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ABSTRACT The high computational complexity, memory footprints, and energy requirements of
machine learning models, such as Artificial Neural Networks (ANNs), hinder their deployment on
resource-constrained embedded systems. Most state-of-the-art works have considered this problem by
proposing various low bit-width data representation schemes and optimized arithmetic operators’ imple-
mentations. To further elevate the implementation gains offered by these individual techniques, there is a
need to cross-examine and combine these techniques’ unique features. This paper presents ExPAN(N)D,
a framework to analyze and ingather the efficacy of thePosit number representation scheme and the efficiency
of fixed-point arithmetic implementations for ANNs. The Posit scheme offers a better dynamic range and
higher precision for various applications than IEEE 754 single-precision floating-point format. However,
due to the dynamic nature of the various fields of the Posit scheme, the corresponding arithmetic circuits
have higher critical path delay and resource requirements than the single-precision-based arithmetic units.
Towards this end, we propose a novel Posit to fixed-point converter for enabling high-performance and
energy-efficient hardware implementations for ANNs with minimal drop in the output accuracy. We also
propose a modified Posit-based representation to store the trained parameters of a network. With the
proposed Posit to fixed-point converter-based designs, we provide multiple design points with varying
accuracy-performance trade-offs for an ANN. For instance, compared to the lowest power dissipating
Posit-only accelerator design, one of our proposed designs results in 80% and 48% reduction in power
dissipation and LUT utilization respectively, with marginal increase in classification error for Imagenet
dataset classification using VGG-16.

INDEX TERMS Computer arithmetic, deep neural networks, energy efficient computing, posits, FPGA,
high-level synthesis.

I. INTRODUCTION
Machine learning algorithms have become an essential factor
in various modern applications, such as scene perception
and image classification [1]–[3]. Over the past few years,
these algorithms have mainly relied on the performance of
modern computing systems to support the increasing com-
plexity of the algorithms. For example, the massively parallel
architectures, such as Graphics Processing Units (GPUs), and
cloud-based computing have been traditionally used to train
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these algorithms. However, to utilize these trained machine
learning models on resource-constrained embedded systems,
the computational complexity and storage requirements of
these algorithms must be reduced.

Many recent works have considered this problem to define
various optimization techniques to reduce the complexity of
machine learning models, such as Artificial Neural Networks
(ANN). For example, the techniques used in [5] and [6] have
employed the sparsity of Deep Neural Networks (DNN) to
reduce the total number of trained parameters. The works
in [7], [8] and [9] have explored other number representation
techniques, such as bfloat16, Posit and Fixed Point (FxP),
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to overcome the storage requirements of single-precision
IEEE-754 Floating Point (FP32). Depending on the config-
uration used, each of these number representation techniques
provides different dynamic range to represent the parameters
(weights and biases) of a network. For example, Fig. 1(a)
shows the FP32-based distribution of the pre-trained weights
of the Conv2_1 layer of VGG16 DNN [4]. The pre-trained
weights have a dynamic range between −0.3 to +0.3, with
most of the weights clustered around ‘0’. To reduce the mem-
ory footprint of the weights and associated computational
complexity, Fig. 1(b) represents the distribution using an 8-bit
fixed point linear quantization scheme, referred to as FxP8.
The FxP8 provides a set of 256 uniformly distributed discrete
values, which generates an average relative error of 0.295 in
the quantized weights. To reduce the quantization-induced
errors, Fig. 1(c) shows the trained parameters using an
8-bit Posit scheme. The Posit representation maps the FP32
weights better due to denser clustering of values around 0,
resulting in an average relative error of 0.052 in the quan-
tized weights. Therefore, it is imperative to define number
representation schemes (or quantization methods), which can
maintain FP32-based machine learning models’ accuracy
within a desired limit while reducing their corresponding
computational complexity and storage requirements.

Fig. 1. Distribution of pre-trained weights of Conv2_1 layer of VGG16 [4].
(a) Single-precision floating-point, (b) 8-bit linear fixed-point
quantization: average absolute relative quantization-induced error =
0.295 (c) Posit (8, 2)-based quantization: average absolute relative
quantization-induced error = 0.052.

The various number representation schemes (quantization
methods) result in varying performance overheads of their
associated arithmetic hardware. For example, Fig. 2 shows
the comparison of the effect of using different quantiza-
tion methods across multiple performance aspects – behav-
ioral (error in the quantization of weights), computational
(critical path delay of a Multiply and ACcumulate (MAC)
unit), and memory requirements (weights’ storage) in the
Conv2_1 layer of pre-trained VGG16. The hardware imple-
mentation results have been obtained by implementing each
technique on the Xilinx UltraScale Field Programmable
Gate Array (FPGA) using Vivado HLS 2018.2. For a fair

Fig. 2. Accuracy and performance comparison of various schemes for
numbers representation for the Conv2_1 layer of pre-trained VGG16 [4]:
(a) Average absolute relative error with respect to FP32-based
parameters, (b) critical path delay, (c) normalized memory footprints.

comparison, the critical path delay (CPD) is obtained from
MAC units implemented using 6-input lookup tables (LUTs)
and with a latency of a single cycle. Modern FPGAs, such as
Xilinx UltraScale, also host DSP blocks for performingMAC
operations. However, as shown by our previous work in [10],
an FPGAhas a limited number of DSP blocks, and it is always
advantageous to have LUT-based MAC units along with the
DSP blocks. Further, the DSP blocks’ fixed location can
also result in creating extra routing for an implementation.
As shown by our results, higher bit-widths for the quan-
tization schemes significantly reduce quantization-induced
errors. The FP32 implementation has the highest memory
footprint with the worst CPD of 42ns. The Posit schemes
provide better coverage of the FP32-based pre-trained param-
eters than the corresponding FxP-based schemes. However,
the FxP-based arithmetics’ simplicity results in significantly
reducing the CPD of the MAC units when compared with the
corresponding Posit schemes.

Most state-of-the-art works do not consider application-
specific optimizations to the quantization methods. For
instance the Posit related works focus on representing the
whole range of real numbers, (−∞,∞), rather than the actual
range of the parameters in the application. Similarly, many
related works consider each quantization method in isolation
and do not attempt to leverage the best features of multiple
methods. To this end, we propose ExPAN(N)D framework for
Exploring the joint use of Posit and FxP representations for
Designing efficient ANNs. The major contributions in this
paper are as follows.
Contributions:
1) We propose a reduced bit-length Posit-based repre-

sentation that improves the encoding efficiency of weight
normalized ANNs to reduce the communication and storage
costs. Using our proposed representation for each N -bit Posit
number within the reduced weight normalized range, we only
store N − 1 bits.

2) We propose a novel arithmetic hardware design,
referred to as Posit to Fixed Point (PoFx), that aims to com-
bine the best of both Posit and FxP number representations.
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The proposed hardware unit offers resource-efficient and
low-latency conversion of Posit-based numbers to FxP-based
numbers to leverage the lower computation overheads of
fixed-point arithmetic. For example, compared to compared
to 8-bit FxP, an 8-bit PoFx-based MAC has at-most 15.5%
resource overhead (with PoFx(7, 2)) and provides upto 46%
reduction in the storage requirement (with PoFx(6, 0)) of a
network’s parameters in an accelerator.

3) Framework for Behavioral Analysis: We provide a
high-level framework for the efficient and thorough explo-
ration of various quantization schemes to satisfy the accuracy
constraints of a DNN. The proposed framework explores
the limitations and the interplay of various quantization
schemes, such as FxP to Posit to FxP, to minimize the
quantization-induced errors. The framework prunes
the non-optimal quantization configurations by analyzing the
quantization induced-errors in (a) parameters of individual
layers, (b) output activations of each layer using quantized
weights, and (c) final output of the network. For example,
our framework explores various N -bit Posit configurations to
achieve output accuracy comparable to an M -bit FxP-based
quantization, where N < M .

4) We explore the impact of using the proposed hard-
ware designs in a fully-connected layer. Specifically we
use an automated design flow, using state-of-the-art High
Level Synthesis (HLS) tools, to explore storage-computation
trade-offs in the design of FPGA-based accelerators
for ANNs. For example, compared to an 8-bit FxP-based
accelerator, the PoFx-based accelerator(PoFx(6, 2)) provides
up to 27% and 13% reductions in the power and resource
requirements of the accelerator with a cost of 0.32% addi-
tional classification error.

The rest of the paper is organized as follows. In Section II,
we provide the relevant background and brief overview of
related work. The systemmodel used for the evaluation of the
proposed methods is presented in Section III. In Section IV,
we explain the proposed methodology for exploring the use
of Posit representation for ANNs, along with the proposed
hardware designs. In Section V, we discuss the results from
the experimental evaluation of the different components of
the proposed methodology at multiple design-levels. Finally,
we conclude the article in Section VI with a summary and a
discussion on the scope for related future research.

II. BACKGROUND AND RELATED WORKS
A. POSIT NUMBER SYSTEM
The IEEE 754-2008 compliant floating-point (floats)-based
arithmetic has become ubiquitous in modern-day computing
and is deeply embedded in compilers and low-level software
routines. However, the floats have several limitations, such
as non-identical results across systems, redundant/wasted
bit patterns, and a limited dynamic range. The Posit num-
ber scheme overcomes these limitations by offering a bet-
ter dynamic range and portability across various computing
platforms [11]. Fig. 3 shows the various fields (sign,
regime, exponent and fraction) of the Posit number scheme.

Fig. 3. Posit number representation.

A Posit configuration is characterized by its total bit
length (N ) and the number of bits reserved for exponent (ES).
Utilizing the four fields of the Posit scheme, Eq. 1 defines
the computation of a Posit value. The regime field, in Fig. 3,
is utilized to compute the value of k in Eq. 1. The regime
field is terminated when an inverted bit (r̄) is encountered,
and the associated value of k is determined by the number of
identical bits (m); if the identical bits are a string of 0s, then
k = −m; if they are a string of 1s, then k = m − 1. Next,
the exponent (e) and fraction values (f ) are determined using
the remaining bits. The utilization of regime field provides a
better dynamic range to Posit number scheme. For example,
the authors in [12] have reported that for some applications,
the n-bit floats can be replaced by m-bit Posit-based numbers
(where m < n) to achieve comparable output accuracy. With
an appropriate configuration of exponent size and total bit-
width, a posit number can be formed to act as an IEEE
754-2008 compliant floating-point number. However, posit
arithmetic supports only one rounding mode that is round to
nearest, ties to even.

Posit value = s ∗ (22
ES
)k ∗ 2e ∗ 1.f (1)

Compared to the floats and fixed-point number represen-
tation schemes, Posit requires more computational resources.
In the following section, we summarize the state-of-the-art
works related to hardware implementation of Posit-based
arithmetic circuits.

B. POSIT ARITHMETIC HARDWARE
The major challenges faced while developing an effi-
cient hardware implementation for Posit arithmetic involve–
(1) handling run-time length variation in individual Posit
fields, (2) extraction of Posit components to facilitate further
manipulation and, (3) implementation of rounding algorithms
as proposed in the Posit standard. TABLE 1 presents an
overview of the state-of-the-art work related to Posit-based
arithmetic and highlights our proposed framework’s key
focus. These works are summarized below.

The authors in [12] tackle run-time varying field length by
developing hardware arithmetic architectures for conversion
from Posit to floating point and vice-versa. The work in [15]
proposes a tool to generate pipelined Posit operators to be
used as a drop-in replacement in processing units. In [13],
authors present the architecture of a parameterized Posit
arithmetic unit to generate posit adders and multipliers of any
bit-width. Similarly, PACoGen [14] employs a three-stage
process which involves Posit data extraction, core arithmetic
processing and Posit construction to perform parameter-
ized Posit arithmetic including multiplication and division.

VOLUME 9, 2021 103693



S. Nambi et al.: ExPAN(N)D in FPGA-Based Systems

TABLE 1. Posit-based hardware developments at a glance.

It proposes improvements in Posit data extraction methodol-
ogy and a pipelined architecture for Posit (N = 32, ES = 6).
Posit arithmetic has also been integrated into Clarinet [23]
which is a RISC-V ISA based processor that supports the use
of a Posit arithmetic core. However, the RISC-V implemen-
tations are not capable of handling large-scale applications.

C. ARITHMETIC HARDWARE FOR ANN INFERENCE
A plethora of recent works have considered different quan-
tization schemes to reduce the memory footprints and com-
putational complexity of DNNs for resource-constrained
embedded systems and edge devices for IoT. These tech-
niques can be categorized into (a) in-training quantization,
and (b) post-training quantization schemes. For example,
the techniques proposed in [24]–[27] have considered var-
ious fixed-point schemes for in-training quantization. The
in-training quantization schemes can overcome most of
the quantization-induced errors. However, these techniques
cannot be utilized for the quantization of the parameters
of pre-trained DNNs. For example, for the quantization
of pre-trained DNNs, [9], [28]–[30] have proposed differ-
ent schemes. The techniques presented in [29], [30] have
focused on the utilization of logarithmic data representa-
tions to avoid the computationally expensive multiplication
operations. However, some recent works, such as [31]–[33]
have utilized fixed-point quantization schemes to employ
the well-explored high-performance and energy-efficient
approximate adders and multipliers. The utilization of
approximate arithmetic units [10], [34]–[36] provides another
degree of freedom for achieving the accuracy, performance,
and energy constraints of DNNs for IoT. For example,
the authors of [31] have utilized the library of approxi-
mate multipliers [35] to provide approximate accelerators
for reduced-precision DNNs. Some recent works have also

explored the utilization of Posit numbers for training and
inference phases of ANN. For example, the work in [18] has
used ARM scalable vector extension SIMD engine to present
vectorized extensions for the cppPosit C++ posit arithmetic
library. The authors of [16] have proposed an exact mul-
tiply and accumulate (EMAC) for implementing the MAC
operations in ANN. Their results show that the Posit-based
representation of networks’ parameters performs better than
fixed-point-based representation in retaining the output
accuracy of ANN. However, the Posit-based EMACs have
significantly higher resource utilization and energy-delay
product (EDP) than the fixed-point-based MAC operations.
In [22], the authors have also proposed a parametrized
Posit MAC generator to produce the HDL code of a Posit
MAC unit. However, they do not present the efficacy of
their proposed design in any real-world application. In [20],
the authors have also used the EDP metric to compare
their proposed Posit-based framework with the FP32- and
FxP-based implementations; the FxP-based implementations
always produce lower EDP values than the corresponding
Posit-based designs. Further, they do not report the overall
resource utilization of their presented designs. The work
in [21] and [17] have considered Posits for storing the trained
weights of ANN and then utilizing the FP32-based operations
to compute output values.

Currently, the Posit numerical scheme’s utilization in
implementing accelerators for various applications is ham-
pered by the unavailability of resource-optimized and
energy-efficient Posit arithmetic units. In our proposed work,
we aim to leverage the useful storage capability of Posit
by modifying the Posit number representation to store num-
bers within the sub-normal region and the compute effi-
ciency of FxP-based arithmetic by implementing a PoFx
converter.
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Fig. 4. System model.

III. SYSTEM MODEL
A. APPLICATION MODEL
The hardware designs proposed in our current work can be
used for any arbitrary application that needs to communi-
cate and/or store a large number of parameters. However,
in this article, we limit our exploration to ANNs. Fig. 4(a)
shows one of the more widely used ANN—the VGG16 [4]—
in research. As shown in the figure, VGG16 is composed
of 16 layers of 4 different types—convolutional,max pooling,
fully connected and softmax. Although we use the VGG16 as
the application for evaluating our proposed methodology,
the methods are applicable to any arbitrary ANN as most
networks are composed of a subset of these types of layers.
Fig. 4(a) also shows the dimension of the parameters that
are used in each of the layers. Using accelerators for infer-
ence usually involves communicating and storing these large
number of trained parameters—138million for VGG16. Con-
sequently, the quantization methods used for the parameters
can influence the corresponding storage and communication
overheads. Similarly, given the large number of MAC opera-
tions involved in the inference of a single input—15.5 billion
for VGG16—the speed and power dissipation of the MAC
unit determines the throughput and energy consumption of
ANN inference.

B. ARCHITECTURE MODEL
Fig. 4(b) shows the architecture model used in this arti-
cle. As shown in the figure, we assume an FPGA-based
System-on-Chip (SoC) as the hardware platform. It con-
tains an embedded processor along with reconfigurable
logic similar to the Zynq EPP [37]. We assume that
the accelerators for different types of layers of an ANN
are executed on the reconfigurable logic and can imple-
ment the proposed hardware designs. For any accelerator,
we assume that the parameters of the corresponding layer
are fetched from the main memory through streaming inter-
faces with the on-chip AXI interconnect [38]. Similarly the
input and output activations are transferred from and to
the main memory using AXI streaming interfaces as well.
Hardware platforms based on the Zynq EPP, such as the

Ultra96-V2 [39], are being widely marketed as edge process-
ing devices for Internet of Things (IoT).

IV. DESIGN METHODOLOGY
The top-level view of ExPAN(N)D is shown in Fig. 5. The
Hardware design and characterization of the MAC units
for various quantization schemes forms the central theme
around which the other two methods—Behavioral analysis
and Accelerator design—are implemented. Behavioral anal-
ysis enables the estimation of quantization-induced errors in
a given ANN using the proposed hardware designs. Simi-
larly, Accelerator design allows the designer to estimate the
performance-resource trade-offs resulting from implement-
ing various quantization schemes in an accelerator for a given
layer of the ANN. The results from each of the three methods
can be used to constraint the search space in the design of
an efficient ANN using successive design space pruning.
However, the implementation of an effective design space
exploration (DSE) methodology is beyond the scope of this
article.

Fig. 5. Proposed design methodology.

A. HARDWARE DESIGN
1) NORMALIZED POSIT REPRESENTATION
The Posit representation is inherently designed to encode
numbers in the range (−∞,∞). However, due to their tapered
accuracy, numbers near ±1 have better accuracy in compari-
son to extremely small or large numbers [11]. The improved
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dynamic range of Posit numbers also helps map weight
normalized FP32 values better as illustrated in Section I.
Thus, low-precision Posit numbers perform better than an
equivalent linear fixed-point representation during the quanti-
zation of normalized ANNweights. While processing weight
normalized numbers, sub-optimal utilization of all possible
Posit bit-patterns leads to half of them being unused as all of
the weight normalised values lie within the range [−1,+1).
This can translate to communication and storage overheads,
as more than required bits are being transferred around. Simi-
larly, a higher number of bits, than that required for storing the
information, are processed during each computation. Hence,
we propose normalized Posit—an alternative representation
based on Posits which preserves its encoding efficiency, hard-
ware realization and tapered accuracy while doubling the
usable bit pattern values (x) within the normalized range
(−1 ≤ x < +1). This normalized Posit representation is a
logical subset of Posits that is customized for the quantization
and storage of weight normalized FP32 values.. For exam-
ple, TABLE 2 shows all the possible bit-patterns and their
equivalent real values for a Posit configuration of N = 4,
ES = 0. The highlighted rows in the table show the
bit-patterns which represent normalized numbers. It is evi-
dent that the two leading bits of the Posit representation are
identical when the bit pattern denotes a normalized number;
we leverage this finding to drop the leading Posit bit in our
proposed normalized Posit representation.

This Posit representation helps us encode N -bit Posit func-
tionality within the normalized range with N − 1 bits. This
leads to a reduction in storage requirement while still being
able to reuse existing Posit arithmetic hardware by replicating
the leading bit near the processing unit. However, existing
hardware implementations are not optimized to perform nor-
malized Posit-only arithmetic. Existing implementations do
not take complete advantage of the benefits arising as a
consequence of the potentially unidirectional nature of bit
shifts required to extract normalized Posits. Thus to leverage
the aforementioned benefits we propose a novel parame-
terized Posit-to-FxP converter, PoFx. The optimized PoFx
conversion hardware helps us use lower bit-width normalized
Posit representation to effectively quantize and store weight
normalized FP32 values in memory while providing FxP
converted values near the processing elements to facilitate
compute efficient ANN inference with minimal conversion
overhead.

2) PoFx: NORMALIZED POSIT TO FIXED-POINT CONVERTER
Most Posit-based computations require a decode stage to
extract the value before arithmetic operations as Posit
bit-patterns cannot be directly operated upon. Currently,
Posit-based arithmetic relies heavily on extraction of Posit
numbers to a floating point like representation before
operating on them, which leads to increased resource utiliza-
tion. Instead, we design a novel resource-efficient parame-
terized PoFx converter which facilitates the use of existing
resource-efficient FxP arithmetic optimizations.

TABLE 2. Posit(N = 4, ES = 0) to normalized Posit representation.

The proposed PoFx conversion algorithm is an intuitive
technique which effectively converts a Posit to a FxP number
developed from the way Posits are decoded. Taking the exam-
ple of the Posit(N = 4,ES = 0) bit-patterns in TABLE 2,
we illustrate how we use minimal resources during conver-
sion to a FxP format after Posit field-extraction by working
at the bit level. The key to developing this algorithm rests
on recognizing that the fraction field extracted from the Posit
representation is identical to that required in the FxP output.
Thus, once the data in the Posit bit pattern is extracted into
its components s, k , e and f ; the posit value only requires
us to set a bit and store the extracted fraction bits to its right
followed by a final bit shift determined by the equation 2ES∗k
+ e. This equation can be implemented by adding the e value
to the bit-sequence obtained by appending k to ES number
of zero bits as illustrated in Fig. 6. The sign-bit along with
the shifted bit sequence gives us the Posit representation in
sign-magnitude FxP format.

Fig. 6. Comparing shifting operations in Posit and normalized Posit
representations.

PoFx conversion algorithm for manipulation at the
bit-level which converts Posit representation, Posit(N ,ES) to
fixed-point representation FxP(M ,F) where M is the total
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FxP Output length and F is the fraction length in the FxP
output is summarized in Algorithm 1. Stage A (comprising
of Stages A1, A2 and A3) stores the sign bit and prepares the
Posit bits for subsequent extraction. Stage B1 implements an
optimized algorithm to evaluate the number of contiguous 1’s.
Stage B2 performs bit manipulations to ascertain location of
exponent and fraction bits and subsequently extracts them.
All the loop indices are carefully evaluated based on the
constraints arising from the Posit representation. Stage C
performs the bit shift calculation and Stage D implements
the bit shifts. The final Stage E is optional depending on the
application and involves the conversion of sign-magnitude
format to two’s complement.

The proposed PoFx can be adapted to perform normal-
ized PoFx conversion which leads to lower resource utiliza-
tion and improved performance in ANNs. This is primarily
due to the simplification of Stage C and Stage D in compar-
ison to traditional implementations such as PACoGEN [14]
as in this case the shifts are unidirectional, that is towards the
right, making the value smaller. For normalized Posits we set
F = M − 1 as all bits except for one sign bit would be used
to store fraction bits since we can only store values in the
normalized [−1, 1) range. The first bit is replicated within
Stage A followed by simplified extraction in Stage B1 as the
regime bit would always begin with zero thus K would store
only magnitude. We use an optimized algorithm to evaluate
the modified shift equation 2ES ∗ K − E in Stage C which is
illustrated in Fig. 6. We store 1 after the assumed decimal
point in normalized PoFx extraction and thus always need
to right shift one time less. This is achieved implicitly by
adding the one’s complement of E to 2ES ∗ K ; further we
will set the overflow flag (OF) if the required number of shifts
exceeds thewidth of theMAGfield. StageD is replacedwith a
standalone right bit-shifter while Stage E remains unchanged.

The five stages in our proposed design can be pipelined
to further improve the throughput of the PoFx converter
as there are no feedback paths between the stages, thus
eliminating data hazards. We note that though normalized
Posit representation can represent the value −1, the normal-
ized PoFx cannot extract the same due to its implicit storage
in sign-magnitude format. For the rest of the article, the term
PoFx will be used to denote the normalized PoFx. Similarly,
Posit(N ,ES) and Posit(N−1,ES) will be used to denote Posit
and normalized Posit respectively.

3) MAC UNIT WITH PoFx CONVERTER
The PoFx converter can be used for any application that can
benefit from storing a large number of parameters efficiently.
As a special case for ANNs, we integrate the normalized
PoFx into MAC units to facilitate the use of our proposed
optimizations for improving low-precision ANN inference.
Fig. 7 shows the schematic of a parameterized PoFx con-
verter based MAC along with ReLU activation function.
As shown in the figure, the weights/biases are assumed to
be stored/communicated as Posit(N −1,ES) numbers. These
values are then converted to their corresponding M -bit FxP

Fig. 7. MAC unit (with ReLU activation) using PoFx.

representations and multiplied with the M -bit input activa-
tion values. To accommodate the overflows resulting from
the accumulation of a large number of 2M -bit values and
facilitate the evaluation of our architecture, we have chosen
a 3M -bit adder for accumulation across all configurations.
After accumulating all the values, for a single node in a
layer of an ANN, we pass the 3M -bit result to the activation
function.

It can be noted that the PoFx-based MAC unit allows the
designer to represent the weights/biases with a fewer number
of bits while still being able to implement different kinds
of FxP-based arithmetic optimizations, such as precision-
scaling, approximations, etc in the processing element. How-
ever, the effect of such a reduced bit representation on the
ANN’s behavior, and the corresponding reduction in the com-
puter and communication/storage overheads of the associ-
ated accelerators for each layer needs to be estimated. The
next two sub-sections provide the details of our contributions
regarding these aspects of designing a PoFx-based ANN.

B. BEHAVIORAL ANALYSIS
To evaluate the impact of various quantization schemes on the
output accuracy of a DNN, we have utilized TensorFlow for
implementing a high-level behavioral framework, as shown
in Fig. 8. It evaluates each quantization scheme’s efficacy
by analyzing its impact on (a) accuracy of the quantized
parameters, (b) errors generated in the output activations of
each layer due to quantized parameters, and (c) the accu-
racy of the final output of the quantized DNN compared to
FP32-based output. The multi-level analysis of the quanti-
zation induced errors helps in the early elimination of the
infeasible configurations. For this work, we have considered
various configurations of the FxP-based linear quantization
and Posit-based representations, denoted by the Quantization
Schemes in Fig. 8. However, our proposed framework is
generic and allows the integration of other types of quan-
tization schemes. In this work, we aim to utilize the Posit
scheme to decrease the storage and communication overheads
and employ FxP-based arithmetic to reduce the overall com-
putational complexity of the DNNs. Our proposed workflow
performs a thorough analysis of the inter-conversions of these
schemes to evaluate the impact of the available quantization
step sizes and the dynamic ranges offered by each scheme
on the final output accuracy of the DNN. For example, path
¬ converts a trained parameter from FP32 with compara-
tively higher precision into a low bit-width Posit scheme
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Fig. 8. Framework for behavioral analysis.

(for storage) having lower-precision and then utilizes PoFx
to perform FxP-based arithmetic. However, path° first quan-
tizes the FP32 number using FxP-based representation (hav-
ing lower-precision) and then utilizes a low bit-width Posit
scheme to store the quantized numbers. The Posit-induced
quantization errors in both paths will be different. Similarly,
the Posit-based arithmetic using paths ­ and ¯ will have
different quantization-induced errors. As shown by the clas-
sification accuracy results in Section V, the utilization of each
of these schemes has a distinct impact on the final output
accuracy. After providing the description of an ANN and
the various quantization schemes, the proposed framework
provides quantization configurations fulfilling the desired
accuracy constraints. These selected configurations are then
used by our proposed Accelerator Design tool flow to com-
pute their respective performance metrics.

C. ACCELERATOR DESIGN
The HLS-based design flow, shown in Fig. 9, is used for
evaluating the associated trade-offs between computation
overhead and communication/storage gains offered by the
PoFx-based MAC units. The design choices tree originating
from HLS directives shows the various degrees of freedom
(not exhaustive) associated with the design of an accel-
erator for a fully-connected layer. We assume a weight-
stationary [40] design, where a set of weights for a subset
of the artificial neurons in the layer are transferred once to
the hardware accelerator. Subsequently, each input activation
vector is transferred and the corresponding output activation
of each neuron is computed. Therefore, the computation of
each output activation vector can be seen as the multiplication
of a matrix (weights) by a vector (input activations). Conse-
quently, HLS directives of pipelining and loop unrolling can
be applied to the computation of the Dot Product (evaluation
of the output activation of each node) and the Outer Product
(evaluation of all output activations) for obtaining designs
with varying performance and resource utilization. Simi-
larly, the type of resources allocated for the weights matrix,
BRAMs or LUTRAMs, and the associated array-partitioning
choices can affect the accelerator characteristics.

Fig. 9. HLS-based accelerator design.

The design decisions associated with the quantization
schemes are integrated into the HLS-based flow. The
computation mode, Posit- or FxP-based, and the associ-
ated bit-widths impact the accelerator performance con-
siderably. The proposed accelerator allows the designer to
send and store the weights in Posit(N − 1,ES) or FxP
format. If the weights are moved and stored as Posit
(N − 1,ES), the MAC units need to have the PoFx unit
integrated into it (similar to Fig. 7). However, if the weights
are moved as Posit(N − 1,ES) and stored as FxP (using
PoFx), the MAC units do not require the run-time con-
version during each computation. However, this approach
increases the storage requirements compared to storing as
Posit(N − 1,ES). It must be noted that the joint exploration
across HLS directives and quantization schemes is necessary
for a good estimation of accelerator characteristics. Perfor-
mance improvement using HLS directives usually involves
replicating compute and memory resources which are in
turn dependent upon the choices related to the quantization
schemes.

V. EXPERIMENTS AND RESULTS
A. EXPERIMENT SETUP
The proposed PoFx converter and the associated com-
puter arithmetic blocks were implemented using Verilog
HDL. Python-based scripts were used for automating the
generation of the parameterized designs. SmallPosit HDL
repository [41] was used for generating the Posit-based arith-
metic designs [42]. The hardware designs were character-
ized using Xilinx Vivado Design Suite. For the calculation
of the dynamic power of all implementations, Vivado Sim-
ulator and Power Analyzer tools have been utilized. All
designs have been implemented on Xilinx Zynq UltraScale+
MPSoC (xczu3eg-sbva484-1-e device). The behavioral anal-
ysis was achieved using Python-based implementations and
used TensorFlow [43] for estimation of various quantization
induced error metrics. Xilinx Vivado HLS 18.3 was used as
the High-level Synthesis tool for accelerator design. While
the results for the behavioral analysis correspond to the
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Algorithm 1 Posit (N,ES) to FxP (M,F)
Require: N , ES, M , F
F N : Input Posit Bit Length
F ES: Maximum Exponent Bit Length
F M : FxP Output Length
F F : Fraction length in FxP Output

I A1: Extract Sign Component to FxP Output
1: S = POSIT [N − 1]
2: MAG[F] = 1 F Set Leading Bit

I A2: Implement conditional Two’s Complement
3: if POSIT [N − 1] == 1 then
4: POSIT [N − 2 : 0] = (! POSIT [N − 2 : 0])+ 1

I A3: Implement Modified Leading Zero Detector
5: if POSIT [N − 2] == 0 then
6: P[N − 2 : 0] =! POSIT [N − 2 : 0]
F To avoid LOD by inversion of bit sequence

7: LZD[N − 2] = P[N − 2] F Always 1
8: for (i = N − 3; i >= 0; i−−) do
9: LZD[i] = LZD[i+ 1] & P[i]

I B1: Evaluate Regime Value
10: V = # 1′s In LZD
11: if POSIT [N − 2] == 0 then
12: K = −V
13: else
14: K = V − 1

I B2: Extract Exponent and Fraction Fields
15: E : [eES−1, . . . , e1, e0] = E0
16: for (i = N − 4; i >= 0; i−−) do
17: EXT [i] = !(LZD[i+ 1] | LZD[i])
18: ST [N − 4] = EXT [N − 4]
19: for (i = N − 5; i >= 0; i = i−−) do
20: ST [i] = EXT [i+ 1]⊕ EXT [i]
F To Generate Silhouette ST for Extraction

21: switch = N − 4− ES
22: for (i = 0; i <= N − 4; i++) do
23: set = 0
24: for (j = 0; j <= i; j++) do
25: set = set|(ST [N − 4− i+ j] & POSIT [j])
26: if i <= switch then
27: MAG[F − 1− switch+ i] = set
28: else
29: E[i− 1− switch] = set

I C: Shift Calculation
30: SHIFT = 2ES ∗ K + E
F SHIFT register size = dlog2(M )e

I D: Bit Shift Implementation
31: MAG� SHIFT F -ve Value = Right Shift

I E: Sign Magnitude to Two’s Complement Block

experiments using VGG16 as the test application, all the
proposed methods can be used for any arbitrary application.

B. HARDWARE DESIGN
1) NORMALIZED PoFx
We analyze the impact of varying output bit-width (M ) of
PoFx converter on the overall performance of PoFx for a
given configuration of Posit. Fig. 10 presents the results of
the analysis for Posit (N − 1 = 5, ES = 1) configuration.1

The variation in M , for a fixed Posit configuration, has an
insignificant impact on the converter’s CPD. For a specific
value of dlog2(M )e, the overall LUT utilization also remains
relatively unchanged.2 For example, the total number of uti-
lized LUTs by PoFx forM = 9 is approximately 2.3 times the
total number of utilized LUTs for M = 8. The total number
of utilized LUTs also directly affects the dynamic power
consumption of the PoFx. The minor variations in the Power
metric of the PoFx is a result of the optimizations performed
by the synthesis tool. Compared to the resource utilization of
traditional Posit-based arithmetic units (discussed in the fol-
lowing sections), the PoFx has an insignificant contribution to
the overall resource utilization of FxP-based arithmetic units.

Fig. 10. Performance metrics of PoFx with varying M for
Posit(N − 1 = 5, ES = 1) for 2N random input combinations.

Fig. 11 compares the impact of various Posit configura-
tions, varying N − 1 and ES, on the performance metrics of
PoFx for a fixed bit-width (M ) of the output. The critical path
delay follows an increasing trend with an increase in the val-
ues of ES andN−1. This trend is primarily due to an increase
in the logic required for Posit extraction due to increased
variability in the individual field length. The designs with
ES = 0 have minimum resource utilization. The absence of
the exponent field results in significant simplification of the
overall extraction circuit. However, the designs with ES ∈
{2, 3} have comparably higher resource utilization. A similar

1Similar results are obtained for other Posit configurations.
2As described in Algorithm 1, the dlog2(M )e is used to calculate the size

of the shift register for computing the corresponding FxP value.
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Fig. 11. Variation in the hardware performance metrics of PoFx with
varying values of ES and N − 1 for Posit(N − 1, ES) representation being
converted to FxP(M = 16, F = 15).

trend is also observed for the dynamic power consumption of
the PoFx for various Posit configurations.

2) MAC DESIGN ANALYSIS
The proposed PoFx allows the utilization of resource-efficient
and high-performance FxP-based arithmetic units for Posit
number systems. To evaluate the efficacy of the proposed
approach and estimate the associated overheads of the PoFx,
we compare PoFx-based 8-bit MAC units3 with a traditional
FxP-based MAC unit. Moreover, for a more thorough explo-
ration of the PoFx-based designs, we have synthesized two
types of designs—one that allows the synthesis tool to opti-
mize across the constituent blocks (converters, multipliers,
and adders) and the other that performs optimization for the
constituent blocks separately. Fig. 12 shows the effect of the
synthesis tool’s optimization (ToolOpt) for all the PoFx-based
8-bit MAC designs. Such optimizations result in reduced
resource utilization in many cases. In most other instances,
the increase in LUT utilization is not significant. However,
for PoFx(N−1 = 7,ES = 1) and PoFx(N−1 = 7,ES = 2),
it results in more than 100% increase.

The results of comparisons across multiple design metrics
for various configurations of Posit are presented in Fig. 13.
It should be noted that the data shown in Fig. 13 (and Fig. 14)
corresponds to the design with the better metrics among the
ToolOpt and non-ToolOpt versions. The critical path delay
and resource utilization of the MAC follow a gradually rising
trend with both N and ES values. It can be noted that in
a few cases, especially for ES = 0, the PoFx-based MAC
provides better performance across critical path delay, power
dissipation, and LUT utilization than the FxP-only MAC. For
ES = 0, the Posit scheme’s dynamic range is limited, and the
PoFx does not utilize the complete dynamic range of the FxP.
The limited number of unique FxP values, after conversion,
allows the synthesis tool to optimize the overall design of
PoFx-based MAC to improve the associated performance

3As shown in Fig. 7, an M-bit FxP-based MAC includes a M × M
multiplier and a 3M -bit adder.

Fig. 12. Effect of synthesis tool’s optimization across component blocks
for PoFx-based 8-bit MAC implementations.

Fig. 13. Relative hardware performance metrics of PoFx-based MAC units
with varying values of ES and N − 1 for Posit(N − 1, ES) inputs to 8-bit
FxP MAC.

metrics. The powermetrics do not follow awell-defined trend
as they are generated based on the bit switches required to
obtain the correct bit-sequence as the output. Compared to the
FxP-only MAC, we report worst-case overheads of 22.8%,
5.0% and 15.5% for critical path delay, power dissipation, and
LUT Utilization, respectively. Similar trends are observed
in Fig. 14, which compares the same performance metrics for
a 16-bit FxP MAC.

To further evaluate the efficacy of PoFx-based MAC
design, we compare it with FxP-onlyMAC, Posit-only MAC,
and Posit-based 3-input Fused Multiply Add (FMA) [42].

Fig. 15 and Fig. 16 show the comparison of the power-
delay-product (PDP) and the LUT utilization of these
designs for 8- and 16-bit designs, respectively. Posit-only
MAC, which has been implemented by using a standalone
N -bit Posit adder andN -bit Posit Multiplier, has significantly
higher PDP and LUT utilization as a result of the extraction
and packaging of Posits between stages. The Posit-based
FMA, though optimized, requires more hardware resources
for implementation. It can be observed that the PoFx-based
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Fig. 14. Relative hardware performance metrics of PoFx-based MAC units
with varying values of ES and N − 1 for Posit(N − 1, ES) inputs to 16-bit
FxP MAC. ES ∈ {0, 1, 2, 3} for all cases, except for N − 1 = 4 where
ES ∈ {0, 1, 2}.

Fig. 15. Comparison of various 8-bit MAC implementations: for
Posit(N − 1, ES) N − 1 ∈ [4 .. 7] and ES ∈ {0, 1, 2}.

Fig. 16. Comparison of various 16-bit MAC implementations: for
Posit(N − 1, ES) N − 1 ∈ [4 .. 15] and ES ∈ {0, 1, 2, 3}.

MAC designs fall closely within the range of FxP-onlyMAC.
Further, the Posit-only MAC and Posit-based FMA designs
generate an N -bit output whereas, the proposed design gen-
erates a more precise 3N -bit output once extracted. This can
lead to lower inter-layer losses in ANNs as we can ascertain

the type of rounding mechanism at the output based on the
network to retain as much precision as possible before trans-
ferring the value to the next stage.

C. BEHAVIORAL ANALYSIS
We have considered DNNs as a test case to show the impact
of various number representation schemes on the output
accuracy of high-level applications. For this work, we have
used a pre-trained VGG16 [4] network for the classification
of the ImageNet dataset [44]. The VGG16 network mainly
consists of 13 convolution layers and 3 fully connected layers.
The very large number of the network’s trained parameters,
138 million, makes it a sound candidate for evaluating effi-
ciency of various quantization schemes. The single-precision
FP32-based Top-1 and Top-5 percentage output classification
accuracy of the 50000 validation images in the ImageNet
dataset is 69.72% and 89.09%, respectively. Our proposed
TensorFlow-based framework performs amulti-level analysis
to identify possible quantization configurations fulfilling the
output accuracy requirements of the network.

1) WEIGHTS QUANTIZATION ERROR ANALYSIS
In the first step, our framework quantizes the parameters
(weights and biases) of all layers and filters out the con-
figurations having large quantization-induced errors. For
example, Fig. 17 shows the average absolute and the max-
imum quantization-induced errors in the weights of the
Conv2_1 layer of the VGG16 network using different config-
urations of Posit and FxP schemes. The 8-bit FxP produces an
average absolute error of 0.002. For smaller values ofN , Posit
schemes produce more errors than the FxP-based scheme
in the quantized weights. However, for 7-bit and 8-bit Posit
schemes, the average absolute errors are reduced to 0.002 and
0.001 only. We also evaluate the interconversions4 of various
schemes to identify feasible configurations for PoFx-based
hardware. For example, the Posit(N − 1 = 7,ES = 2)→
8-bit FxP scheme produces an average absolute error of
0.003, whereas the 8-bit FxP→ Posit(N − 1 = 7,ES =
2)→ 8-bit FxP generates an average error of 0.002 only.
Fig. 17 also reveals that Posit(N − 1 = 3,ES = 2)-based
configurations can be eliminated in the first step due to large
quantization induced-errors. We have performed a similar
analysis for all layers of the VGG-16 network by exploring
all combinations of Posit(N ,ES) where N ∈ {4, 5, 6, 7, 8}
and ES ∈ {0, 1, 2, 3}, and 8-bit FxP. The analysis identifies
the quantization schemes producing the minimum average
absolute error and the maximum absolute error for each layer
of the network. For each N -bit Posit scheme, the quantized
parameters are analyzed to identify the values of ES inducing
minimum quantization errors.

In our current work we focus only on the quantization of
weights and biases. The use of a specific quantized repre-
sentation of the weights and biases will require the use of a
compatible MAC design for inference. Hence, we performed

4As shown in Fig. 8
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Fig. 17. Error analysis of various quantization schemes for Conv2_1 layer
of pre-trained VGG16 [4]. ES values are kept 2 for all configurations.
Maximum absolute quantization-induced error of each configuration is
shown above the corresponding average relative error bars.

a joint analysis of the performance of the various MAC
designs and the errors induced in the parameters by the cor-
responding quantization scheme. The various MAC designs
are grouped under three categories – PoFx-based, Posit-based
(that includes both multiply and adder combination and
FMA-based designs) and FxP-based. For the PoFx-based and
Posit-based designs, lower bit-width input designs were also
considered. For example, for 8-bit quantization,N was varied
from 5 to 8. Similarly, for 16-bit quantization, N was varied
from 5 to 16. TABLE 3 shows the Pareto analysis results for
8- and 16-bit MACs with the three objectives – PDP, average
quantization-induced error and the LUT utilization.We report
the number of dominating points for each of the three types
of quantization schemes used for the parameters of each
layer of VGG16. As shown in the table, using PoFx-based
designs contribute significantly to the number of points on the
Pareto-front for 8-bit precision. We also report the percentage
increase in the Pareto-front hypervolume due to the usage
of PoFx-based designs over the collection of Posit and FxP-
based designs only. As seen in the table, using PoFx-based
designs we report up to 173% increase in the hypervolume for
8-bits precision. Fig. 18 shows the dominating and dominated
points for each of the three categories in the corresponding
design space for 8-bit precision MACs for the first layer
(Conv1_1) of VGG16. It can be observed that the Posit- and
FxP-based designs contribute one point each to the resulting
Pareto-front, compared to 9 PoFx-based points.5

The improvements for 16-bit precision are lower compared
to 8-bits. However, as shown in TABLE 4, if we also con-
sider the bits-width of the parameters as a design objective
in the analysis, we report consistent improvements using
PoFx-based designs for both 8- and 16-bits precision. Since
the number of input bits is an indicator of the communica-
tion power dissipation (and energy consumption) for moving
weights, using PoFx-based quantization can result in reduc-
ing the overall power dissipation during DNN inference.

2) OUTPUT ACTIVATION ERROR ANALYSIS
In the second step of behavioral analysis, our framework
utilizes the quantized parameters to evaluate each config-
uration’s impact on the output activations of each layer.

5Since we have used a 2D plot for showing the pareto-front for 3 objec-
tives, some dominating points appear as dominated in Fig. 18.

TABLE 3. Pareto analysis of MAC designs with weights quantization error.
Objectives: PDP, Average Error, #LUTs.

Fig. 18. Pareto analysis of 8-bit MAC design along with errors induced in
quantization of weights for Conv1_1 layer of pre-trained VGG16.

TABLE 4. Pareto analysis of MAC designs with weights quantization error.
Objectives: CPD, Power, Average Error, #LUTs, #Bit-width of parameters.

The computation of the output activation involves using a
MAC design that is compatible with the chosen quantization
scheme. Similar to the analysis presented in Fig. 18 for the
errors induced in the parameters, Fig. 19 shows the design
spacewhile considering the errors in the output activations for
the first layer— Conv1_1— of VGG16. The 3D scatter plot
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Fig. 19. Pareto analysis of 8-bit MAC design along with errors induced in
output activations for Conv1_1 layer of pre-trained VGG16.

shows the various design points corresponding to the three
categories of MAC designs, PoFx-, Posit- and FxP-based.
It can be observed from Fig. 19 that the PoFx and FxP-based
designs’ contribution to the Pareto-front is mainly due to bet-
ter hardware performance— lower PDP and reduced number
of utilized LUTs. Similarly, Posit-based designs’ contribution
is mainly due to lower average error, albeit at high hardware
costs. The resulting Pareto-front in Fig. 19 has 7, 13 and
1 points from PoFx, Posit and FxP-based designs respec-
tively, with 12.4% improvement in the hypervolume over the
collection of only Posit- and FxP-based designs. It must be
noted that since we focus on the quantization schemes for
only the parameters, during the behavioral analysis, the input
activations for each of the layers are kept at FP32 precision.
After computing the output activations, they are quantized
using the configuration employed to quantize the respective
parameters. This lets us evaluate the impact of the proposed
methods and designs while other aspects are kept unchanged.

3) CLASSIFICATION ERROR ANALYSIS
Finally, the behavioral analysis involves estimating the
impact of the proposed methods on the classification accu-
racy. TABLE 5 shows the percentage Top-1 and Top-5 classi-
fication accuracies of the ImageNet validation dataset [44]
using different quantization schemes. For this experiment,
the activations have FP32 precision, and the parameters
(weights and biases) are quantized using various 8-bit
schemes. For comparison, we also show the classification
accuracy using 7-bit and 16-bit FxP-based quantization tech-
niques. The FxP-16 and Posit(N = 8,ES = 2) produce simi-
lar classification results by reducing the final output accuracy
by only 0.06 and 0.07, respectively when compared with
FP32-based results. The FxP-8 based configuration reduces
the Top-1 and Top-5 classification accuracy by 5.01 and
2.83, respectively. However, the FxP-7-based quantization

TABLE 5. Classification accuracy of VGG-16 network [4] on ImageNet
dataset [44] with quantization of weights and biases using different
schemes of fixed-point, Posit and PoFx.

significantly drops the final classification accuracy. For the
PoFx-based schemes, we consider the normalized PoFx tech-
nique and utilize Posit(N-1, ES) configurations for N-bit Posit
numbers. TABLE 5 reveals that the direct conversion of Posit
numbers to FxP scheme (Posit-FxP) significantly dimin-
ishes the final output accuracy. However, utilizing FxP→
Posit→ FxP based conversion, the PoFx has an insignificant
impact on the final output. For example, compared to the
FxP-8 based results, the FxP-8→ Posit(N-1 = 6, ES =
2)→ FxP-8 decreases the Top-1 and Top-5 classification
accuracy by only 0.35 and 0.26.

TABLE 6 shows the joint analysis of the ImageNet dataset
classification accuracy and the corresponding MAC designs
for a subset of the configurations. It contains only those
configurations from TABLE 5 that have comparable accu-
racy and having feasible hardware designs. For instance,
arithmetic blocks for Posit(N = 6,ES = 3) could not be
generated using SmallPosit HDL [41]. Similarly, as shown
in TABLE 5 the Posit-FxP modes have much lower accuracy
than similar configurations for FxP→ Posit→ FxP, while
requiring the same PoFx-based MAC, and are hence omitted
from the analysis. The PDP and LUT utilization values for
each configuration in TABLE 6 are obtained from the lowest
PDP design for that configuration. The PDP and LUT met-
rics shown in the table correspond to values relative to the
maximum shown in the table’s top row.

The highest value of PDP and LUT utilization occurs for
the configurations Posit(N = 8,ES = 1) and FxP-16 respec-
tively. The highest and lowest values of the performance
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TABLE 6. Joint analysis of classification accuracy and MAC hardware
characteristics of fixed-point, Posit and PoFx-based designs.

metrics for each of the two categories – Posit and PoFx are
highlighted in bold text in TABLE 6. It can be observed
that the Posit configuration for the highest Top-1 accuracy,
Posit(N = 8,ES = 2), corresponds to the MAC design
with highest LUT utilization. Similarly the Posit configura-
tion with highest Top-5 accuracy, Posit(N = 8,ES = 1)
(and Posit(N = 8,ES = 2)), corresponds to highest (and
relatively higher) PDP value. The Posit configuration with
the lowest accuracy, Posit(N = 6,ES = 2) corresponds
to the design with lowest PDP and LUT utilization among
Posit-based MACs.

Similar correlations were also observed in the case of
PoFx-based designs. Designs with higher PDP usually result
in better accuracy. Compared to FxP-8 based designs the
PoFx(N − 1 = 7,ES = 1) achieves similar accuracy
with lower PDP (≈5%) and slightly higher LUT overhead
(≈15.5%). Similarly, PoFx(N − 1 = 6,ES = 2) achieves
comparable accuracy with even lower PDP (≈18%) and
less LUT overheads (≈8%). Additionally, these PoFx-based
designs requires less bits for representing the parameters of a
network. This can result in lower communication and storage
overheads in the accelerator design for each layer of the
network.

D. ACCELERATOR-LEVEL DESIGN ANALYSIS
The advantages of using the PoFx-based arithmetic oper-
ators can be seen clearly in the design of accelerators.
As we shall see in the experiment results, the proposed
PoFx approach results in large reductions in the computing
overheads with very little cost to accuracy as compared to
Posit- and FxP-based accelerators. In order to estimate the
system-level impact of using the proposed PoFx methodol-
ogy, we integrated the candidate solutions in the design of an
accelerator for a fully-connected layer of a DNN. The acceler-
ator was designed using C++ and synthesized using Xilinx’s
Vivado HLS. To keep the design generic, we implemented
a matrix-vector multiplication. The matrix represents the

weights of a fully-connected layer, while the vector represents
a single input activation. One thousand input activations were
used to estimate the switching activity in order to compute the
power dissipation. The implemented accelerator uses ReLU
activation function.

1) ACCELERATOR RESOURCE REQUIREMENTS
As was shown in Fig. 9, the accelerator design using HLS
involves using various micro-architectural optimizations to
generate designs with power-performance-area trade-offs.
To provide a fair comparison, we used the same microar-
chitecture design choices for the Posit-, PoFx- and FxP-
based design variants. We used loop unrolling for the inner
product (dot product) and the outer loop of the matrix multi-
plication. Further, we employed LUTRAMs for storing the
local arrays, with adequate partitioning to support parallel
execution obtained by loop unrolling. In order to compare
the effect of using Posit-based, PoFx-based and FxP-based
MAC units, we implemented the following four variants of
the accelerator:

1) Posit: The accelerator stores and computes all operations
in Posit(N ,ES) format.

2) PoFx(Move): The weights are moved to the accelerator
in normalized PoFx(N − 1,ES) representation, con-
verted to FxP and stored as FxP(M = 8) numbers. Dur-
ing computations, the FxP(M = 8) weights are fetched
from local memory and used directly for arithmetic.

3) PoFx(Move & Store): The weights are moved from
main memory and stored in local memory in normal-
ized PoFx(N − 1,ES) format. During computation,
the weights are fetched from local memory, converted to
FxP(M = 8) and used in the computation of the output
activation values.

4) FxP(8): The weights are moved from main memory to
accelerator and stored in the local memory of the accel-
erator as FxP(M = 8) numbers. Similar to PoFx(Move),
the computation stage does not involve any conversions
between number representations.

Fig. 20 shows the accelerators’ relative resource require-
ments for the implementation of the four designs with varying
configurations of Posit(N ,ES) and PoFx(N − 1,ES) for
ES = 0. The accelerators designed for Fig. 20 correspond
to a weight matrix of size 64 × 10. It can be observed that
the LUT utilization of Posit is much higher than both FxP(8)
and PoFx-based designs in all cases. This can be attributed to
the high resource costs of the Posit arithmetic blocks. Simi-
larly the RegFF utilization of PoFx(Move & Store) is lower
than that of PoFx(Move) designs for all cases. Additionally,
lower LUTRAM utilization is observed in PoFx(Move &
Store) than Posit-based and FxP(8) designs in most cases.
For instance, compared to the Posit(N = 7, ES = 0) and
FxP(8), we report ≈46% reduction in LUTRAMs utilization
with the PoFx(N − 1 = 6, ES = 0) design. Therefore,
the proposed PoFx-based designs results in reduction in the
accelerator’s overall resource consumption. Fig. 21 shows
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Fig. 20. Variation in the relative resource utilization of LUTRAM-based accelerator implemented with varying Posit and PoFx designs compared to
FxP8-based designs.

Fig. 21. Variation in the relative resource utilization of LUTRAM-based accelerator implemented with varying Posit and PoFx designs compared to
FxP8-based designs.

the resource utilization for the accelerators corresponding
to the configurations shown in TABLE 6. The PoFx-based
accelerator designs show considerable lower LUT utilization
than Posit-only designs. The high LUT utilization for two
configurations can be attributed to the high LUT utilization
of the PoFx-based MAC units (Fig. 12) reported by using
the synthesis tools cross-optimization. The Posit-only designs
report lower RefFF utilization than both FxP and PoFx-based
designs.

2) ANALYZING PERFORMANCE-ACCURACY TRADE-OFFS
To demonstrate the effectiveness of the proposed PoFx-
based designs, Fig. 22 plots the ImageNet dataset classifica-
tion accuracy using VGG-16 network for FxP8, Posit, and
PoFx(More & Store) along with various performance metrics
of an accelerator implementing those designs. The acceler-
ators designed for Fig. 22 correspond to a weight matrix of
size 32 × 10. Each sub-figure in Fig. 22 shows the plot with
all the designs on the left and a zoomed-in plot to compare
with FxP8-based and PoFx-based designs. The design points
shown in the plot correspond to the configurations shown

in TABLE 6 (except Fxp-16). The horizontal axis of the plots
shows the Top-5 classification error (in %) for the ImageNet
dataset and the vertical axis slows the relative performance
metric. The maximum value each of the performance metrics
(corresponding to 1.00) is shown in red along the vertical
axis. As can be seen across all the sub-figures, the PoFx-
and FxP8-based accelerator designs show considerably better
performance (lower values on the vertical axis) compared to
Posit-based designs. This improved performance is obtained
at the cost of slightly higher classification error.

Fig. 22(a) shows the impact of using fixed-point opera-
tors with reduced computational complexity on the acceler-
ators’ resource utilization (LUTs). The dominating (Pareto)
Posit-based designs with the highest and lowest LUT uti-
lization are highlighted in the figure as H (Posit(8, 2)) and
L (Posit(6, 2)), respectively. As seen in the figure, the FxP8-
based design results in around 2.74% and 0.73% more error
thanH and L designs, respectively. However, the FxP8-based
design results in 4874 and 2248 less LUT usage than H and
L implementations, respectively. If we consider the PoFx-
based designs in the zoomed-in portion, the PoFx(7, 1)-based
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Fig. 22. Top-5 percentage errors in ImagNet dataset classification using VGG-16 v/s the performance of a sample accelerator implementing a
fully-connected layer. The PoFx-based designs correspond to the PoFx(Move & Store) design variants.

design has an additional 0.11% error but uses 298 fewer LUTs
compared to FxP8. Similarly, PoFx(6, 1)-based design adds
only 0.32% additional error but uses 488 fewer LUTs than
FxP8-based implementation. The other PoFx-based design
points provide different error-area trade-offs. The lower LUT
utilization of these PoFx-based design points, compared to
the FxP8-based implementation, can be attributed to reduced
storage requirements that provide resource utilization bene-
fits in addition to amortizing the conversion overheads of each
PoFx-based MAC unit.

The benefits of using PoFx-based designs in terms of
power dissipation are reported in Fig. 22(b). The dominat-
ing Posit-based points with the highest and lowest power
dissipation are shown as H (Posit(8, 2)) and L (Posit(6, 2))
respectively. The FxP8-based design shows nearly 75.71mW
and 37.85mW lower power than H and L designs, respec-
tively. The lower power dissipation is at the cost of 2.74% and
0.73% higher classification error. The PoFx-based designs
report even further lower power dissipation. Designs using
PoFx(7, 3), PoFx(6, 3) and PoFx(5, 3) report 4.49mW,

6.33mW and 7.09mW lower power than FxP8 with 0.11%,
1.64% and 5.13% higher error respectively. The higher power
dissipation of the Posit-based MAC units gets exacerbated in
the accelerator, with routing power accounting for a consid-
erable portion of the total power dissipation.

Similar to LUT utilization and power dissipation,
Fig. 22(c) and Fig. 22(d) show the accelerator’s total resource
utilization and best-case6 latency, respectively, for various
Posit and PoFx-based designs. The dominating Posit-based
designs with the highest and lowest accelerator performance
metrics are shown as H and L, respectively. For resource
utilization, H and L correspond to Posit(8, 2) and Posit(6, 2)
respectively. Similarly, for best-case latency, the points
marked H and L refer to Posit(8, 1) and Posit(7, 1) respec-
tively. Similar to Fig. 22(a) and Fig. 22(b), the FxP8-based
design shows better performance than Posit-based designs
with a slight reduction in the classification accuracy.

6The best-case latency refers to the latency corresponding to the CPD of
the design.
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The PoFx-based designs provide further design points that
provide novel accuracy-performance trade-offs. The lower
latency of FxP8- and PoFx-based designs can be attributed
to their much lower CPD than Posit-based designs.

VI. CONCLUSION
To implement machine learning applications on resource-
and energy-constrained embedded systems with limited com-
putational power, it is imperative to consider the unique
features of various optimization techniques together. This
paper proposes the ExPAN(N)D framework for analyzing
and combining the number representation efficacy of the
Posit scheme and the resource- and compute-efficiency of
FxP-based schemes. ExPAN(N)D utilizes a modified and
novel representation of Posit numbers systems to represent
the trained parameters of DNNs. Using the proposed scheme,
we useN−1 bits for anN -bit Posit configuration to reduce the
storage requirements. For performing arithmetic operations
on trained parameters, stored in Posit format, ExPAN(N)D
proposes and utilizes a resource-efficient Posit to FxP con-
verter PoFx. Using PoFx, all arithmetic operations are per-
formed using FxP-based arithmetic operators.

Compared to the lowest power consuming Posit-based
accelerator implementation, Posit(6, 2), our proposed
PoFx(6, 2)-based accelerator design results in 80% lower
power dissipation with an additional 1.05% additional
classification error. Compared to FxP8-based design, the
PoFx(6, 2) design results in 27% lower power dissipa-
tion at the cost of 0.32% additional classification error.
Similarly, the PoFx(6, 2)-based accelerator implementation
results in 13% and 48% lower LUT utilization compared to
FxP8- and Posit(6, 2)-based designs. ExPAN(N)D utilizes
a TensorFlow-based behavioral framework to evaluate the
impact of different quantization configurations on the final
output accuracy of ANNs. We intend to extend the proposed
framework by incorporating other networks’ optimization
techniques such as approximate arithmetic operators and
various other quantization schemes.
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