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ABSTRACT In this paper, we propose an end-to-end key-player-based group activity recognition network
specially applied to the identification of basketball offensive tactics in limited data scenarios. Our previous
studies show that basketball tactics can be better recognized via key player detection with multiple instance
learning (MIL) using the support vector machine (SVM). However, the SVM in that work is required to
extract features depending on basketball- and tactic-specific knowledge for good performance. Thus, in this
study, we develop an end-to-end trainable neural network without prior knowledge and integrate MIL into
it. As long as a tactic label is given, MIL can train the network to identify tactic’s key players. For testing,
our network can recognize the key players in a video clip and provide a tag of the tactic related to them. Like
other neural network models, our network requires a large annotated dataset. At the same time, we could
collect only a few labeled data, which is common in dealing with group activity recognition. To overcome
such a limitation, we propose a novel data augmentation framework, the tactical-based conditional generative
adversarial network (GAN), for generating new labeled trajectories. The experimental results show that our
method significantly improves 9.13% in tactic recognition and 4.965% in key player detection.

INDEX TERMS Data augmentation, end-to-end deep neural networks, generative adversarial networks,

group activity recognition, key player detection, multiple instance learning, sports video analysis.

I. INTRODUCTION

Group activity recognition is a widely used but challenging
problem. Generalized from single-person activity recogni-
tion, group activity recognition needs to deal with compli-
cated dynamics among people, including individual’s role,
the interaction among different individuals, and each behav-
ior. Although the existing human activity recognition algo-
rithm can accurately identify individual actions, there is
still much room for improvement in identifying group inter-
actions. For example, the graphical model can adequately
describe the relationship of intermediate action through nodes
and edges. However, the number of behaviors that can be
included is greatly restricted. On the other hand, statistical
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learning has no limit on the number of actions, but its capa-
bility in analyzing the interaction among human behavior is
deficient. Due to the rapid development of deep learning in
recent years, one can use data-driven techniques to simulta-
neously identify a larger number of behavior patterns, capture
the division of roles, and analyze their interaction.

In this work, we put our emphasis specifically on analyzing
group behavior in sports. Sports include all forms of compet-
itive physical activities or games through casual or organized
participation. Such analysis improves physical ability and
skills while providing enjoyment to participants and, in some
cases, entertainment for spectators.

In cooperative group activities, multiple players typically
act according to pre-defined tactics. Needless to explain,
recognition of the tactics taken is essential for coaches and
players. The audience can also enjoy more at the same time
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if they can identify the tactics applied by both teams. Tra-
ditionally, such recognition is done by senior sports analysts
at a very slow pace. It would be useful if the computer can
recognize tactics and display them to the coaches and the
audience. The players can also be beneficial in learning the
tactics through such a computer program. This study aims to
develop tools for recognizing basketball as an initial attempt
for general group activity identification applied to sports.

For a given tactic, a subset of players is required to per-
form particular behaviors. Based on this observation, we can
separate all players into two groups. One is the key player
group, which covers core members of the tactic operation
and has small intra-tactic variation. The other non-key player
group contains the rest of the players and usually has a
larger intra-class variation. Most tactics are characterized by
activities of the key player group. Thus, we transform the
tactic recognition to a detection problem of the key player
group. Our method provides better tactic recognition results
and better recognition interpretation since key players are
detected for verification.

We adopt the MIL to detect the key players, with the
identified tactic as the bag label and moving trajectories
of each player subset as instance. The MIL combines with
handcrafted spatial-temporal features named motion intensity
maps (MIM) from recorded video clips and provides satisfac-
tory recognition results in [1].

However, using the handcrafted features has many draw-
backs. First, MIM features heavily rely on prior knowledge
of basketball courts, which is pretty cumbersome to prepare.
Second, to represent videos of different temporal lengths
in vectors of the same dimension, a fixed number of time
segments is taken. A simple average operation is then applied
to get specific segment’s features. All segment features are
concatenated into a global dynamic feature. This re-sampling
method ignores real pace information.

To overcome those drawbacks, we propose an end-to-end
trainable network. This network’s input is the position,
i.e., (x, y) coordinate, of each player along the temporal axis.
Since our model only requires raw trajectories without any
prior basketball knowledge, it is also applicable to different
group sports such as soccer and volleyball and group behav-
iors appearing in surveillance recordings. In addition to key
player pattern detection, our method can carry out temporal
pattern discovery, leading to an in-depth understanding of
tactic interaction.

Deep networks require a large number of training data to
train the parameters of the model. According to experience,
the best number of training data is several times more than the
number of network weights. For still image object recogni-
tion, a researcher can pre-train model on large-scale datasets
such as ImageNet, CoCo, etc., then fine-tune the network
using a customized dataset. However, for time series learning
problem like ours, well-known datasets like ImageNet or MS
COCO dataset that can provide a large amount of labeled data
are not available. The dynamic characteristics: including the
posture, trajectory, and position of the object that change over
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time, often yield large diversity due to the varying settings of
the start and the end time, or the difference in the viewing
position. To increase model robustness for temporal variation,
we need more data for training the network. The disadvantage
of a small dataset is even apparent. However, if we have only a
small dataset, as in many application scenarios of group activ-
ity recognition, we may use data augmentation. Data aug-
mentation can be achieved by either adding slightly modified
copies of existing data or synthesizing new data from existing
data. Adding slightly modified copies is easy to implement
through geometric transformation (e.g., rotation, cropping,
etc.), temporal transformation (e.g., resampling, repace, etc.),
but its scale factor in such approaches is pre-defined and
inflexible. Synthesizing new data does not have restrictions
on the scale factor but needs a good generative model. We
found that the GAN is an excellent one and is very suitable
for our purpose.

Il. RELATED WORK

Group behavior analysis on sports video has been explored
in the literature to analyze individual and team performance.
Methods of this category are used for various applications
such as football play recognition [2], [3] and basketball
behavior detector [4] as well as feature extraction such as
team occupancy and team centroid features [5]. For basketball
tactic recognition, Chen et al. [6] make a breakthrough by
using dynamic time warping (DTW) with the Gaussian mix-
ture model (GMM). Our previous work [ 1] first introduces the
idea of tactic recognition via key player detection, where the
authors extracted handcrafted basketball court MIM features
with a MIL classifier.

Recently, deep neural networks have become a power-
ful learning algorithm owing to their strong feature extrac-
tion capability. Under the deep neural network’s framework,
group activity recognition shares many common layers, such
as a dynamic feature extractor and a classification layer,
with single-person activity recognition. The main difference
between single-person and group activity recognition is that
group activity recognition has an additional aggregation layer.
An aggregation layer, which tries to merge multiple individ-
ual features, can be formulated in different ways, e.g., simple
concatenation [7], [8], average or max-pooling [9], attention
[10], [11], and the semantic graph [11], [12]. Our method
introduces the so-called “NchooseK” layer, which is a new
type of aggregation method based on an assumption of key
players. It turns out that an end-to-end neural network for
key player detection can be derived based on the proposed
NchooseK layer.

Global average pooling (GAP) and class activation
map (CAM) are introduced by Zhou et al. [13]. Via global
average pooling and a fully-connected layer with linear acti-
vation before the softmax layer, their method not only reduces
the number of learnable parameters but also applies the com-
mutative law of multiplication to evaluate the contribution
of each feature vector to the specific class score. Although
CAM is effective, the requirement of global average pooling
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FIGURE 1. Concept of key-player-based tactic classification. This figure shows a video with a tactic that involves three key players. This
video is viewed as a bag with a set of instances (ellipses), each of which covers a specific group of three of the five offensive players. The
positive instance here is that includes player 1,3 and 5 as key players (orange ellipse).

placed on the last classification layer limits its usage on more
complex and pre-trained neural networks. Selvaraju et al. [14]
propose a modified version of CAM, called Grad-CAM.
Grad-CAM uses backpropagation gradients of succeeding
layers as class feature weight without requiring GAP layer.
CAM and its variants can be used in a variety of applications.
Due to their flexibility of feature maps’ size, they can also be
used on time series classification, sequence-to-one classifica-
tion [15], [16], which merges different-length time sequences
to a global feature of the same dimension. Our method uses a
similar strategy to CAM, but we further leverage the mutually
exclusive property of key player instances.

In this work, MIL and GAN play important roles in our
method. Here we shall briefly review these two topics as
follows. MIL is a type of weakly supervised learning. It is
introduced by Dietterich et al. [17] for drug activity detection
and has various applications to image classification [18],
object detection [19], text or document categorization [20],
and semantic segmentation [21], [22]. MIL algorithms origi-
nally work on pre-defined features. But with the development
of deep learning, a variety of neural networks with MIL have
been proposed for combining the powerful feature extraction
capability of deep learning and the low-cost labeling of MIL.
Zhou and Zhang [23] propose an instance-space MIL algo-
rithm, casting instance features to instance scores followed by
MIL pooling on the score layer. Wang et al. [24] propose an
embedded-space MIL algorithm that performs MIL pooling
directly on the feature domain. Instance-space methods allow
the identification of positive instances but with a lower per-
formance than embedded-space methods. Ilse et al. [25] use
an attention layer to combine instance-space interpretation
and embedded-space. Instances in this research are mutually
exclusive. Thereby, instance-space max-pooling matches our
requirement.

The GAN is a popular deep generative network in recent
years. It is proposed by Goodfellow et al. [26]. Deep gen-
erative models before GAN are beautiful in theory, but
it is not very effective in practical applications. Among

VOLUME 9, 2021

them, the models belonging to the undirected graphical
model include Restricted Boltzmann machine (RBMs) [27],
Deep Belief Networks [28], and Deep Boltzmann Machines
(DBMs) [29]. This kind of Boltzmann Machine-based gener-
ative model uses maximum likelihood to estimate the value
when calculating the data distribution. The calculation is
very complicated, and other solutions except trivial solu-
tions are very difficult to obtain. Using the Markov Chain
Monte Carlo (MCMC) method to find an approximate solu-
tion is an alternative way, but MCMC is also a complicated
method. To avoid complicated calculations like the com-
putation of log-likelihood, researchers have proposed other
optimization methods like the score-matching [30] and the
noise-contrastive estimation (NCE) [31]. But on most occa-
sions, the density function is not normalized and estimating
a normalization constant is also very time-consuming. As
to the backpropagation method, although one can use labels
to simplify the process, it is only feasible for the tasks like
pattern matching. It cannot be used directly for a task that
needs the recursive instruction to be executed during train-
ing. On the other hand, the GAN model uses two coupled
networks and applies the min-max game algorithm to train
both networks alternatively with the existing backpropagation
methods. Because the generator in the GAN architecture has
sound data generation capability, [32]-[34] prove that it can
be used for a wide variety of data augmentation. There are two
kinds of trajectory augmentation. One is known as trajectory
prediction, in which an initial sequence is given, and with
the initial sequence, the model generates successive data. The
other is called trajectory simulation, where models simulate
the entire trajectory. In general, trajectory simulation is more
difficult to implement than trajectory prediction. Social GAN
[35] and GD GAN [36] are examples of using GAN to per-
form trajectory prediction. Since we need to increase the total
amount of training trajectories, trajectory simulation is more
suitable for our demand. Crowd simulation [37] is a virtual
simulation of the entire trajectory. The strategy it adopts is
a method inherited from the trajectory prediction method.
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The neural network corresponding to trajectory prediction
will read the initial trajectory produced by another indepen-
dent neural network and make the prediction. Those two
neural networks work together to produce the final trajectory.
The main difference between our method and the crowd
simulation is that the latter adds movement constraint to gen-
erated trajectories to simulate various pedestrian interactions.
Instead, we are inspired by conditional GAN [38]and add
tactical information as conditional input to the original Crowd
simulation GAN. We call this enlarged GAN as Group-
Tactic-Role conditional GAN (GTRCGAN).

lIl. OUR APPROACH

A. NETWORK OVERVIEW

Given a set of half-court offensive videos, each of which
belongs to one of the C tactics. The trajectories of the
five offensive players in the video i have been retrieved
and denoted by {ni,p};zl. Each trajectory is a temporal
sequence of that player’s (x,y) positions in the court i.e.
Tip = {7ipx(t), m,p‘y(t)}f:l, where F' is the frame number
of video i. It is worth noticing that the frame number varies
from video to video. Besides, the five trajectories in each
video are orderless. Each player has a tactical label, which
contains tactical type ¢; and role ID r,. Note that role ID r,
here represents a specific player movement in a specific
tactic, not the basketball positions such as center, forward,
and guard. As a result, players of different tactics that have
the same role ID do not mean they have a similar trajectory.
On the other hand, players of different tactics whose role IDs
are different might have a similar trajectory.

Our neural network is designed for multi-class classifica-
tion. It consists of multiple subnets for various key player
groups. Figure 2 (a) shows the subnet where the number of
key players is K. This network is composed of four high-level
layers, including (1) RNN auto-encoder for individual player
feature extraction, (2) the NchooseK layer for group instance
aggregation, (3) temporal global average pooling for dimen-
sionality reduction, and (4) instance-space miNet for MIL.
To train the network, the loss function with two terms is
described as (1):

L= L‘cross-emropy + A Lauto-encoder (D

where Lcyoss-e Tepresents the cross-entropy loss of tactic clas-
sification, and Laygo-encoder T€presents the auto-encoder loss
which calculates the Euclidean distance between an original
trajectory and decoded trajectory from auto-encoder. The
details of the network components and the loss functions are
given in the following.

B. RNN AUTO-ENCODER FOR PLAYER FEATURE
EXTRACTION

To capture the features of each player, a single layer of
recurrent neural network (RNN) is adopted, which casts the
player’s (x, y) coordinates to a D-dimensional hidden state
features Ep at each timestamp ¢. To maintain the correlation
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between the hidden state feature E; and the original trajectory
for video i, an auto-encoder is incorporated with RNN for
regularization to avoid overfitting and its loss function is
defined by (2)

5
-2
Lauto-encoder = } l7wip — 7ipl”, (2)
p=1

where 7; , and 7; , represent the original and decoded trajec-
tories, respectively.

C. NCHOOSEK LAYER FOR GROUP INSTANCE
AGGREGATION

NchooseK layer aggregates individual player features to
group features. The proposed aggregation layer is developed
based on grouping the key player number n. out of the five
players together for a specific tactic c¢. Since trajectories
are randomly ordered, we list all possible C5 groups. The
positive instance is one of the C; > instances wh1ch COVers
all key players. This layer is called the NchooseK layer. The

F

nc

output of this layer is {hk}k Li=1-

D. TEMPORAL GLOBAL AVERAGE POOLING

To overcome the problem that different videos may have
different numbers of frames, temporal global average pool-
ing (tGAP) is applied along the temporal dimension, as illus-
trated in Figure 3. After tGAP, the temporally pooled features
for each instance k is denoted by H.

E. INSTANCE-SPACE MINET FOR MULTIPLE INSTANCE
LEARNING

A fully-connected layer is used to cast high-dimensional
features Hy to class prediction probability si. of whether
instance k is positive for tactic c. Because each video has
just one positive instance, which is supposed to be the one
with the maximum score value s;*. Regarded as MIL pooling,
a max-pooling is used to 0bta1n the final class prediction
Y€ ie., Y¢ = max si. Finally, we compute Y¢ for each
tactic ¢ and concatenate them into the tactic prediction vec-
tor Y of this video. Since we have the ground-truth tac-
tic label for each training video, cross-entropy is used to
define 108S Leross-entropy 10 Eq. (1). Note that our method can
predict the key players since the positive instance is found
via max-pooling. Figure 2 (c) shows key instance prediction
is obtained by adding an argmax pooling when network
inferences.

F. GENERATING TRAJECTORIES USING GAN

As illustrated in Figure 4, for augmenting enough data,
we take the architecture proposed in [37] and make two
modifications: (1) we modify the characteristic of trajectory
m from position-based coordinates to displacement-based
coordinates. This modification is reasonable because a
displacement-based feature can better characterize the
causality relationship than a position-based feature; (2) we
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FIGURE 2. Overview of the proposed end-to-end trainable neural network, where a tactic with K key players is considered. (a) The training process
of proposed MIL Network with pre-trained GTRCGAN generator as data augmentation preprocessing module. (b) The training process of our
augmentation network (GTRCGAN), where the detail is described in Fig. 4. (c) Inference process of our MIL Network, a non-trainable argmax layer is
added for key instance selection. Combined with the MIL layer, our network can predict a tactic and key players simultaneously.
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FIGURE 3. Overall of temporal global average pooling (left) and miNet
(right). For each video, there are K = C3_ instances for tactic c. Each
instance has temporal length F and hidden dimension D. We apply
temporal global average pooling over the temporal axis. The temporally
pooled features for instance k are denoted by H. A fully connected layer
is derived to estimate the probability s{ of whether instance k is positive

for tactic c. A max-pooling is applied to all instance probabilities {s} ]f_l
for MIL. B

combine both the tactical label ¢; and the tactical role 7, as
the conditional input of GAN. Thus, in the implementation,
we will combine ¢; and r, and make it a one-hot encod-
ing vector 1, ,, of size C x 5. In the original architecture
in [37], the entire trajectory was divided into two groups of
generating tasks, namely the one for initial path (entry-points
part) and the other for subsequent path (continual-points
part). Entry-points part refers to the beginning part of the
track, which contains n, data points. As for its generator,
an entry fully-connected layer is applied to integrate latent
variables z and conditional input I, ,, to generate a dis-
placement sequence {dy, - - - , dp,}. The discriminator of the
original architecture will take the sequence {dy, - - - , dy,} as
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FIGURE 4. Overview of group-tactic-role conditional GAN. Generator
(upper left) takes latent variable z and tactical label c, r as input to
generate augmented trajectories. Discriminator (bottom right) takes
trajectory and tactical label c, r to classify whether the each point of
trajectory is real(1) or fake (0).

the input of the entry fully-connected layer and then output a
value sitting within the range [0,1]. We denote this sequence-
to-one output as Ve(df:,,eﬂlc,-,rp; ®p) for judging whether the
initial path is correct or not. As for the continual-points part,
which contains F' — n, data points, we consider a sequence-
to-sequence model. The generator uses the gated recurrent
unit (GRU) to read the displacement sequence from time 1 to
t — 1, the latent variable z, and the conditional input ]lci,,p.
Then we transform the hidden state at time ¢ into displace-
ment d; through a continual fully-connected layer, and this
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transformation can be represented as g(z|df:t_1, L.,.,,p; Op).
As to the discriminator, we use GRU and a continual
fully-connected layer to calculate the probability that d; is
true under a given displacement sequence {di,--- ,d;—_1},
which can be represented as vc(df:t | ]1c,-,rp; Op).

During the training process, the generator will generate a
set IT" of N x 5 trajectories as quantities of batch size from
different sequences of noise vectors in each iteration. The
loss function in total includes four items: 1. The recognition
success rate of the initial path is described as

T I’
D _10gve(d], 1., 60) ) log(l—ve(d], e, 6)).
e g

3

where the first item above is the probability that trajectory &
from the real database IT being judged as real, and the second
item is the probability that trajectory 7’ of the augmented
database IT’ from the generator being determined as fake.

2. Recognition success rate of subsequent path is
described as

N Fr
Y D logre(@f,1e,,;:6p)
T t=netl
" F
+Z Z log(1=ve(d;|1e;.r30p)),  (4)
7’ =t

where the first term above is the probability of trajectory w
being judged as real from the real database I1, while the sec-
ond term is the probability of trajectory 7’ being judged as
fake from the augmented datasbase I1" of the generator.

3. The Euclidean distance between generated trajectory
ni” » and real trajectory 7; j, is described as

1,11

> Z””w

w7’ p=1

i 1% s)

4. The boundary condition of the court is described as

Lboundary
||JTlpm LB, |°, nlpm < LBy,

=1o, LBy, <7/, <UB,  (6)
” 1pm UBm” 7Tlpm>U]3ma

where m € {x,y}, LB,, and UB,, are the lower and upper
boundary of the court. We have adopted soft boundary,
i.e., the generated trajectory ”i/, » is allowed a little bit over
the boundary.

G. IMPLEMENTATION DETAILS

Our model is implemented using the TensorFlow deep learn-
ing framework. In the MIL Network, the RNN hidden state
dimension is set to 512 and the NchooseK pooling is carried
out by max pooling. We use the RMSprop optimizer for
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training with a learning rate 0.001 and batch size 2. Each
trajectory is down-sampled by a factor of 10 to reduce training
memory load and accelerate training speed.

In the GAN model, latent variable z uses the 2-dimensional
uniform random distribution. In generator G and discrimina-
tor D, the entry-point part contains a layer of 512-dimensional
fully-connected layer, and the number of the generated entry
point is 1. In the continual-point part, it contains a 100-cell
GRU block and 128-dimensional fully-connected layer. For
obtaining the best accuracy, the GRU block will consider
all trajectory points, including those generated from the
entry-point part. When training GAN, after a large number
of parameter tunings, we use RMSprop optimizer like the
MIL Network, the learning rate is set to 0.001, but the batch
size is changed to 50. Since the generator is more difficult
to converge than the discriminator, every time we update
the parameters of the latter once, we must update those
of the former three times. For all fully-connected layers,
we use leaky-ReL. U activation to avoid the gradient-vanishing
problem. To achieve the best performance of GAN, we set
Euclidean loss weight 32.0 and boundary loss weight 1.0 in
the loss term.

IV. EXPERIMENTAL RESULTS

A. DATASET USED FOR EVALUATION

To evaluate our method’s performance, we perform experi-
ment on a dataset from [6], which contains 134 videos of
the NBA 2013-2014 season. These videos are distributed
over 10 half-court offensive tactics and the offensive player
trajectories are also available. The details of this tactic dataset
are given in Table 1.

TABLE 1. Abbreviation and the numbers of videos and key players for
each tactic in the experiments.

tactic abbr. | #video | # key players
2-3 Flex F23 15 3
Elevator EV 11 3
Hawk HK 20 3
Pin-Down PD 9 3
Princeton PT 13 5
Back-Side Pick and Roll RB 15 3
Side-Pick Slip and Pop SP 15 2
Warrior Single WS 13 3
Weave wv 16 5
Wing-Wheel WWwW 7 2

B. PERFORMANCE MEASURE AND EVALUATION
PROTOCOL

Our method requires two parts to verify its effects. One is the
MIL Network, and the other is the GAN.

A simple yet effective accuracy measure is adopted to eval-
uate and compare the performance of different methods with
our MIL Network. Average tactic accuracy, which is abbrevi-
ated as tactic accuracy, first calculates each tactic’s accuracy
and then averages over the accuracy of all tactics. Similar to
the average tactic accuracy, the average key player accuracy,
which is abbreviated as key player accuracy, is obtained by
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first calculating key player accuracy of each tactic and then
averaging over all tactic key player accuracy.

The evaluation protocol in the experiments is 5-fold cross-
validation. Due to the small size of the dataset, average tactic
accuracy and key player accuracy are computed multiple
times for each hyperparameter value to further reduce metric
variations caused by random initialization.

In using GAN to augment the data, we use Euclidean
distance of (x, y) coordinate (ED) to calculate the similarity
between the augmented trajectory and the referenced trajec-
tory. However, the augmented trajectory should be similar to
the referenced trajectory but not precisely the same (i.e., ED
is small yet not 0). We will use a visualization tool to check
the quality of the augmented trajectory. As for selecting the
best weight, we adopt the same protocol as the one in MIL
Network, i.e., using 5-fold cross-validation for verification.

C. COMPARISON WITH THE STATE-OF-THE-ART
METHODS

Four different methods are compared. The first one is learn-
ing the spatial-temporal template by unsupervised Gaussian
mixture model [6]. The second one is the same as the first one
except that the ground-truth tactic labels are provided to train
the Gaussian mixture model. The third one adopts multiple-
instance-learning mi-SVM with handcrafted spatial-temporal
features named motion-intensity-map (MIM), where the
feature dimension is set to 1040. The fourth one is
our method, called RNN-tCAM-miNet+GTRCGAN, whose
overall structure is described in Figure 2, where the feature
dimension is 512.

TABLE 2. Performance comparison of four methods in both tactic
recognition accuracy and key player detection accuracy.

method tactic accuracy | key player accuracy
unsupervised GMM [6] 0.8550 -
supervised GMM [6] 0.8867 -
MIM + mi-SVM [1] 0.8933 0.7143
RNN-tCAM-miNet + GTRCGAN 0.9846 0.76395

Table 2 illustrates the results of tactic recognition accu-
racy and key player detection accuracy on different meth-
ods. Unsupervised and supervised GMM models are not
able to provide key player results. The tactic accuracy of
unsupervised GMM is 0.8550, and that of supervised GMM
is 0.8867. The method using mi-SVM reaches tactic accu-
racy of 0.8933 with key player accuracy of 0.7143, serving
as a baseline of supervised methods.! The proposed model
achieves tactic accuracy of 0.9846 with key player accuracy
of 0.76395. Our method substantially improves tactic accu-
racy by 9.13% and key player accuracy by 4.965% compared
to the mi-SVM model. From the quantitative results, our
deep neural network model outperforms conventional SVM
models with fewer heuristic parameters and a lower feature
dimension.

IThe accuracy here is different from the result in [1]. Because in [1],

the accuracy is executed only once and chooses the best result. Here, it is
the average value obtained after repeated executions.
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D. ABLATION STUDIES

Table 3 reports our method’s ablation studies with other popu-
lar group-aggregation methods and handcrafted features with
miNet. The first competing method MIM + miNet replaces
the RNN auto-encoder in our model with handcrafted feature
MIM and obtains tactic accuracy of 0.8868 with key player
accuracy of 0.6100. Our method improves tactic accuracy by
9.78% and key player accuracy by 15.395%, which confirms
that the end-to-end neural network provides better features
than the handcrafted MIM. The second competing method is
called RNN-LastStep-Net, where our temporal global aver-
age pooling layer is replaced with the last step of RNN
auto-encoder achieves tactic accuracy of 0.9489 and key
player accuracy of 0.7173. Our method improves tactic accu-
racy by 3.57% and key player accuracy by 4.665%, which
results from replacing the last step pooling with temporal
global average pooling. The third method RNN-CAM-Net
uses the global average pooling as the aggregate layer on
every single player, which removes a “NchooseK” aggre-
gation layer, resulting in tactic accuracy of 0.9443 and key
player accuracy of 0.6311. Our method improves tactic accu-
racy by 4.03% and key player accuracy by 13.285%. The
large improvement in key player accuracy proves the effec-
tiveness of the proposed NchooseK layer. The fourth com-
peting method is RNN-GMP-Net, which replaces temporal
global average pooling layer with global maximum pooling
(GMP), obtaining tactic accuracy of 0.8263 and key player
accuracy of 0.7137. The proposed method improves tactic
accuracy by 15.83% and key player accuracy by 5.025%.
The significant improvement in tactic accuracy results from
tCAM which considers the whole trajectory time interval
while GMP refers to a time step with maximum value. The
fifth competing method is RNN-tCAM-miNet, which only
uses real trajectory in model training, obtaining tactic accu-
racy of 0.98135 and key player accuracy of 0.70585. The
proposed method improves tactic accuracy by 0.325% and
key player accuracy by 5.81%. The improvement between
the fifth and proposed methods proves the effectiveness of
using GAN augmented data in training complex models.
The reason that GAN only improves accuracy on key player
detection is that in MIL tactic can classified true even if
the key instance is not selected. GAN greatly increases the
discriminativity of key players and reduces the chance of
non-key players subgroup being selected as the key instance.
Without GAN augmented data, RNN-tCAM-miNet can
still recognize correct tactic but the rate of detecting
wrong key instance increases. As a result, GAN has lit-
tle effect on tactic accuracy. From the ablation study,
we know that RNN is a powerful feature extraction
tool. But to get RNN maximum capability, our design
NchooseK and tCAM layer that allows tactic information
to be properly backpropagated into RNN. GAN provides
more role-player trajectory information that allows RNN-
tCAM-miNet to predict trajectories of key players more
precisely.
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TABLE 3. Performance of different ablative methods.

Name RNN Auto-encoder | NchooseK | GAP | mi-Net | GAN tactic accuracy | key player accuracy
MIM + miNet X X X v P 0.8868 0.6100
RNN-LastStep-Net v v X v X 0.9489 0.7173
RNN-CAM-Net [13] v X v v X 0.9443 0.6311
RNN-GMP-Net v v X v X 0.8263 0.7137
RNN-tCAM-miNet v v v v X 0.98135 0.70585
RNN-tCAM-miNet + GTRCGAN v v v v v 0.9846 0.76395

TABLE 4. Accuracy per tactic in RNN-tCAM-miNet + GTRCGAN model.

tactic | tactic accuracy | key player accuracy
F23 1.0000 0.9200
EV 0.9250 0.6100
HK 0.9375 0.9800
PD 1.0000 1.0000
PT 1.0000 1.0000
RB 1.0000 0.3600
SP 1.0000 0.7200
WS 0.9833 0.33995
wv 1.0000 1.0000
WwWwW 1.0000 0.7100

Y_pred: F23, Y_gt: F23 key instance [pred] key instance [gt]

Tl

F23-002(test) rir3r5 rir3r5

—_—rl — T2 —_— 3 r4 [}

FIGURE 5. Correct tactic classification and key player detection. The left
column shows a total of 5 offensive players with a tactic
prediction(Y_pred) versus the ground truth(Y_gt) at the top of the court.
The middle column shows key players from model prediction. The right
column shows key players from expert-labeled ground truth. The legend
on the bottom is the color annotation of role (r1-r5).

E. VISUALIZATION

To analyze the impact of our model on each tactic thoroughly,
we demonstrate the accuracy per tactic in Table 4. For tactical
accuracy, the difference between each other is small, and
all tactics have an accuracy rate of more than 90%. Our
model has a relatively large difference between tactics in
key player accuracy, which ranges from the lowest 33% to
100%. The reason for this difference is that although the MIL
finds consistent instance for each tactic, but in some tactics
the instance found is not a key players instance defined by
experts. To explain this phenomenon intuitively, we design a
visualization tool for illustration.

Figure 5 shows the result on video F23-002, which is clas-
sified as a correct tactic with correct key player detection. We
notice that tactic accuracy is higher than key player accuracy
in every model. After a thorough examination, errors can be
separated into two categories. The first one is a wrong tactic
classification. As shown in Figure 6, column (a) displays
the trajectories of five offensive players. Column (b) plots
the ground truth key instance labeled by professionals, and
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key instance [gt]

key instance [pred]

Y _pred: F23, Y_gt: HK

4
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—

(b~ ©

HK-039(test) =

HK-041(train) rir3rs

H—

_r1 —n2 —13 3 5 [rirars

(a) (b) (c)

F23-001(train)

FIGURE 6. Failure case: Wrong tactic classification. Column (a) shows a
total of 5 offensive players with a tactic prediction(Y_pred) versus the
ground truth(Y_gt) at the top of the court. Column (b) shows ground truth
key players of test video (top) versus key players of reference video from
the same tactic (bottom). Column (c) shows predicted key players of test
video (top) versus key players of reference video from misclassified tactic
(bottom).

Y_pred: EV, Y_gt: EV key instance [pred] key instance [gt]

EV-018(test) r2r3r5 rir2r3

Y

—_—rl —_— 2 -_—r3 r4 5

FIGURE 7. Failure case: Correct tactic classification but with wrong
instance detection. The left column show a total of 5 offensive players
with a tactic prediction(Y_pred) versus the ground truth(Y_gt) at the top
of the court. The middle column shows key players from model prediction.
The right column shows key players from expert-labeled ground truth.
The legend on the bottom is the color annotation of role (r7-r5).

player 4 (yellow) on a HK-039 has a very different trajectory
compared to the lower part of column (b). This long trajectory
also makes another instance r2r3r4 (role 2, role 3, and role 4)
at the upper part of column (c) looks like the positive instance
of tactic F23 at the lower part of column (c).

The second category is a correct tactic classification with
a wrong instance detection. As displayed in Fig. 7, video
EV-018 is correctly predicted as tactic EV. However, instead
of detecting the correct positive instance r1r2r3 at the mid-
dle column, the proposed system chooses another instance
r2r3r5. This is due to that our features sometimes can-
not separate non-key players from the key players, because
non-key players may also have regular trajectories. Even
humans cannot distinguish key players from non-key players

VOLUME 9, 2021
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FIGURE 8. Similarity visualization on template learning by spatial-temporal clustering [6].

without extra information (e.g. basketball trajectory or player
action). This semantic gap typically cannot be solved in
weakly-supervised approaches.

More Classification results are shown on our website.

F. QUALITY OF GAN-AUGMENTED TRAJECTORY

The original size of a basketball court in our test image is
348 x 326, and for a GAN started with the random initializa-
tion, root mean squared error (RMSE) is set about 126 pix-
els. After the process of hyperparameter tuning, RMSE will
drop to 23 pixels. Figure 8 shows a comparison between
GAN augmented trajectories and the template generated from
spatial-temporal clustering [6]. We can see that the GAN
augmented data does fall within the permitted range defined
by the template.

V. CONCLUSION

Group activity recognition is a difficult but strongly
demanded topic. In this paper, based on the concept of
key-player-based tactic classification, we propose an end-to-
end trainable neural network to automatically learn players’
dynamic features. To overcome pace variations of players’
trajectories, global average pooling (GAP) is applied. GAP
also reveals an activation map on the time axis of each key
players’ trajectories, which allows experts to study the tempo-
ral pattern of each key players’ subgroup. By Adopting deep
neural networks, our approach significantly increases both
tactic and key player accuracy without prerequisite knowl-
edge on the basketball field, which generalizes the system to
other group activation recognition applications. Furthermore,
to solve the problem of insufficient raw data, we also design
a GAN that can generate group tactical behavior as aug-
mented data. Like Key-Player-Based group activity recogni-
tion Network, our GTRCGAN can also be used to simulate

Zhitps://sites.google.com/view/ieee-access-2021/
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the behavior of other group activities. In the future, we will
evaluate our model on other applications and datasets such as
those of surveillance or different group sports.
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