correlation between attributes, it has been
used as a means of dimensionality reduction for visualizing
multi-dimensional data because of its interpretability [10] and
short calculation time [25]. Regardless, in this study, we con-
sider widely used metrics based on a linear combination of
attributes, such as sabermetrics [3], well-being metrics [55],
and objective functions for learning to rank [56], as suffi-
ciently practical for our proposed framework. This is because,
as noted in Sec. I, as for evaluation metrics, interpretabil-
ity is more important than accuracy. Furthermore, as shown
in Sec. V, in addition to linear metrics, complex, nonlin-
ear metrics can be formulated on the basis of the obtained
axis.
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C. ANALYTICAL PARAMETERS
For vector d tn ∈ RM , which corresponds to on at time point t ,
its 2D coordinates ptn = (p(X)tn , p

(Y)
tn ) are defined by local

parameter α and global parameter ω according to Eq. (1) as
follows:
• α = (α(X),α(Y)) ∈ R2×T×N : displacement of each
instance by user’s manipulation.

• ω = (ω(X),ω(Y)) ∈ R2×T×M : coefficient for attributes
of instances, which define the contribution of each
attribute to the axes on the scatter plot.

ptn =
M∑
m=1

dtnmωtm + αtn. (1)

Used as building blocks for the metrics, parameter ω rep-
resents a projection from M -dimensional space to 2D space.
Its value is common for all instances, so it is referred to as
a ‘‘global parameter.’’ Since it can be specified for different
time points, it includes t as an index. On the contrary, local
parameter α can have different values for different instances
at different time points. It is supposed to temporally reflect
the user’s manipulation on each instance on a scatter plot. The
values ofα can be absorbed intoω as explained in Sec. III-D2.
To emphasize the difference between trends of different time
points, the dimensionality reduction can be applied to cal-
culate the initial value of ωt independently at each time
point (t). It is also possible to use ωt obtained at a certain
time point (t) as the initial values of ωt ′ at different time
points (t ′ 6= t).
Utilizing the advantages of different visualizationmethods,

the proposed framework assigns different time ranges to dif-
ferent types of visualized objects in a manner that satisfies
requirement R3 (3) described in Sec. III-A. It also enables
users to flexibly change the parameters in different temporal
and/or spatial ranges by manipulating appropriate visualized
objects according to their intentions (Sec. III-D). Therefore,
we think the proposed framework can support metrics for-
mulation considering temporal characteristics (R1). Analysts
can give their feedback on the scatter plot by, for example,
moving visualized objects alongside a specific axis, which is
theoretically interpreted as parameter changes.

D. DIRECT MANIPULATION
Parameters α and ω can be adjusted to reflect the user’s
intentions such as ‘‘move a specific object and similar objects
in the opposite direction to dissimilar objects’’ or ‘‘make
outliers more prominent on each axis’’ through the interac-
tion on the scatter-plot view. Such direct manipulation of
visualized objects is classified as three types [57]: absolute,
orbital, and relative. Absolute alignment represents a global
change to the projection, while orbital and relative alignments
represent local changes. Among these strategies, the absolute
and relative ones are adopted for the proposed framework;
the orbital one is not used because it is covered by the relative
strategy. Both strategies correspond to specific types of direct
manipulation of visualized objects on the scatter-plot view:

users can incrementally adjust interpretable parameters in
arbitrary time ranges on the single view (R2 in Sec. III-A).
Regarding interaction with the proposed VA interface for

adjusting parameters, the two above-mentioned manipulation
methods and manual parameter adjustment are implemented
in the following manner. Via the proposed interface, direct
manipulation is performed by dragging and dropping a visu-
alized object (described in Sec. III-E) or bar chart (Fig. 2(c)).
In the following subsections, ω′ corresponds to ω before the
parameter adjustment.

1) ABSOLUTE MANIPULATION
We suppose that users use absolute manipulation with the
intention of adjusting the projection globally to emphasize
the target object(s). When a visualized object is dragged and
dropped onto one of the axes of the scatter plot at time
point t (Fig. 2(a1)), ωt is adjusted so that the coordinate
of the object on the axis is close to the dropped position
(Fig. 2(a2)). During absolute manipulation, the degree of
salience for each attribute1d t is calculated by using Eq. (2).
In Eq. (2),OS is a set of instances corresponding to the objects
dropped on a projection axis and ONS denotes the set of
remaining instances.1d t obtained by using Eq. (2) is used to

update ω(i)
t fromω′(i)t to ω̂(i)

t by using Eq. (3), and the updated
ω̂
(i)
t is normalized by using Eq. (4). In Eq. (3), c(i)t ∈ [0, 1]

represents the degree of emphasis of all objects with respect
to the projected axis, and it is calculated by using Eq. (5) with
Pos(i), which represents the normalized dropped position on

axis i ∈ {X,Y}. In Eq. (5), max(p(i)t )/min(p(i)t ) corresponds
to the maximum and minimum values of coordinate p(i)t over
all instances. If multiple objects are dropped, their centroids
are treated as Pos(i).

1d t =
1
|OS|

∑
on∈OS

d tn −
1
|ONS |

∑
on∈ONS

d tn, (2)

ω̂
(i)
t = ω

′(i)
t + c

(i)
t 1d t , (3)

ω
(i)
t =

1

‖
ˆ
ω
(i)
t ‖2

ω̂
(i)
t , (4)

c(i)t = 2

(
Pos(i)−min(p(i)t )

max(p(i)t )−min(p(i)t )
−

1
2

)
. (5)

2) RELATIVE MANIPULATION
We suppose that users use relative manipulation with the
intention of adjusting local relationships between objects.
When a visualized object placed at p′(i)tn is dragged and
dropped onto arbitrary position p(i)tn on the scatter plot at time
point t (Fig. 2(b1)), αtn is modified by using Eq. (6) so that the
object is placed at the dropped position (Fig. 2(b2)). αt can be
absorbed by ωt whenever required by solving the optimiza-
tion problem by using a loss function L(ω(i)

t ) (Eq. (7)) for
each axis (i ∈ {X,Y}) independently. As for the proposed
interface, [α to ω] button is provided in the scatter-plot view
(Fig. 1(a)). In Eq. (7), λ is a hyperparameter that controls the
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FIGURE 1. Screenshot of prototype interface: (a) scatter-plot view consists of (a1) scatter plot, (a2) bar chart that represents parameter ω, and (a3)
animation control UI; (b) detailed view consists of (b1) labels of selected visualized objects, (b2) line charts that represent a temporal change of
positions on a scatter plot, and (b3) parallel coordinates of attribute values at the playback point of animation; and (c) analytical functions (e.g.,
changing manipulation target).

effect of a regularization term. Hereafter, λ is set to 0.5. After
solving the optimization problem, ωt is used to determine the
position of visualized objects, and all αtn values are reset to
zero.

α
(i)
tn = p(i)tn − p

′(i)
tn . (6)

L(ω(i)
t ) =

√√√√√ N∑
n=1

(
M∑
m=1

dtnmω
(i)
tm − p

′(i)
tn

)2

+λ‖ω
′(i)
t − ω

(i)
t ‖2. (7)

3) MANUAL PARAMETER ADJUSTMENT
VA based on semantic interaction could lead to confirmation
bias or bias due to over-focus on specific objects [4]. To rec-
ognize these biases, analysts have to confirm which param-
eters have been adjusted significantly when the object(s)
are moved. To support such a confirmation, the proposed
interface visualizes the amount of parameter adjustment at
each time point as a bar chart. The values of ω can be
adjusted not only by directly manipulating visualized objects
but also by manually manipulating the bar chart (Fig. 2(c)).
The combination of semantic interaction and manual control
with a UI is expected to be useful for fine-tuning the results of
direct manipulation of visualized objects. Also, we suppose
that confirming the result of manually changing the value of

ωtm provides a hint to the user about which direction to move
the object. When the height of the bar chart on axis i, which
corresponds to the degree of emphasis of each attribute dtm,
is changed manually, the value of ω(i)

tm is updated on the basis
of the modified height, which is immediately reflected in the
scatter-plot view.

E. VISUALIZED OBJECTS
On the scatter plot, three types of visualized objects,
i.e., nodes, trajectories, and convex hulls, can be dragged and
dropped directly as explained in Sec. III-D. The spatial and
temporal ranges of the adjusted parameters differ according to
the type of visualized objects to be manipulated. As a result,
the parameters can be flexibly adjusted in arbitrary spatial and
temporal ranges (R1 in Sec. III-A).

1) NODE
A node is located at position ptn on the scatter plot and
corresponds to d tn. When a node is directly manipulated,
only the parameters of the current time point correspond-
ing to the playback point of animation are adjusted. Direct
manipulation of nodes is useful for data that contain abnormal
values only at specific time points. For such data, the effect
of abnormal values on evaluation metrics can be removed.
If a drastic change of an object’s position that is contrary
to the user’s mental model is confirmed through playing the
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FIGURE 2. Example of parameter adjustment via the prototype interface:
(a) absolute manipulation, (b) relative manipulation, and (c) manual
parameter adjustment.

animation, the user can adjust the parameters for that time
point only by dragging and dropping the node.

2) TRAJECTORY
A trajectory shows a change in the position of instance on in
the playback range of the animation: a line corresponding to
a path (p1n, p2n, . . . , pTn) is drawn with a curve interpolation
to represent the change between time points smoothly. The
brightness of a trajectory is drawn so that ptn corresponding
to the current time point is the darkest. Because a trajectory
can represent temporal trends of an instance in a single static
view, it is useful to preserve the user’s mental model on the
consistency of movement of objects [58]. The trajectory is
displayed when the mouse cursor is moved over a node. It is
also used to change the playback point of animation on the
scatter-plot view in the same way as detailed in [59]. When
the mouse cursor is moved over a node in the displayed
trajectory, the distribution of all nodes at that time point is pre-
viewed by semi-transparent superimposition. This preview is
expected to be useful because it allows the user to compare
the distribution of nodes between different time points.

Differing from direct manipulation of a node, that of a
trajectory adjusts parameters αtn and ωtm for all t in the
time range corresponding to the playback range of the ani-
mation (t = 1, 2, . . . ,T ). We suppose that a trajectory is

directly manipulated to emphasize an instance for a specific
time range. By using a trajectory as the manipulation target,
the collision of interactions on the temporal axis (R3 (1)) can
be avoided because the position and shape of a trajectory do
not change with the animation, even when the trajectory is
visualized with a combination of animations [9].

3) CONVEX HULL
A convex hull is a visualized object corresponding to a set of
visualized objects on a 2D space. The relationship between
multiple instances can be grasped effectively from the shape
of the convex hull [60]. It is also used to visualize temporal
trends in time-series data on 2D scatter plot [61]. The pro-
posed interface draws convex hulls semi-transparently: users
can judge the similarity between multiple clusters by their
overlap.

When multiple trajectories are selected, a convex hull of
those trajectories (CT) is drawn (Fig. 3(b)). A convex hull
is also created by drawing a curve that encloses nodes and
trajectories in the same way as lasso selection [62]. The shape
of convex hulls can be switched between animation playback
mode and pause mode: when animation is played, a convex
hull containing the nodes of selected instances at each time
point (CN) is drawn (Fig. 3(a)). A convex hull containing the
trajectories of selected instances (CT) can also be drawn in
pause mode without drawing trajectories (Fig. 3(c)).

FIGURE 3. Example of a convex hull drawn in (a) animation playback (CN)
and (b) and (c) pause mode (CT with or without trajectories).

The combination of dynamic visualization (animation) and
static visualization (trajectories and convex hulls) makes it
possible to balance the trade-offs between different visu-
alization methods (R3 (3)). A convex hull CT drawn by
selecting multiple trajectories (Fig. 3 (b)) is the same as that
drawn in pause mode (Fig. 3(c)), from which the tempo-
ral trend of multiple objects can be grasped spatially. As a
result, the occlusion problem of multiple trajectories can be
mitigated. On the contrary, the spatial relationship between
objects at specific time point t can be grasped using a CN.
Therefore, by utilizing a convex hull, it is possible to under-
stand both the local (t) and global (t = 1, 2, . . . ,T ) trends
described in Sec. II-C.

Direct manipulation of convex hulls makes it possible to
adjust the parameters relating to all objects inside the con-
vex hull. For example, OS in Eq. (6) is selected from the
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convex hull in the case of absolute manipulation. The target
time range of parameter adjustment differs according to the
method used for drawing the convex hull, as shown in Fig. 3.
CN can be manipulated to emphasize objects only at specific
time point t . On the contrary, CT can be manipulated to
emphasize objects within the playback range of the animation
(t = 1, 2, . . . ,T ). Different methods for drawing a convex
hull make it possible to switch target temporal and/or spatial
range in accordance with the user’s intention (R3 (2)).

IV. PROTOTYPE INTERFACE
A. IMPLEMENTATION
A prototype interface based on the proposed framework was
implemented. The interface includes two views: a scatter-plot
view (Fig. 1(a)) and a detailed view (Fig. 1(b)). It consists
of a front-end for visualization, a controller for transferring
data and parameters, and an API for parameter adjustment.
Ruby on Rails 5 is used for the controller, and D3.js v51

and jQuery 3.32 are used for the front-end. The API was
implemented by using Python 3 with Flask.3 The proto-
type interface uses principal component analysis (PCA) [63]
for dimensionality reduction and determining initial ωt for
each t = 1, 2, . . . ,T , independently. PCA was selected
because of its generality [54], interpretability of results, and
preservation of global placement [25]. PCA has compara-
ble performance to other methods for dimensionality reduc-
tion for multi-dimensional time-series data, such as t-SNE
(t-distributed stochastic neighbor embedding) and UMAP
(uniformmanifold approximation and projection), in terms of
distance preservation and temporal consistency [43]. When
PCA is applied to each time point independently, the con-
sistency of ωt between different time points t is not always
preserved. To improve the consistency, the proposed inter-
face performs sign inversion for ωt automatically. It loads
PCA-applied data in JSON format,4 and scipy.optimize5 was
used to solve the optimization problem shown in Eq. (7). The
value of ω can be imported or exported in JSON format via
the button at the top of the scatter-plot view.

B. SCATTER-PLOT VIEW
The scatter-plot view visualizes the results of dimensionality
reduction at an arbitrary time point specified by the user
(Fig. 1(a)). Target time point t of the scatter plot can be
switched by animation playback and controlled by the UI on
the interface (Fig. 1(a3)). This view is used to gain insight
into temporal trends of data and adjust α and ω through direct
manipulation of visualized objects (Sec. III-E). A convex hull
is drawn with d3-polygon,6 a library that computes the region
of the convex hull using Andrew’smonotone chain algorithm.
Zooming and panning on objects of interest are possible on

1https://d3js.org/
2https://jquery.com/
3http://flask.pocoo.org/
4https://www.json.org/json-en.html
5https://docs.scipy.org/doc/scipy/reference/optimize.html
6https://github.com/d3/d3-polygon

the scatter plot. The bar chart visualizing ω is located along
the axis of the scatter plot (Fig. 1(a2)), and the parameters can
be adjusted manually (Sec. III-D3).
The interface enables incremental parameter adjustment

(R2 in Sec. III-A) in several ways. Firstly, the result of param-
eter adjustment is immediately reflected on the scatter-plot
and detailed views (Sec. IV-C). Secondly, to suppress visual
clutter, the display of visualized objects can be turned off on-
demand. Thirdly, to prompt the user for confirmation of direct
manipulation, manipulated objects are highlighted in border
color, and lines are drawn to connect placements of an object
before and after it was directly manipulated [23].

To take advantage of both the static and dynamic
time-series data-visualization methods, as in [9], the proto-
type interface maps playback and pause of the animation
to temporal and spatial interpretations of the interaction.
Playback mode of the animation is used for two purposes:
(1) to understand the temporal characteristics of the time
series data and (2) to verify the effectiveness of parameter
adjustments and the validity of the adjustments across the
entire time range. On the contrary, in pause mode, the user
forms a hypothesis necessary for metrics formulation through
direct manipulation of visualized objects after obtaining the
visual insights in playback mode. These interaction modes
can resolve the collision of interactions between the temporal
and spatial aspects by providing different results for the user’s
intention (R3 (2) in Sec. III-A). For example, as shown in
Sec. III-E2, the shape of the convex hull can represent differ-
ent information in different modes: visualizing a set of nodes
in playback mode and/or a set of trajectories in pause mode.
If absolute manipulation (Sec. III-D1) is applied after α is
modified, a dialog box is displayed to confirm whether the
change of α is absorbed by ω.

C. DETAILED VIEW
When a single object or multiple visualized objects on
the scatter plot are selected, detailed information about the
object(s) is displayed in this view. This view consists of a list
of objects selected from the scatter-plot view (Fig. 1(b1)),
a line chart of changes in X and Y coordinates of on (ptn)
(Fig. 1(b2)), and parallel coordinates representing all dtn′m
for n′ = 1, 2, . . . ,N ,m = 1, 2, . . . ,M (Fig. 1(b3)). Raw
attribute values dtnm of specific instances (on) at the same time
point t as the scatter-plot view are also shown (right side of
Fig. 1(b3)). The list of instances selected in the scatter-plot
view is also presented in this view (Fig. 1(b1)). Each instance
has a unique color in the detailed view. This list serves as a
legend for each component in the detail view. Objects to be
manipulated in the scatter-plot view can also be selected from
the detailed view, which is complementary to the scatter-plot
view: users can explore the temporal change of instances
selected in the scatter-plot view by line charts (Fig. 1(b2))
and the relationship between those attribute values and ω by
parallel coordinates (Fig. 1(b3)). The detailed view is used
for generating hypotheses by verifying the visual insights
obtained from the scatter-plot view.
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TABLE 1. Correspondence between UI and function on navigation
buttons.

D. ANALYTICAL FUNCTIONS FOR EXPLORING DATA
The prototype interface has several analytical functions that
allow users to explore data. The functions can be invoked
via the navigation buttons on the right side of the screen
(Fig. 1(c)). The interface implicitly informs the user of the
currently activated function by changing the shape of the
mouse cursor as shown in Table 1. The four analytical func-
tions are listed below.7

• Switching playback and pause of animation (F1): by
pressing the button at the top of Fig. 1(c), the animation
is switched between playback and pause. The icon on
each button corresponds to the currently activated mode
of animation (playback or pause). To implicitly indicate
the current mode, the background color of the scatter
plot is orange for playback and white for pause.

• Switching target object of direct manipulation (F2): by
clicking the second button of Fig. 1(c), icons corre-
sponding to three objects (node, trajectory, and convex
hull) are shown on the left side of the navigation buttons
shown in Fig. 1(c). When one of the buttons is clicked,
the manipulation target is switched to the corresponding
type of visualized object.

• Labeling visualized object(s) (F3): a set of visualized
objects can be grouped explicitly. When a certain button
is clicked, a color palette used for labels is displayed.
When a color is selected by clicking on the color palette,
the color of the mouse cursor changes to the selected
color (Fig. 4(a)). When a set of objects is selected after
selecting a color, a convex hull is drawn in the selected
color, and a label is assigned to the object (Fig. 4(b)).
On the basis of the label information, visualized objects
can be shown or hidden. The label information can be
imported and/or exported in JSON format.

• Searching for objects by metadata (F4): when metadata,
such as the name of an instance, is specified, corre-
sponding visualized objects are searched for by partial
match. Objects can be found and selected from the
scatter-plot view or the detailed view.

7Descriptions of the functions shown in Fig. 1 that are used in the example
and experiments.

FIGURE 4. Example of labeling functions in the prototype interface.

V. APPLICATION EXAMPLE
To illustrate the effectiveness of the proposed interface,
we used it to formulatemetrics for statistical data of a baseball
game. In this analysis, one of the authors played the role of
an analyst. The task was to analyze a dataset about batters in
the American League of Major League Baseball (MLB) [64]
during the 2018 season. The number of instances (batters)
is 198, each of which has eleven attributes, such as the number
of home runs and stolen bases. The result of PCA at each
time point t is used as the initial value of ωt . The attributes
were sampled every two weeks; thus, the dataset consists of
twelve time points. In summary, N = 198, M = 11, and
T = 12. Using the axes (a linear combination of attributes)
as the output of the analysis, the analyst tried to formulate a
metric for simultaneously evaluating the characteristics of the
batters and their performance during the season.

The analysis was started by exploring the overall trend of
the dataset while playing the animation (Sec. IV-B). Next,
batters of a familiar team were searched for by using the
object-search function (F4 in Sec. IV-D). Based on his prior
knowledge about baseball, the analyst tried to understand
the relationship between the batter’s properties (shown in
the detailed view) and the coordinates on the scatter-plot
view. At the same time, the analyst was also interested in the
temporal change of these relationships.

After the above-described exploration process, it was
noticed that ω(X) and ω(Y) roughly correspond to the perfor-
mance and characteristics (such as contact or power hitters)
of the batters, respectively (Fig. 5(a)). Then, he decided to
formulate an evaluation metric for classifying batters as con-
tact or power hitters. The obtained hypothesis was used to
understand the temporal characteristics in detail by grouping
the batters. For example, the object-search function (F4) was
used to select the trajectories of the batters considered to be
active throughout the season, such as winners of the Silver
Slugger Award, and their temporal and spatial tendencies
were then analyzed on the scatter plot. The tendencies of
the batters corresponding to contact hitters and power hitters
were confirmed from the shape of the convex hull created
by using the labeling function (F3). Next, the change in the
shape of the convex hull (CN in Sec. III-E3) was observed by
using animation. It was found that the batters who were active
throughout the season were located at the top of the X-axis in
the entire time range. It was also found that most of the batters
moved to the top of the X-axis as the season progressed.
On the contrary, the position of those who lost opportunities
to play moved in the opposite direction. However, the ani-
mation shows that the temporal trends along each axis were
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FIGURE 5. Application example of the prototype interface to statistical data of a baseball game during the 2018 season: (a) initial visualization
(at April 15) and (b) visualization after parameter adjustment (at April 15 and September 16).

not always apparent through the season. As for the Y-axis,
although the position of nodes significantly changes early in
the season, nomajor temporal changes in those positionswere
found in the second half of the season. As for the distributions
of nodes, the impact of attribute m-th on the placement of
objects on the Y-axis, p(Y)tn , was analyzed by manipulating the
bar chart for each m, that is, fine-tuning of ωtm is performed.
The result of the analysis revealed that the large changes in
p(Y)tn occurred in the early stage of the season because the
weight of three-base hits (3B) and home runs (HR) was too
strong to discriminate the performance of batters in the early
stage of the season.

After each axis was interpreted as described above, ω was
tentatively adjusted by direct manipulation. Two convex hulls
were created by selecting power hitters and contact hitters on
the basis of the findings of the above-described exploratory
analysis. To further emphasize the characteristics on the
X-axis, CT was created for the trajectories of batters who
maintained high performance throughout the season, and
CT was moved to the far right of the X-axis by absolute
manipulation.

After the updated scatter plot was interpreted, scatter plots
at different time points were compared, and the comparison
showed that the characteristics of batters were not clearly sep-
arable. Furthermore, to emphasize the characteristics of bat-
ters in the scatter-plot view, α was adjusted by moving CT of
contact (power) hitters to the upper (lower) ends of the Y-axis
by relative manipulation. After α is absorbed by ω, changes
inωwere observed from the bar chart, and the impact of mod-
ification of ω on object placement was analyzed. By observ-
ing the updated ω while playing the animation (Fig. 5(b)),
it was noticed that the weight for plate appearance (PA)
on the X-axis was higher at the beginning of the season
(April 15) than at the end of the season (September 16).
Moreover, on theY-axis, throughout the season, 3B and stolen
bases (SB) had large positive weights, while HR and two-base
hits (2B) had negative weights. In addition, the weight of
BB decreased toward the end of the season.

The analyst tried to formulate an evaluation metric on the
basis of the resulting parameter ω, the knowledge acquired
through the analysis, and existing metrics for baseball.
Finally, a new metric, Btype (Eq. (8)), as shown at the bottom
of the next page, was formulated with reference to two exist-
ing metrics: total bases (TB), which is defined as 1B+ 2B×
2+ 3B× 3+HR× 4, and on-base percentage (OBP), which
is defined as (1B+ 2B+ 3B+ HR+ BB+ HBP)÷ (AB+
BB + HBP + SF). In these metrics, 1B, BB, AB, HBP, and
SF denote number of single hits, base on balls, at-bat, hit by
pitch, and sacrifice flies, respectively. A positive (negative)
value of Btype corresponds to contact (power) hitters, and
its absolute value represents performance. According to the
findings acquired from the X-axis, the denominator of the
equation for the first half of the season is the minimum
required PA instead of the batter’s actual PA; it is thus possible
to positively evaluate the batters who constantly participate in
a game.

As shown in Appendix A, the validity of Btype was eval-
uated using the dataset about batters in the 2019 season.
It was confirmed that batters who were active throughout
the year (e.g., winners of the Silver Slugger Award) were
consistently positioned at the top/bottom in the rankings by
Btype. On the contrary, batters recognized as contact (power)
hitters from their outstanding values of corresponding bat-
ting statistics were also in the top (bottom) of the ranking.
Therefore, we think that the formulated Btype is a valid and
consistent metric for evaluating a target batter’s performance
and classifying their characteristics.

VI. EXPERIMENT
On the basis of the results of the above-mentioned example,
the following two hypotheses are postulated:

• H1: multi-dimensional time-series data can be effi-
ciently explored by combining appropriate types of visu-
alized objects according to the target time range and/or
number of instances (R3 in Sec. III-A).
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• H2: parameters can be efficiently adjusted in an incre-
mental manner to reflect the intentions and knowledge of
analysts in the projection by combining absolute manip-
ulation, relative manipulation, and manual parameter
adjustment (R1 and R2).

The effectiveness of the proposed interface was quantita-
tively verified by the following two user experiments, which
were designed considering the above-mentioned hypotheses.
Eighteen participants (aged 22 to 32 years old) studying or
working in the field of computer science, were asked to
take part in both experiments. To mitigate the differences in
domain knowledge among the participants and the impact of
dataset characteristics on the results, artificial datasets were
used as the target data. In both experiments, some analytical
functions (F3 and F4 in Sec. IV-D) were disabled because
they were not directly related to the tasks.

A. EXPERIMENT 1: DATA EXPLORATION
The participants were asked to search for instances with
similar temporal characteristics to a given target instance.
This experiment aims to verify H1.

1) PROCEDURE
Two baseline interfaces were prepared: EBL1 (exploration-
task baseline), which uses a node and a trajectory as visual-
ized objects, and EBL2, which uses a node and a convex hull.
The participants performed the data-exploration task by using
the proposed interface (exploration-task proposed interface,
EPR), EBL1, and EBL2 in random order.

The participants first did tutorial tasks with the prototype
interface, and then they performed three tasksets, each of
which was to be answered with different interfaces. For each
task in a taskset, the participants were asked to find instances
similar to a given target instance (the corresponding node was
highlighted in color) and to fill in the IDs of the instances
they found on an answer sheet. A taskset consists of four
tasks (#1, #2, #3, and #4) with different numbers of instances
to be found: 1, 3, 5, and 10, respectively. The tasks were
presented to the participants in random order to suppress the
order effect.

Three datasets were prepared, each of which consisted
of 500 instances with 10 attributes and 10 time points, that
is, N = 500, M = 10, and T = 10. A different
dataset was used for different tasksets to suppress the effect
of the characteristics of a dataset on each task. In each
dataset, 20 instances were given temporal characteristics,
such as monotonic increase, from which the target instance
was selected. To emphasize the change in node distribution,
the result of the PCA at t = 1 was used as ωt for the entire

time range. After the experiment, the participants answered a
questionnaire to rate the interfaces on a five-point Likert scale
and gave their reasons, if necessary.

2) RESULTS
The experimental results were evaluated on the basis of exe-
cution time of the task, accuracy of finding similar instances,
and the results of the post-experiment questionnaire.

To evaluate the similarity between the instances found by
the participants and the target instance, it was necessary to
define the distance between instances. Since the participants
using the prototype interface found similar instances on the
basis of the similarity of coordinates on the 2D space, the sim-
ilarity in projection space rather than in multi-dimensional
data space was evaluated. A similarity ranking to the target
instance was generated by sorting the remaining instances in
ascending order of Euclidean distance to the target instance.
Mean reciprocal rank (MRR) was selected as a metric for
evaluating the validity of instances stated to be similar.
MRR is calculated by using Eq. (9), where K represents
the number of found instances, and ri ∈ {1, 2, . . . ,N − 1}
corresponds to the rank of the i-th found instance in the
similarity ranking.

MRR =
1
K

K∑
i=1

1
ri
. (9)

Fig. 6 shows task execution time per combination of task
and interface. One-way ANOVA (analysis of variance) was
used to test for significance. If a significant difference was
found, the significance of the difference between the inter-
faces was evaluated by using Welch’s t-test. As a result,
only task #1 (number of instances to be found is 1) shows a
significant difference (p < .05) by ANOVA. On the contrary,
the other tasks (#2, #3, and #4) did not show significant
differences, possibly due to the fact that the participants used
different strategies for different tasks: some participants fin-
ished the task when they found a required number of similar
instances, while others selected the most similar instances
after they found more similar instances than required.

The task for which significant differences between EPR
and EBL1/EBL2 were observed is focused on hereafter. The
execution time of EBL1 was longer for task #1 than the other
tasks (p < .05). In EPR and EBL2, multiple instances can
be selected as a convex hull. After that, especially when the
number of target instances is small, similar instances can be
easily found by comparing the selected node’ movement by
animation playback in the scatter-plot view (Fig. 1(a1)) or
temporal changes of those attribute values by using a line
chart in the detailed view (Fig. 1(b2)). On the contrary, since

Btype =


1B× 2+ SB× 2+ 3B× 2− (2B+ HR× 3)

Number of team game× 3.1
(1st half)

1B× 2+ SB× 3+ 3B× 3− (2B+ HR× 4+ BB)
PA

(2nd half)
(8)
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FIGURE 6. Amount of time required to accomplish tasks per interface.

a convex hull is disabled in EBL1, it is necessary to display
the trajectories of candidate instances one by one to compare
their similarity. Therefore, execution time of EBL1 is longer
than that of EPR and EBL2 for task #1. Similar trends can be
confirmed for the other tasks, as shown in Fig. 6.
The mean and standard deviation of MRR for each

combination of task and interface are shown in Fig. 7. Sig-
nificant differences in MRRs for the interfaces were con-
firmed by one-way ANOVA. The result of Welch’s t-test
confirmed a significant difference (p < .05) for tasks #3
and #4 between EPR and EBL1/EBL2: MRR of EPR was
higher than EBL1 for task #3 and both EBL1 and EBL2 for
task #4. We think this result is due to the effectiveness of
the combination of a trajectory and a convex hull in the
case of EPR. When the participants used EBL1, multiple
instances could not be selected by a single interaction: since
only mouse-over points are compared, they tended to over-
look similar instances. This tendency decreased MRR for
tasks #3 and #4, in which they had to find more instances
than tasks #1 and #2. On the contrary, EBL2 can facilitate the
selection of spatially proximate visualized objects by drawing
convex hulls. However, when a convex hull enclosing more
than 50 nodes is drawn, it is difficult to compare the similarity
of all instances in the convex hull due to the overlapping
of visualized objects not only in the scatter-plot view but
also lines in the parallel coordinates of the detailed view
Fig. 1 (b2). Differing from EBL1 and EBL2, EPR supports
efficient data exploration by utilizing both a trajectory and a
convex hull. As for the questionnaire, 15 out of 18 participants
rated the combination of different target visualized objects
positively (4 or 5). Many participants commented on the ease
of exploratory analysis of time-series data as a reason for
that high rating. Two of the participants said that ‘‘Checking
a trajectory shape after selecting multiple instances (convex
hulls) made the data exploration easier.’’ and ‘‘A convex hull
is useful when observing all the nearby nodes together; a
trajectory is useful for finding the target.’’

These results confirm hypothesis H1 that the combination
of different types of visualized objects makes it possible to
efficiently explore multi-dimensional time-series data.

B. EXPERIMENT 2: PARAMETER ADJUSTMENT
This experiment aims to verify H2. The participants were
asked to perform a task of adjusting parameter ω to highlight
a specified instance on the scatter plot.

FIGURE 7. MRR (mean reciprocal rank) per interface and task when
Euclidean distance is used for the metrics representing similarity
between instances.

1) PROCEDURE
The participants first did tutorial tasks and were then asked
to do the following parameter-adjustment tasks. The taskset
consists of three tasks of adjusting ω so the nodes of the
target instance (highlighted in color) are positioned at the top
of the X- and/or Y- axes for each time point t . Task #1 is
for the X-axis, #2 is for the Y-axis, and #3 is for both axes.
The tasks were randomly presented to the participants in
the experiment to prevent order effects. When the condition
for each task was satisfied, a dialog was displayed on the
interface, and the participants were asked to finish the task
and move to the next one. To prevent an excessive increase
in task execution time, a 10-minute time limit was set for
each task. As the task is to adjust ωt at each time point t ,
PCA was applied to each time point for obtaining initial
values of ω. The following three interfaces were adopted as
baseline interfaces. The participants performed three different
tasks with the proposed interface (parameter-adjustment-task
proposed interface, PPR), PBL1 (parameter-adjustment-task
baseline), and one of PBL2 and PBL3. The assignment and
the order of interfaces to be used by each participant were
based on a round-robin design of experiments.
• PBL1: only manual parameter adjustment
• PBL2: manual parameter adjustment and relative
manipulation

• PBL3: manual parameter adjustment and absolute
manipulation

A different dataset was used for each taskset. In this exper-
iment, the difficulty of the task is supposed to depend on the
number of time points (T ). In addition, since the participants
do not have to perform a complex data exploration as in
Experiment 1, many instances are not needed in this exper-
iment. Therefore, the target dataset consists of 50 instances
with 10 attributes and five time points, that is, N = 50,
M = 10, and T = 5. This artificial dataset should ensure
that the visualized object corresponding to the target instance
is placed at the top of the specific axis by adjusting ω.
Therefore, target instance o∗n has a considerably high attribute
value dtn∗m for a certain attributem among all instances in the
dataset. To satisfy this condition, for each time point t , dtn∗m is
set to be larger than 1

N

∑
n′ dtn′m+ 3SD(d tm), where SD(d tm)

denotes the standard deviation of d tm at time point t . After the
experiment, the participants answered a questionnaire to rate
the interfaces on a 5-point Likert scale and gave their reasons,
if necessary.

VOLUME 9, 2021 102795



R. Takami et al.: VA Interface for Formulating Evaluation Metrics of Multi-Dimensional Time-Series Data

2) RESULTS
The experimental results were evaluated on the basis of
task-achievement rate, amount of parameter adjustment, and
results of the post-experiment questionnaire.

Amount of parameter adjustment for each projection axis,
amt(i) (i ∈ {X ,Y }), is calculated by using Eq. (10), where ω′

and ω correspond to ω before and after the adjustment task,
respectively.

amt(i) =
1
T

T∑
t=1

‖ω
(i)
t − ω

′(i)
t ‖1. (10)

Figs. 8 and 9 show boxplots of amt(i) for the X- and
Y- axes, respectively. As for the axis that is not the target
of the parameter adjustment, it is obvious that the amount
of parameter adjustment with PBL1 and PBL3 was smaller
than that with PPR and PBL2, where only the parameters
for the target axis are adjusted. Therefore, the difference in
the amounts of parameter adjustment by the interfaces only
for the adjusted target axes is focused on hereafter. One-way
ANOVA was applied to verify significant differences in
the amounts of parameter adjustment per interface. Then,
the two-tailed F-test was applied only when a significant
difference was confirmed. When a significant difference in
variance was confirmed by the F-test, Student’s t-test was
applied; otherwise, Welch’s t-test was applied. As a result
of the t-test on PPR, significant differences (p < .05) were
confirmed only for PBL1 (for task #3) for the Y-axis. The
amount of parameter adjustment using PBL1 was less than
that using PPR because the task could be accomplished by
increasing ω(i)

tm, which corresponds to the weight for the
attribute that the target instance has a considerably high value,
by using the bar chart.

As a tendency common to all tasks, the interfaces tend to
be sorted as PBL2 > PPR > PBL3 > PBL1 by the amount
of parameter adjustment. In the case of PBL2, in which α is
absorbed by ω through optimization, ω changed drastically
when the number of manipulated instances increases. In the
case of PBL3, ω was adjusted on the basis of the target
instance’s attribute values. If the visualized object of the
target instance was moved to the top of the axis with abso-
lute manipulation, ω changed drastically only if its attribute
values were higher or lower than those of other instances.
Therefore, the amount of parameter adjustment in the case of
PBL3 was less than in the case of PBL2. In contrast to PBL2,
PPR using both relative and absolute manipulations could
flexibly reflect the participants’ intentions in ω with a small
amount of parameter adjustment.

Fig. 10 shows the task-achievement rate for each inter-
face and task within the time limit. A chi-square test with
Fisher’s exact probability test was applied for testing for a
significant difference in task-achievement rate. Significant
differences (p < .05) between the baselines (PBL1 or PBL3)
and PPR were found in three cases: two cases for PBL1
(tasks #2 and #3) and one case for PBL3 (task #3). In all cases,
the task-achievement rate of PPR was higher than that of the

FIGURE 8. Amount of adjusted parameters per interface and task (X-axis).

FIGURE 9. Amount of adjusted parameters per interface and task (Y-axis).

FIGURE 10. Task-achievement rate by interface.

baselines. The improvement in the task-achievement rate on
the interfaces using relative manipulation (PBL2 and PPR)
suggests that participants could adjust parameters efficiently
within the time limit. On the contrary, in the case of PBL1,
the parameters must bemanually adjusted for each time point.
In the case of PBL3, it is difficult to fine-tune the placement
of objects. As a result, we suppose that the task-achievement
rate for those interfaces decreased.

As for the questionnaire, 16 out of 18 participants rated the
combination of different parameter-adjustment methods pos-
itively (4 or 5). One of the participants commented, ‘‘It was
easy to roughly adjust the parameters with drag and drop of
multiple visualized objects and adjust the details with a bar
chart.’’ From the results of the questionnaire and the interac-
tion logs, it was confirmed that some participants adjusted the
parameters incrementally with the following strategy:

1) Adjust the global shape of the projection by using
absolute manipulations for identifying the trend of each
attribute value.

2) Adjust the position of an individual object by using rel-
ative manipulations by trial and error for identifying t
and m (time point and attribute index) of ωtm that is to
be tuned.

3) Based on the knowledge obtained in the above process,
fine-tune ωtm with manual parameter adjustment of the
bar chart for each t and m.
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As the target data is a synthetic one, participants did not have
prior knowledge of the data. As one of the notable analytical
behaviors, immediately after starting a task, some partici-
pants tried to understand the relationship between attributes
(denoted as m here) of instances d tm and ωtm by observing
objects moved after performing manual parameter adjust-
ment (Fig. 2(c)). After that, to find instances having similar
attribute values as the target instance, which could be the
candidate for applying direct manipulation, they also tried
to identify instances that have high or low d tm in parallel
coordinates (Fig. 1(b3)).

As for the questionnaire, two participants reported that they
could flexibly adjust the parameters by switching the visual-
ized objects to manipulate (F2 in Sec. IV-D): analyzing their
interaction logs revealed that they used convex hulls when
they wanted to change the positions of multiple visualized
objects at once, trajectories when they wanted to emphasize
a visualized object that corresponds to specific instance on
for the entire time range (t = 1, 2, . . . ,T ), and nodes to
emphasize on at a specific time point t .
These results confirm hypothesis H2 that the proposed

interface makes it possible to flexibly adjust parameters by
combining the advantages of absolute manipulation, relative
manipulation, and manual parameter adjustment.

VII. LIMITATIONS
A. USABILITY OF FUNCTIONS
Whereas hypotheses H1 and H2 were verified through the
above-described experiments, from the results of question-
naires, we found several usability problems regarding the
analytical functions. In Experiment 1, two of the participants
commented that it is difficult to use the zooming function
described in Sec. IV-B, for exploring relationships among
individual visualized objects. We think introducing seman-
tic zooming [65] will solve this problem. In Experiment 2,
some participants pointed out that they were able to flexibly
adjust the parameters by switching different types of visual-
ized objects to manipulate. However, we did not explicitly
evaluate the effectiveness of switching visualized objects
(F2 in Sec. IV-D) during the parameter adjustment. In future
work, it is thus necessary to verify the effectiveness through
additional experiments.

When comparing multiple time points, it is neces-
sary to control the animation step-by-step. Therefore, high
interaction cost was pointed out by two participants in the
questionnaire after Experiment 2. Although it is possible
to superimpose node distribution of other time points by a
mouseover on the trajectory (explained in Sec. III-E2), it is
difficult to compare projections and parameters for more than
two time points simultaneously. The validity of the parame-
ters at other time points can be grasped from animation and
the shape of convex hulls (Sec. III-E3), but more support for
such a validation is needed. We suppose that the introduction
of Streamgraph [66] to the detailed view is effective because
it allows users to explore the dominant parameters at each
time point in a single view.

In the questionnaire given in Experiment 2, three of the
participants requested an undo/redo function for parameter
adjustment to cancel erroneous manipulations. That function
is expected to be effective for data exploration to compare
the results of applying several parameters and selecting the
appropriate one [67]. Furthermore, the externalization of
the interaction history is also useful for sharing the find-
ings through VA. In the experiments, analytical functions
F3 and F4 were disabled due to the irrelevance of the task.
However, in the questionnaire of Experiment 1, four partic-
ipants mentioned the necessity of the function for selecting
objects with metadata. This function is the same as the search
function (F4).We suppose F3 is effective for the classification
of multiple sets of instances, as in Sec. V. In future work,
these functions also need to be evaluated.

B. SCALABILITY
One of the problems in visualizing a large amount of data
using a scatter plot is visual clutter due to the overlap of
the objects, which decreases the interpretability of visualiza-
tion [26]. To solve this problem, decreasing the number of
visualized objects by aggregating data instances is promising.
Alternatively, it can be effective to sample representative
data instances before visualizing them for metrics formula-
tion. As for the bar-chart visualization of multi-dimensional
data (Fig. 1(a2)), the cognitive load may increase when the
dataset has too many attributes. For scalability regarding
number of attributes, attribute selection and reduction can
be applied in the preprocessing step of metrics formulation
described in Sec. III-B. Although no participant mentioned
the response speed of parameter adjustment in the proposed
interface, it is necessary to consider the latency when number
of objects increases. Applying incremental dimensionality
reduction [29] is one of the possible solutions to this problem.

Regarding temporal scalability when the number of time
points increases, drawing trajectories and convex hulls on the
basis of a temporal range is more effective than reducing time
points. As noted in Sec. III-B, this paper focused on monthly
or yearly statistical data and supposed that the length of time
series should be short enough to grasp the characteristics of
data at each t and the entire time range. To analyze continuous
data such as sensor data, preprocessing such as SAX (sym-
bolic aggregate approximation) [68] should be integrated as
the preliminary step in the entire analytic process. To promote
the preprocessing of time-series data such as sampling and
smoothing, we also think that it is necessary to combine
the proposed analytical framework with existing interactive
preprocessing frameworks [36].

C. COMPREHENSIVE SUPPORT FOR METRICS
FORMULATION
Although the prototype interface uses an animated scatter
plot as one of the main visualization methods, we should
consider adopting other visualization methods to support
more complex VA tasks. In a preliminary user study, a user
wanted to compare data at each time point by juxtaposing
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multiple scatter plots. To address this issue, the interface can
be improved from the aspect of visualization, such as provid-
ing functions for juxtaposing multiple scatter-plot views after
selecting the individual time points separately. Also, we think
it is useful to combine views in three-dimensional space and
switch visualization methods, such as animation and small
multiple, in a similar manner to immersive analytics [69].

Another direction of extending the proposed interface is
to deal with nonlinearity to cover various forms of met-
rics. The introduction of nonlinear dimensionality reduction
such as t-SNE and Kernel PCA, and visualization on the
basis of a nonlinear axis (e.g., logarithmic) would be possi-
ble approaches to that extension. Rather than directly using
parameters of nonlinear dimensionality reduction, we think
it is effective to apply such a dimensionality reduction
after users interactively adjust the weights of each attribute,
as in [70], and to formulate metrics based on the obtained
axis. In addition to that, introducing a function to switch
multiple dimensionality-reduction algorithms is effective for
broadening the applicability of the proposed interface.

VIII. CONCLUSION AND FUTURE WORK
We proposed a VA interface of metrics formulation for
multi-dimensional time-series data. An example using sta-
tistical data of a baseball game showed how the proposed
interface can support the process of metrics formulation.
The results of the experiments with participants confirmed
that the combination of different types of visualized objects
(nodes, trajectories, and convex hulls) makes it possible to
explore multi-dimensional time-series data, and the combi-
nation of absolute manipulation, relative manipulation, and
manual parameter adjustment makes it possible to fine-tune
the weights of attributes acquired from PCA. Therefore,
we think that the proposed interface can support the task of
metrics formulation for multi-dimensional time-series data.
The proposed interface is the first attempt at providing VA to
support these tasks: we expect the results obtained in this
study to promote discussions on the extension of semantic
interaction towards time-series data. To extend the proposed
interface for covering a wide range of metrics and data types,
an integrated framework that includes preprocessing andmul-
tiple dimensionality-reduction algorithms should be consid-
ered in future works. In addition to performing additional
experiments to quantitatively evaluate the usability of the
interface, as discussed in Sec. VII-A, we plan to do long-term
case studies with domain experts to qualitatively verify the
effectiveness of the proposed interface and the advantages
against other VA interfaces.

IX. EVALUATION OF THE FORMULATED METRICS
To evaluate the Btype metrics formulated in the example
(Sec. V), we compared the number of games played, TB,
OBP, and on-base plus slugging (OPS) of the top (bottom)
10 players of Btype in the 2019 season. OPS is a metric of
a batter’s ability to score runs which are defined as OBP +
TB/AB. The data is obtained in the same way as those used

in Sec. V. The number of instances (batters) is 187. Table 2
shows the metrics for batter’s performance at the early stage
of the season (April 15), and Table 3 shows the metrics at the
end of the season (September 16).

TABLE 2. Evaluation of batting performance by various metrics
in 2019 season (April 15).

TABLE 3. Evaluation of batting performance by various metrics
in 2019 season (September 16).

In both tables, winners of the Silver Slugger Award or the
Gold Glove Award are annotated with †, and batters who
participated in the All-Star Game, who had an outstanding
performance in the first half of the season, are annotated
with ‡. Batters who got titles such as batting champion in the
league are annotated with ∗. In Tables 2 and 3, batters who
were active throughout the year, such as those marked with
† and ∗ were also found in both the top and bottom of the
rankings.

To evaluate the consistency of the rankings generated
by Btype, we calculated MRRs of Btype, TB, OBP, and OPS on
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FIGURE 11. MRR (mean reciprocal rank) calculated for the top/bottom
20 batters in ranking by Btype, TB, OBP, and OPS on April 15 against a
ranking of those metrics on September 16.

April 15 when the rank of these metrics on September 16 was
considered as the ground truth. Fig. 11 shows the results
of MRRs calculated for the top and bottom 20 batters on
April 15. From Fig. 11 it can be confirmed that the MRR of
Btype is higher than that of the other metrics. In other words,
we think that Btype has achieved the purpose of the evaluation
metrics described in Sec. V, which is to evaluate batters who
have high performance even from the beginning of the season.
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