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ABSTRACT This paper presents a vehicle speed planning system called the energy-optimal deceleration
planning system (EDPS), which aims to maximize energy recuperation of regenerative braking of connected
and autonomous electrified vehicles. A recuperation energy-optimal speed profile is computed based on
the impending deceleration requirements for turning or stopping at an intersection. This is computed to
maximize the regenerative braking energy while satisfying the physical limits of an electrified powertrain.
To obtain smooth optimal deceleration speed profiles, optimal deceleration commands are determined by
a parameterized polynomial-based deceleration model that is obtained by regression analyses with real
vehicle driving test data. The design parameters are dependent on preview information such as residual
time and distance as well as target speed. The key design parameter is deceleration time, which determines
the deceleration speed profile to satisfy the residual time and distance constraints as well as the target
speed requirement. The time-varying bounds of deceleration commands corresponding to the physical limits
of the powertrain are deduced from realistic deceleration test driving. For validation and comparisons of
the EDPS with different preview distances, driving simulation tests with a virtual road environment and
vehicle-to-infrastructure connectivity are presented. It is shown that the longer preview distance in the
EDPS, the more energy-recuperation. In comparison with driver-in-the-loop simulation tests, EDPS-based
autonomous driving shows improvements in energy recuperation and reduction in trip time.

INDEX TERMS Eco-driving, optimal speed planning, optimal control, dynamic programming, energy-
efficient regenerative braking, electrified vehicles, connected and autonomous vehicles.

I. INTRODUCTION
In recent years, battery electric vehicles (BEVs) have become
prevalent as they improve air quality in urban areas. In addi-
tion to BEVs, hybrid electric vehicles (HEVs), plug-in hybrid
electric vehicles (PHEVs), and fuel-cell electric vehicles
(FCEVs) are the most popular electrified vehicles powered
by dual power sources—an engine and an electric motor—
for vehicle traction. For vehicle electrification, various new
hardware and software developments have been studied in
order to reduce greenhouse gas emissions (ecological driving)
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and improve fuel economy (economic driving). The readers
are referred to existing research monographs [2]–[4] and
references therein for the technical details and history of
development of electrified vehicles.

Energy-efficient or eco-driving technologies can improve
the vehicle energy-efficiency for electrified vehicles dur-
ing traction and have synergistic effects when incorporated
with connected and autonomous vehicle (CAV) technol-
ogy [5]–[8]. Electrified vehicles can generate energy-efficient
speed or acceleration profiles by exploiting the look-ahead
information obtained from a high-precision map and connec-
tivity via a vehicle-to-everything (V2X) communication net-
work. Moreover, they can be employed to obtain an optimal
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energy management system or eco-friendly adaptive cruise
control (Eco-ACC) [9]. Generally, the use of energy-efficient
speed planning or Eco-ACC that utilizes the preceding fore-
cast tends to require that acceleration or cruise conditions
be maintained while minimizing deceleration or braking; in
addition, those optimal schemes aim mainly to find optimal
input sets on the entire route [10], [11].

However, traffic light information is non-linearly linked
with future driving circumstances such as traffic congestion
and cut-in/out motions of neighboring vehicles. Therefore,
traffic events during real driving degrade the energy effi-
ciency of optimal solutions considering the entire driving
route. Such events may even make a solution invalid owing to
violations of traffic regulations. In [12], the author proposed a
vehicle trajectory planning algorithm called the eco-approach
and departure (EAD) system, which utilized the information
of incoming signals, and it was shown that the EAD system
was effective for fuel saving and emission reduction at signal-
ized intersections.With the use of real-time SPaT information
at signalized intersections, static optimization problems were
formulated to generate a vehicle speed trajectory using the
parametric optimization of piece-wise trigonometric-linear
functions [5] and mixed-integer linear programming [13].

The use of eco-friendly ADAS (Eco-ADAS) to enhance
energy efficiency has also been extensively investigated
[14], [15]. It is necessary to develop an advanced driver assis-
tance system (ADAS) in order to provide practical energy
savings as a semi-autonomous driving concept that can be
regarded as Level 2 or 3 autonomous driving, even though
CAV technology is expected to provide a progressive perspec-
tive in the future. For example, accelerations are made based
on the intention of the driver, and when the Eco-ADAS rec-
ognizes deceleration events such as turns or red/yellow traffic
lights, which explicitly indicate upcoming speed-reduction
requirements, the Eco-ADAS can provide energy-efficient
deceleration or braking strategies.

To improve energy recovery benefits from deceleration
events occurring at irregular but predictable intervals, this
paper proposes an energy-optimal deceleration planning sys-
tem to maximize regenerative energy when the vehicle
approaches an upcoming deceleration event. The preview
information that can be obtained from CAV technology is
employed to decide predictive deceleration parameters such
as traffic light phase transition, target speed, and decelera-
tion planning time. For building an optimal control problem
(OCP) to maximize regenerative energy, regenerative power
for electrified powertrain with negative sign is designed as
a cost function wherein the physical limits of the electrified
powertrain are explicitly considered.

The proposed EDPS generates a DP-based speed profile
in time domain, while an optimal speed value at each node
is computed in backward and a time step is used to deter-
mine the distance and slope in the spatial domain. To find
practically feasible speed candidates over the prescribed plan-
ning horizon, state constraints are dynamically updated by
considering the road load and the deceleration preference.

For determination of deceleration commands containing
vehicular deceleration features and driving circumstance
information, a practical deceleration model is designed to
generate a smooth deceleration profile for which deceleration
time is a design variable determined by an optimal search.

To show that the proposed method maximizes energy recu-
peration performance for connected and automated electri-
fied vehicles, a virtual driving environment is established.
The enhancement of energy recovery potential using pre-
view traffic light information is validated in the virtual
urban road environment. Various data pre-processing meth-
ods are described to effectively utilize the look-ahead infor-
mation for an upcoming traffic light, and the energy recovery
and dynamic performances are comparatively analyzed by
varying preview distances, which correspond to locations
that receive the preview information in advance. Moreover,
the EDPS employing the predictive driving circumstances,
including the upcoming traffic light information, is compared
to human drivers recognizing traffic lights with their bare
eyes. For comparison tests between the EDPS and human
drivers, a driving kit set was installed, which implements
realistic driving on the virtual urban road environment with
46 traffic lights. The EDPS is implemented on a virtual road
with virtual infrastructure, and 10 human drivers operate the
driving kit themselves in the same driving conditions. The test
results are compared in terms of accumulated energy recovery
and a total driving time. The comparison of results indicate
that EDPS has the ability to improve the energy recovery
performance and reduce the total trip time.

The main contributions of this paper are summarized as
follows:
• We present an optimal control problem to find an
energy-optimal speed profile maximizing the recuper-
ated energy obtained from electrified vehicles. For
planning a desired speed profile for upcoming events,
predictions of geographic conditions and signal timing
are necessary. In the present study, preview informa-
tion available via V2X technology is used to anticipate
driving conditions for a partial route with an upcoming
deceleration event, and it is integrated into the optimal
control problem.

• To obtain smooth optimal deceleration speed profiles,
a parameterized model is used for deceleration com-
mands. The parameters are dependent on preview infor-
mation such as residual time and distance and target
speed. The key design parameter is deceleration time,
which determines the deceleration speed profile to sat-
isfy the residual time and distance constraints, as well
as the target speed requirement. This parameterized
energy-optimal speed planning strategy is particularly
useful for reducing the computation time because it does
not require any state or input quantization, which is the
main difference from existing dynamic programming
approaches to energy-optimal speed planning.

• Instead of imposing numeric values for maximum and
minimum deceleration bounds, we use experimental
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data of real vehicle driving tests for various deceleration
scenarios to determine the upper and lower bounds of
the deceleration time determining the features of decel-
eration speed profiles such as peak deceleration and
smoothness. Using this approach to set the bounds of
deceleration commands makes the proposed parameter-
ized speed planning strategy more practical compared
with other optimal control approaches.

• To demonstrate the effectiveness of the proposed
method, energy recovery performances with various pre-
view distances are compared with the driving results of
human drivers in virtual driving tests. The comparisons
show that the EDPS decreases the total trip time by
3% ∼ 10% and increases energy-regeneration effi-
ciency by 16% ∼ 130%, depending on the preview
distances.

The paper is organized as follows: Section II presents
an optimal control problem that devises a speed planning
strategy maximizing the regenerative braking performance
for energy recuperation. Section III presents a practical
parameterized decelerationmodel in which the design param-
eter is determined by solving an OCP that incorporates pre-
view information and physical deceleration limits. Section IV
describes a setup of the virtual urban driving test and presents
analyses of the proposed EDPS employing different preview
distances and comparisons of the energy recuperation perfor-
mance between the proposed EDPS and human drivers under
braking events. Section V summarizes the main features and
contributions of this study.

FIGURE 1. Schematic representation of vehicle electrification
architecture: Pk denotes the location of an electric machine, and if an
electric machine is located on Pk , it is referred to as Pk -type
electrification. Depending on the locations of electric machines and the
combination of power sources, the powertrain model needs to be
adjusted in order to reflect changes. FG stands for final gear.

II. PROBLEM FORMULATION FOR EDPS
For model-based optimal control, this paper considers longi-
tudinal vehicle dynamics of braking and powertrain dynamics
of P2-type classified in a vehicle electrification architecture,
as shown in Fig. 1. To derive the optimal deceleration input
generating a speed trajectory to maximize energy regener-
ation within a deceleration event, EDPS is designed with
a DP framework in the time domain. The DP framework
assumes that initial and final speeds, remaining distance, and
remaining time are available within a predefined distance

FIGURE 2. Inputs and outputs of the proposed EDPS for generating a
vehicle speed profile that maximizes energy recuperation of regenerative
braking.

when approaching a deceleration event. Fig. 2 shows the
inputs and outputs of the proposed EDPS, where vi0 is a
current speed of the vehicle, vf 0 is a required speed at the
end of the planning, dRes is a remaining braking-distance, and
TReq is a time required for deceleration, which is equal to a
planning time of EDPS.

A. OPTIMAL CONTROL PROBLEM FOR ENERGY
RECUPERATION
For an OCP formulation, an objective function to be min-
imized for maximizing energy recuperation in EDPS is
given by

J =
∫ tf

ti
PRgn(v (t) , ad (t) , ρ (d (t))) dt, (1)

where PRgn (·) is a systematized regenerative power defined
as FRgn (·) v (t), ad (t) is a deceleration input to be designed,
ti and tf are initial and final setting times for the computation
of total costs, and ρ (d (t)) is a slope information logged
for distance d(t) in the spatial domain. It can be explicitly
rewritten in terms of the triplet (v, d, ad ) as the product of
regenerative braking force induced by an electric motor and
vehicle speed:

PRgn(v, ρ(d), ad ) = FRgn (v, ρ(d), ad ) v. (2)

The deceleration planning problem to maximize energy
regeneration can be designed to generate an optimal speed
trajectory v∗ (t), while finding an acceleration input trajectory
a∗d (t) over a fixed speed-planning time interval ti ≤ t ≤ tf
that minimizes the energy-recuperation performance criterion
given in (1). Note that the smaller the negative value of J ,
the greater is the degree of energy recuperation obtained by
regenerative braking.

B. ENERGY-RECUPERATION MODEL
The objective of EDPS is to determine the speed profile
upon deceleration that maximizes the resulting regenerative
braking energy. To accomplish this objective, effective decel-
eration forces have to be determined in order to contribute
to the regenerative deceleration. By considering the regen-
erative performance characteristics of the traction motor,
the regenerative-braking force can be restricted as

FRgn = max (FBrk ,FLmt) , (3)

where FRgn ≤ 0 is an energy-regenerative deceleration force
generated by an electric machine (i.e., a traction motor).
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FIGURE 3. The gear ratios and torque limits of a real-world commercial
PHEV using a speed-dependent gear shifting strategy. Owing to
proprietary nature of the technical specifications of the car maker,
the axes values are not specified.

FIGURE 4. Mechanism snapshots of all of force components in uphill, flat
and downhill. In uphill case, FLoad exhibits positive increase and is larger
than FLoad of the flat road, and accordingly, FBrk is reduced and only
FRgn is required for desired deceleration within FLmt . In downhill case,
FLoad exhibits negative increase and is smaller than FLoad of the flat
road, and accordingly, FBrk is increased and in addition to FRgn

(
=FLmt

)
,

the mechanical friction force FFrc is required for the desired braking
performance.

Since this paper considers a P2-type electrified system,
the limited regenerative force of the powertrain, including the
traction motor and transmission system, is expressed as

FLmt (v) =
1
rw
TLmt (v) gi (v) gf , (4)

where rw is the dynamic wheel radius, gi (v) indicates the
gearbox ratio, which is determined by the gear-shift controller
based on the current longitudinal vehicle speed v, as depicted
in Fig. 3a, and gf is the final drive ratio. The torque limits of
the electric motor in generator-mode are determined by the
given motor speed complying with the map given in Fig. 3b,
which is obtained by performing quasi-steady state tests that
can be mathematically represented as

TLmt (v) = f (ωMot (v)) , (5)

where ωMot (v) =
gi(v)gf
Cmrw

v is the motor rotation speed in
RPM, and Cm = 2π/60 is the coefficient to convert RPM
to rad/s. The quasi-steady state model of the motor-torque
limits in rotor speed (5) is used to compute FLmt by (4).
Fig. 4 illustrates that FRgn in the uphill case decreases as the
positive slope increases FLoad , and in the downhill case, FRgn
can be increased by FLoad going through the negative slope.
FRgn ≤ 0 can be given as

FRgn = FBrk − FFrc, (6)

where FBrk ≤ 0 is the deceleration force generated from
deceleration devices and FFrc ≤ 0 is a frictional force gener-
ated by a hydraulic mechanical braking system. The vehicle
braking force FBrk of (9) can be presented as

FBrk = FLoad + FAct , (7)

where FLoad is a road load force and FAct is the inertial force
that can be represented as

FAct = Mad , (8)

where M is the effective vehicle mass, which is the sum of
the curb weight of the vehicle m and the inertia of all of the
rotating devices (e.g., motors and engines), and ad is the net
acceleration (ad > 0) or deceleration (ad ≤ 0) in the longi-
tudinal direction. Then the longitudinal vehicle dynamics on
braking can be written as

Mad = FBrk − FLoad . (9)

Depending on whether the load force can affect energy-
recuperation operation, the road load force FLoad can be
separated into the following two terms:

FLoad = FLoad,α + FLoad,β . (10)

The load forces FLoad,α and FLoad,β are defined as

FLoad,α (v, ρ) = C0 cos (ρ)+ C1v+ C2v2,

FLoad,β (ρ) = Mg sin (ρ) ,

where C0 and C1 are rolling resistance coefficients, and
C2 is an aerodynamic coefficient. Numeric values of these
coefficients are obtained from real vehicle driving tests on
normal road surface conditions. The variables ρ and v are the
road slope and the longitudinal vehicle speed, respectively.
To understand the deceleration force that has an effective
influence on energy recuperation, FBrk can be decomposed
into

FBrk = FLoad,α + FLoad,β + FAct , (11)

where FLoad,α is a load force that is irrelevant to energy
recovery and FLoad,β + FAct comprises deceleration forces
that can contribute to energy recovery. The practical regener-
ative deceleration force for an electrified vehicle is limited by
the generation capability of the electric motor. The feasible
regenerative braking force also depends on the powertrain
configuration of the electrified vehicle.

C. DYNAMIC PROGRAMMING FRAMEWORK
For speed planning that maximizes energy recuperation,
consider the following discrete-time OCP:

min
ad (k)∈A

N−1∑
k=0

PRgn(v(k), ad (k), ρ (d(k)))

s. t. v (k + 1) = v(k)+ ad (k)1t,

d (k + 1) = d(k)+ v(k)1t, (12)
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where 1t is a sampling-time-interval and d(k) is a distance
updated by the determination of v(k). For an abuse of nota-
tion, the notation v(k) is used for v(k1t). The same notation
is used for all time-dependent variables. The constraint setA
is represented by the following inequalities:

dmin(k) ≤ d(k) ≤ dmax(k), (13)

vmin(k) ≤ v(k) ≤ vmax(k), (14)

amin(k) ≤ ad (k) ≤ amax(k). (15)

The lower and upper bounds for speed and deceleration
of the set A are not fixed but are time-varying or state-
dependent. They are redesigned to integrate varying road load
effects and to provide practically feasible operation ranges.

To obtain the solution of the OCP (12), the Bellman opti-
mality equation for the optimal cost-to-go function Vk is
given by

Vk (x(k)) = min
ad (k)∈A

{C(x(k), ad (k))+ Vk+1 (x(k + 1))} ,

(16)

where the state variable is x(k) = (d(k), v(k)), and the stage-
cost is C(x(k), ad (k)) = PRgn(v(k), ad (k), ρ(d(k))) for k =
N−1, . . . , 0. The terminal condition is given byVN (x (N )) =
PRgn(v(N ), 0, ρ (d (N ))).

D. COMPUTATION OF TRAJECTORY CANDIDATES
The system equation for EDPS is computed and updated in
the time domain, and the system input to optimize regen-
erative energy is also determined in the time domain. The
representative deceleration events caused by traffic lights are
suitable for computation in the time domain because the
traffic signal phase and timing (SPaT) restricts the target
deceleration time to approach an upcoming traffic light loca-
tion. However, because road slope information that dominates
road load force is stored in metric form in the spatial domain,
optimization in the time domain for utilizing road slope
information requires an additional computation method.
A distance in the time domain can be determined using a
speed and a specified sampling time step. As shown in Fig. 5,
an upcoming deceleration event is given within a prescribed
remaining distance, and the entire computation node is given
as the integer

N =
⌊
TReq
1t

⌋
, (17)

where TReq = tf − ti is a remaining time for attaining the
target deceleration. When the EDPS generates speed candi-
dates within a speed constraint of (14), the speed candidates
determine both distance and slope candidates in a series of
consecutive time steps, and the specified slope candidates are
given by

ρ1 (v1(k)1t) , . . . , ρl−1 (vl−1(k)1t) , ρl (vl(k)1t) , (18)

where l is the total number of candidates. In addition, the opti-
mal speed v∗(k) determined at each time step is used to update

FIGURE 5. Schematic illustration of the EDPS computation process
performed in time and spatial domains: At each time step, the speed
profile candidates are determined. From selected speed profile
candidates, one can also determine the distance or position profile
candidates and then compute the corresponding road slope at time steps
over the planning horizon.

the remaining distance in a backward computation

d(k) = d (k + 1)− v∗(k)1t, (19)

where d(k) is the remaining distance updated by the optimal
speed at time k , and d (N ) = dRes denoted as the remaining
distance initially given to EDPS and k = 0, 1, . . . ,N − 1.
Fig. 5 shows a schematic for backward computation of the
slope candidates and updates of the remaining distances.

E. DYNAMIC STATE CONSTRAINTS
To find a set of practically feasible speed candidates at a
computation node, the speed constraints in (14) need to be
dynamically updated by considering the deceleration induced
by the road load force, the smooth deceleration for driv-
ing preference, and the remaining deceleration distance. The
speed constraints change as the road load forces vary for
different driving environments and situations. In the road load
force model of (10), the reference speed profile is designed
as the decreasing function of time that complies with the
given total deceleration distance requirement. For dynamic
speed constraints, the monotonically decreasing linear
function with the two end points vi0 and vf 0 is adjusted in
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FIGURE 6. Illustration to build a reference speed profile. The solid line as
a monotonically decreasing affine function consisting of two distinct end
points vi0 and vf 0 is adjusted to a dashed line by considering the given
remaining distance. v1a is a new point determined by the adjustment.

order to satisfy the deceleration distance requirement:

vref (k) =
1

N − 1

((
vf 0 − v1a

)
k +

(
v1aN − vf 0

))
. (20)

As illustrated in Fig. 6, the adjusted initial speed consider-
ing the remaining distance is given by

v1a =
2dRes −

(
vi0 + vf 0 (N − 1)

)
1t

N1t
. (21)

The speed change induced by the road load force depend-
ing on the reference speed profile is represented by

vLoad (k + 1) = vLoad (k)−
FLoad

(
vref (k), ρref (k)

)
M

1t,

(22)

where ρref (k) = ρ(1t
∑k

j=0 vref (j)) is a slope at time step k .
The speed variation determined by (22) is used to update the
upper bound of (14) as follows:

vf 0 ≤ v(k) ≤ vLoad(k). (23)

In addition to the road load effects, the speed constraint
of (23) needs to be dynamically adjusted by comparing the
reference distance computed by vref with the remaining dis-
tance determined by v∗ at each time step. A distance factor
comparing the two distances at time k is defined as

β(k) =
dref (k + 1)
d (k + 1)

, (24)

where dref is a reference distance that is computed as

dref (k) = dref (k + 1)− vref (k)1t. (25)

This distance factor is used to determine the speed range at
each time step k as follows:

vf(k) ≤ v(k) ≤ vi(k), (26)

where the upper and lower bounds are respectively given by

vf (k) = max
(
vf 0, vf 0β(k)

)
,

vi(k) = min (vLoad (k), vLoad (k)β(k)) , (27)

which are used to determine the distance range as

df(k) ≤ d(k) ≤ di(k), (28)

where the upper and lower bounds df (k) and di (k)
are obtained by vf (k), vi (k) and the way of distance
update in (25).

III. PRACTICAL DESIGN OF DECELERATION COMMANDS
This section presents a practical design method for param-
eterizing and optimizing deceleration commands. As seen
in Fig. 7, to determine deceleration commands effectively
embracing vehicular deceleration features and driving cir-
cumstance information that is given by a connected com-
munication, a practical deceleration model is designed to
generate smooth deceleration profiles. This planning process
is performed by considering deceleration features of a vehicu-
lar braking system during the required deceleration time. The
deceleration model is presented so that deceleration time can
be used as a design variable for determining a deceleration
profile.

Moreover, the main deceleration parameters are deter-
mined by analyses of the entire deceleration range of a real
vehicle to let the deceleration model include the inherent
deceleration features of the vehicle. To reflect the actual
deceleration capability of a real-world vehicle, real test data
are used to model the actual hardware limits of a market-
available vehicle. Fig. 8 shows test results of 10 real driving
scenarios in which there are 10 different types of braking
cases. Upon the modeling and real-driving tests, the decel-
eration constraints in (15) are replaced by the deceleration-
time constraints that reflect the actual hardware limits of the
regenerative and mechanical friction braking systems in a
commercial vehicle.

A. COMMERCIAL VEHICLE DECELERATION TESTS
Practical deceleration limits and features are obtained by
analyzing deceleration tests of an actual vehicle. To extract
a wide range of deceleration characteristic data, 10 different
braking tests were performed to obtain 10 different types
of vehicle speed profiles ranging from 38.89 m/s (140 kph)
to 0 m/s (0 kph). In the driving tests, the 10 different sets
of braking pedal positions are applied in the commercial
vehicle, which are segmented between 0 (coasting) and 30%,
as shown in Fig. 8. In general, the brake pedal scale (BPS)
of 30 % indicates a rapid deceleration that can be generated
by strongly applying the brake pedal by a human driver. It is
noticed that the speed and deceleration data are obtained
by using a commercial tachometer and the data include the
measurement noise. In this paper, a regression model is used
to fit these measurement data.

Deceleration depending on BPS variations in Fig. 9 shows
a linearly decreasing tendency, except for initial transient
parts for each BPS set point. However, a deceleration vs.
speed scatter plot given in Fig. 10 does not illustrate the
linearly decreasing tendency over increasing speed values,
but a gradual deceleration over the entire speed domain.
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FIGURE 7. The flow chart of decisions and computations in EDPS.

FIGURE 8. Deceleration test data sets obtained from a real-world
commercial PHEV (Hyundai Ioniq) driving test to model deceleration time
depending on various combinations of the initial and target speeds.
Various BPSs were implemented to evaluate diverse deceleration
circumstances.

For instance, the deceleration can reach about −16m/s2

on 50 kph as well as about −20 m/s2 on 140 kph. These
deceleration rates are actually measured from driving exper-
iments with a real commercial vehicle on the normal asphalt

FIGURE 9. Deceleration over BPS for the entire data set.

conditions in a proving test-driving ground of the Hyundai
Motor Company R&D Center. These deceleration ranges are
considered as the boundary values that the real vehicle can
generate on the normal asphalt condition and these extreme
rates of deceleration are used for the constraints of the decel-
eration model in the proposed EDPS.

Even though these deceleration limits are of real driving
tests with a commercial vehicle, such a wide range of deceler-
ation values over each speed segment may result in an unnec-
essary search of deceleration commands in the optimization
process, and may even yield infeasible deceleration at certain
time steps. Unless preview information regarding driving
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FIGURE 10. Deceleration over speed for the entire data set.

circumstances ahead are provided, deceleration commands
that can be selected from a wide range of deceleration values
can be reasonable control variables to cope with instant varia-
tions for uncertain driving circumstances. However, provided
that preview information such as a target speed and, residual
time and distance to the destination are provided, the decel-
eration time is an effective measure to meaningfully adjust a
deceleration profile. As seen in Fig. 8, various deceleration
times shown in x-axis can characterize various speed and
deceleration profiles.

B. POLYNOMIAL-BASED DECELERATION MODEL
To effectively employ preview information provided by con-
nected communication, we propose a smooth deceleration
model incorporating the given preview information and the
current speed. The proposed deceleration model is inspired
from the intelligent driver model proposed in [16]:

ãd (Nd (k), d(k)) = (1−1(k)) ap(k)+1(k)apl(k), (29)

where 1(k) is a distance ratio presented as

1(k) = w
d(k)
dRes

,

where a calibration parameter w ∈ [0, 1] adjusts a decel-
eration tendency, and d(k) is the remaining distance com-
puted in backward way. In (29), ap(k) and apl(k) are defined,
respectively, as

ap(k) = rαθ (k)
[
1− θp(k)

]2
, (30)

apl(k) = rαθl(k)
[
1− θpl (k)

]2
, (31)

where p ∈ R, r = (1+2p)2+
1
p

4p2
, q = p2

(2p+2)(p+2) , ā =
vf (k)−vi(k)
Nd (k)

, and α = ā
q . The values of α and ā respectively

correspond to the maximum and average deceleration with

FIGURE 11. Nominal deceleration and speed profile generated by
parameterized deceleration model.

negative signs. The sequence ratios θ (k), θl(k) are defined by

θ(k) =
k + 1
Nd (k)

, (32)

θl(k) =
N − k
Nd (k)

, (33)

where θ (k), θl(k) ∈ [0, 1] for k = 0, . . . ,N − 1, which
determine the smoothness and width of the deceleration
curve—the larger the deceleration time Nd , the smoother and
wider are the deceleration curves. Fig. 11 shows an example
for ap(k), the deceleration profile between vi0 and vf 0. The
deceleration curve can be designed by determining the decel-
eration time Nd . With this parameterized model for shaping
deceleration profiles, Nd is used as a design or decision
variable to determine the deceleration command. For more
details of the polynomial-based deceleration model, please
refer to Appendix V-A. One can observe that apl(k) flips the
shape of ap(k). ap(k) with the forward sequence ratio denoted
in (32) generates a sufficient deceleration in the early phase as
seen in Fig. 11, whereas apl(k) with the backward sequence
ratio of (33) generates a sufficient deceleration in the late
phase. As scaling ap(k) and apl(k) by 1(k) that indicates a
distance (or position) ratio determined at the current node
with a given residual distance, (29) can provide a sufficient
and smoothing deceleration candidates at each node. From
the deceleration data set of Fig. 8, a collection of deceleration
times for all combinations of initial and final speeds are
illustrated in Fig. 12, where the speed gap between initial and
final speeds exceeds minimum 2m/s. For given initial and
final speeds (vi(k), vf (k)), a candidate set for the deceleration
time Nd (k) at each time step k is computed. The Nd (k) map
determined by (vi(k), vf (k)) provides a realistic constraint set
including deceleration features of the real vehicle.
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FIGURE 12. Three-dimensional test data plot of deceleration time over
initial speed and final speed for 10 data sets.

FIGURE 13. Three-dimensional surface for deceleration time consisting of
initial and final speeds (Circles located on the vertical dashed line are
extracted by the given vi and vf , and are regarded as candidates for Nd ).

Given the speed constraints with the initial and final speed
constraints (vi(k), vf (k)) and the required planning time TReq,
the deceleration profile varies with the deceleration time Nd .
As shown in Fig. 13, the braking test data set in Fig. 12 is
used to compute the envelope of the feasible deceleration time
candidates in terms of vi and vf . The two envelopes of Fig. 13
define the minimum and maximum bounds of Nd (k) for a
pair of vi(k) and vf (k), respectively. For approximating the
boundary surfaces, the following bivariate polynomials are
used:

Nd,min = c0 + c1vi + c2v
2
i + c3v

3
i + c4vf + c5v

2
f + c6v

3
f ,

Nd,max = c0 + c1vi + c2v2i + c3v
3
i + c4vf + c5v

2
f + c6v

3
f ,

(34)

FIGURE 14. Deceleration profile candidates determined by varying
deceleration time candidates and the resulting optimal deceleration
inputs denoted by empty circles on each node (Nd candidate illustrated
as multiple circles generate multiple deceleration profiles as numerous
as Nd candidates).

where the coefficients are determined by linear regression
using the least squares method and the polynomial bases are
chosen by trial and error.

C. PRACTICAL DP FRAMEWORK FOR EDPS
Deceleration time constrained by the boundary surfaces
of (34) can distinguish a deceleration profile from the decel-
eration model of (29), and therefore diverse deceleration
times generate a variety of deceleration profiles. As depicted
in Fig. 13, the deceleration time candidates are selected
for given speed bounds

(
vi(k), vf (k)

)
. Fig. 14 shows the

deceleration profiles corresponding to the deceleration time
candidates. At every computation node, the multiple candi-
dates, Nd,1, Nd,2, . . . ,Nd,l , generate the multiple decelera-
tion profiles in which the multiple deceleration candidates
ãd (Nd (k), d(k)) are determined, as seen in Fig. 14. To find
the optimal input Nd (k) to maximize recuperated energy,
the DP framework to find the acceleration input of (12) is
transformed into the framework to find the deceleration time
Nd , the OCP formulation of EDPS is represented by

min
Nd (k)∈ϒ

N−1∑
k=0

PRgn(v(k), ãd (Nd (k), d(k)), ρ(d(k)))

s. t. v (k + 1) = v(k)+ ãd (k)1t,

d (k + 1) = d(k)+ v(k)1t, (35)

where the constraint set ϒ is defined by the inequality

Nd,min
(
vf (k),vi(k)

)
≤Nd (k)≤Nd,max

(
vf (k),vi(k)

)
, (36)

where Nd,min
(
vi(k), vf (k)

)
and Nd,max

(
vi(k), vf (k)

)
are

determined by (34). To consider the road slope candidates in
order to provide realistic deceleration candidates at each time
step, the deceleration time constraint (36) is modified as

N ≤ Nd (k) ≤ Nd,max
(
vf (k), vi(k)

)
for ρ̄(k) ≥ 0,

Nd,min
(
vf (k), vi(k)

)
≤ Nd (k) ≤ N for ρ̄(k) < 0, (37)
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where ρ̄(k) is the mean of slope candidates (18) at time step k .
The deceleration constraint is given by

ãd
(
Nd,min, d

)
≤ ãd (Nd , d) ≤ ãd

(
Nd,max, d

)
, (38)

where the variables Nd,min, Nd,max, d , and Nd are defined at
time step k .
Using the modified constraints of the deceleration

time (37), ãd (k) can provide mild deceleration candidates
with large Nd candidates when uphill road is expected to
be dominant and provide sharp deceleration candidates with
small Nd candidates when downhill road is expected to be
dominant. Fig. 15 shows how the entire set of deceleration
candidates changes as the distance ratio 1 varies from 1
to 0. For 1(k) = 1, ãd (k) = apl(k) and for 1(k) = 0,
ãd (k) = ap(k).

FIGURE 15. Phased snapshots illustrating the process of selecting an
optimal input from multiple deceleration candidates for the deceleration
model of (29).

D. DETERMINATION OF DECELERATION PARAMETERS
Preview information for upcoming deceleration events
are obtained from map-based geographic information and
connectivity-based traffic signal information. For map-based
deceleration events such as turns and interchange entry/exit,
the prescribed speed limit can be a target reference speed.
However, deceleration events resulting from traffic lights
require an appropriate decision method for determining a
specific target speed because traffic light information is not
related to the location of the ego-vehicle. Traffic light has
its own SPaT which may allow the ego-vehicle to pass
by or halt based on the timing at which the deceleration event
is detected.

Hence, with information of the traffic light ahead, a decel-
eration condition is determined by the residual distance and
a deceleration distance model, which is constructed as

Sd,min =
1
2

(
vf + vi

)
Nd,min,

Sd,max =
1
2

(
vf + vi

)
Nd,max, (39)

where Sd,min and Sd,max are distance boundary surfaces deter-
mined based on the initial and final speeds as well as the
deceleration time boundary surfaces of (34). The deceleration
distance model is an envelope constrained by vi, vf and the
min/max boundary surfaces, as seen in Fig. 16.

FIGURE 16. Two illustrations that describe how to find the target speed.
Provided that the remaining distance (dres) to an upcoming deceleration
event is given, with the deceleration distance model, the distance
candidates (Sd_cand ) varied by target speed candidates (vf _cand ) are
determined. The transition condition selects the final target speed (vf ).

Given the initial speed and residual distance, the modeled
deceleration distance candidates are determined to be closest
to the given residual distance in the deceleration distance
model by the following formulation:

min
Sd∈Sd_cand (vi)

|dres − Sd | . (40)

The set Sd_cand (vi) is a partial set of the envelope
{Sd

(
vi, vf

)
: vf is a feasible target speed at final time step}

that is specified as

Sd_cand =
{
Sd (vi, vf1 ), . . . , Sd (vi, vfn )

}
, (41)

where n is a total number of multiple distance candidates
closest to dres, and the target speed set is presented as

vf _cand =
{
vf1 , . . . , vfn

}
. (42)

Since, the envelope of Fig. 16 satisfies the linearity con-
dition of (34) and (39), with (41), Nd_cand can be linearly
transformed into

Nd_cand =
{
Nd (vi, vf1 ), . . . ,Nd (vi, vfn )

}
. (43)

To determine the deceleration conditions over the traffic
light color for which 0, 1, and 2 denote red, green, and yel-
low, respectively, Ndj , denoted as each component of Nd_cand
in (43), is compared to the current traffic light duration, yel-
low light period, and red light period, expressed as tcur , tyellow,
and tred , respectively. In the flow chart, in order to determine
the deceleration parameters over a current traffic light shown
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FIGURE 17. Flow chart illustrating decision process for deceleration
parameters over current traffic light.

in Fig. 17, deceleration constraints are investigated by consid-
ering the current light color, and then, the transition condition
candidates can be denoted as

Ctrans_cand =
{
Ctrans_cand1 , . . . ,Ctrans_candn

}
.

The final transition condition for a current traffic light is
determined as

Ctrans =
⌊
η
(
Ctrans_cand

)⌉
, (44)

where η represents the median, and b·e denotes rounding to
the nearest integer. Ctrans indicates four types of light phase
transitions, which predict the traffic light status at the start and
end times during deceleration planning, and the light phase
transitions are specified in Table 1. As illustrated in Fig. 16,
each remaining distance induces each target speed set with the
given initial speed and the deceleration distance model. Then,
the decision process in Table 1 determines the planning time
and the target speed denoted as N and vf , respectively.

TABLE 1. Light phase transition at the start and end of deceleration
planning, and the target speed decision for each transition condition.

IV. PHYSICS-BASED VIRTUAL URBAN DRIVING TESTS
To investigate and verify the energy efficiency of the
proposed EDPS, an infrastructure supporting the V2X com-
munication is necessary but is not readily available for exper-
imental tests and fast-track validation. Therefore, the authors

have developed a facility of virtual driving tests in which
a computer running the EDPS algorithm is connected to
a physics-based simulation platform over Ethernet (IEEE
802.3).1 In the simulation platform, one can customize the
test-driving environment parameters such as the road grade
and status of traffic lights.

A. URBAN DRIVING ENVIRONMENT SETUP
The virtual driving route is built based on the KOR-NIER
Route 1 developed by the National Institute of Environmental
Research (NIER) in South Korea. The KOR-NIER Route is
a Korean real driving emission (RDE) route, which is in con-
formance with the trip requirement of the 2nd RDE package
announced by the European Commission [17]. The route for
the virtual environment was trimmed, and not imitated in the
same way, and the traffic SPaT can be arbitrarily set in order
to seamlessly implement tests because the environment was
established to understand the longitudinal dynamics on the
route with the connected infrastructure.

FIGURE 18. Reference route indicating urban section of KOR-NIER
Route 1 for establishing virtual environment.

Fig. 18 shows an urban section of the KOR-NIER Route 1.
The total distance of the route from Yonsei University to
Jichuk Station is 12.4 km, the road grade varies between
−0.22 rad and 0.41 rad along the route, and there are 46 traffic
lights. Each traffic light has a period of 25 s with 12 s for a
green light, 10 s for a red light, and 3 s for a yellow light.

1In realistic driving circumstance, the effects of GPS-based localiza-
tion or I2V communication delay need to be considered and evaluated
whether the localization issue or the communication delay is negligi-
ble or not. A permissible localization error or delay level may affect an
amount of recuperated energy since the external disturbance may change
the residual time and distance and the predicted energy optimal speed val-
ues. Further, for responding excessive localization errors or communication
delays in the realistic driving circumstance, EDPS may need a data monitor-
ing system or a fail-safe system to provide stable energy-optimal deceleration
profiles on real-world driving.
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FIGURE 19. Vehicle model, roads, and hardware equipment that were
developed for the virtual environment.

In the simulation platform, the vehicle is modeled based on
a commercial vehicle, Hyundai Ioniq PHEV. Fig. 19 shows
a thumbnail sketch for the virtual environment used for the
computer-based experiments.

B. CONNECTIVITY SETTING
The virtual driving test is performed on two separate com-
puters. As shown in Fig. 20, the left-side PC (PC 1) includes
components depicted in Fig. 19 for the virtual environment
and generates information, such as the map and traffic SPaT
information as well as the vehicle speed. The right-hand
side PC (PC 2) computes the EDPS algorithm based on the
real-time data given by PC 1. The two PCs are connected
by Ethernet using transmission control protocol and internet
protocol (TCP/IP).

FIGURE 20. Communication configuration between computer for
simulating virtual driving environment and computation device for
computing EDPS.

The experiment scenario is defined as follows: (i) When
the vehicle is within a predefined distance of an upcom-
ing deceleration event, PC 1 transmits the current vehi-
cle speed and virtual environmental information to PC 2;
(ii) PC 2 executes the EDPS with the preview information
given from PC 1, and produces a speed profile on deceleration

to maximize regenerative energy for the upcoming decelera-
tion event; (iii) The speed profile is transmitted to the virtual
environment of PC 1. The speed profile can be utilized as a
speed reference for the deceleration control of actuators such
as the motor or hydraulic braking system. However, for the
virtual test the speed profile is executed only on the vehicle
and it is assumed that the actuator precisely tracks the speed
reference and communication delay is negligible.

For evaluation of the energy-saving potential that can be
achieved by utilizing V2X information such as the traffic
SPaT and GPS information, the virtual driving simulation
does not consider other vehicles ahead on roads, and it is
assumed that the basic driving condition involves cruising at
a specified speed. Hence, the vehicle is normally driven in
cruise mode with a specified speed until the vehicle meets a
deceleration circumstance where the vehicle is within a pre-
defined distance that can receive preview information. When
the distance condition for deceleration is met, EDPS plans
an energy-optimal speed profile for deceleration and executes
the profile for the virtual test. After passing the deceleration
event, the vehicle is controlled to linearly accelerate to the
specified speed value.

C. EDPS IMPLEMENTATION RESULTS
1) EDPS PLANNING RESULTS
The top of Fig. 21 displays a vehicle speed profile driven for
the entire route, and the bottom of Fig. 21 indicates transition
conditions determined by traffic light information transmitted
from PC 1 when the vehicle meets the distance condition
(specifically, when the vehicle is within 150 m from the
upcoming traffic lights). In addition, every speed profile on
deceleration is computed by EDPS in PC 2.

FIGURE 21. Considering a preview distance of 150 m, (Top) the speed
(left y-axis) and slope (right y-axis) profiles for the entire driving route;
(Bottom) the transition condition (Ctrans) and the corresponding traffic
signals for deceleration events induced by traffic lights. The red and green
bars in the bottom indicate their traffic light colors when arriving at the
associated deceleration events.

To show and analyze how the EDPS exploits preview
road information, the top of Fig. 22 gives an enlargement
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FIGURE 22. Speed, slope and force profiles specifying the test results of
the rectangle box in Fig. 21.

of the rectangular blue-dot box in the top of Fig. 21. It cor-
responds to the speed and slope profiles at the locations
5710 ∼ 5870m (distance from the initial position) in which
the grade in the right axis implies that the road slope changes
from weak uphill to weak downhill. The bottom of Fig. 22
shows that the proposed EDPS generates smaller deceleration
forces on the uphill until increasing the deceleration forces
on the downhill while FLmt is determined by considering the
motor generation limit and gear box ratio.

FIGURE 23. Optimal Nd sequence determined on each node while
considering slope information (asterisk: Nd on downhill, circle: Nd on
uphill).

Fig. 23 illustrates an optimal deceleration time profile,
N ∗d (k), where the sampling-time-interval in (35) is set as
1t = 1 s. The resulting profile depends on the slope variation
for the rectangle box case because the deceleration time can-
didates denoted asNd (k) reflect the slope information of each
node, which are constrained by the inequality given in (37).
The decision variable Nd (k) can yield multiple deceleration

FIGURE 24. Overall scenes where a set of deceleration profiles (colorful
lines) are generated by a set of deceleration times, a set of deceleration
candidates (green asterisks) are determined in each node, and the
optimal deceleration (black circle) is selected in each node.

profile candidates throughout the planning duration using the
adapted deceleration model of (29), as illustrated in Fig. 24,
which highlights the overall selection process and results.

Once the distance from a traffic light and its SPaT are
provided, the EDPS determines the transition condition in
terms of the upcoming traffic SPaT given in (44) and Fig. 17
and the target speed is also determined by (42) and Table 1.
In the test case with a preview distance of 150m to upcoming
traffic lights, the total driving time is 639 s for the entire
route of 12.4 km, and the accumulated recuperation energy
is 5.07 × 106 J. To compute the accumulated recuperation
energy, P∗Rgn consisting of optimal solutions of (35) in the
structure of (2) is integrated for each deceleration event, and
each recuperation energy is accumulated for all deceleration
events.

2) PERFORMANCE ANALYSIS
To investigate the EDPS performance relying on the dis-
tance between an ego-vehicle and upcoming traffic lights,
the EDPS performance for various preview distances is
tested. Regarding three preview distances of 200m, 150m
and 100m, each EDPS test is executed. Fig. 25 shows the
locations of vehicles guided by EDPS using three different
preview distances over driving time and the traffic SPaT.
The total driving time is measured as 662 s, 639 s, and 616 s,
respectively. The longer the preview distance, the longer
the deceleration time because at longer preview distance the
vehicle decelerates early and steadily. Hence, the EDPS with
a preview distance of 200m the most frequently experiences
the 3rd transition condition denoted as Ctrans = 3, which
retains the largest energy recovery potential.

A summary of the EDPS performance for each preview
distance is provided in Table 2. The EDPSwith the 100m pre-
view distance themost frequently belongs to the 4th transition
condition which passes upcoming traffic lights without any
deceleration, and the EDPS shows the least energy recov-
ery but arrives at the final destination the most rapidly.
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FIGURE 25. Location profiles guided by EDPS using 200 m, 150 m, and
100 m preview distances over driving time and traffic SPaT.

TABLE 2. Summary of EDPS performance over three different preview
distance cases.

In addition, the 100m test case shows the largest maximum
and mean deceleration to halt the vehicle during the short
planning time given by the frequent transition conditions
of Ctrans = 2.

D. COMPARISON OF EDPS TO HUMAN DRIVERS
In principle, the concept of EDPS can be regarded as a
semi-autonomous braking control that can be classified as
levels 2 or 3. The acceleration is dependent on the decision
of the driver while deceleration is automatically executed
by energy-optimal deceleration control utilizing the look-
ahead information when the deceleration event is detected
beforehand.

To compare the deceleration performance of EDPS and a
human driver in terms of energy recovery and basic deceler-
ation performance, a driving test environment that simulates
driving conditions for a human driver on the virtual route was
established, as seen in Fig. 26. Each human driver operated
the test driving equipment and recognized the traffic lights

FIGURE 26. Illustrative configuration of the virtual driving test setup for
the human-in-the-loop.

depending only on their vision, and the vehicle speed was
limited to 90 km/h for a fair comparison with EDPS. The
recuperated energy for human drivers is computed in a similar
manner to the EDPS energy recovery calculation at each
deceleration case. The regenerative braking forces for human
drivers are also constrained by considering the regeneration
limit, as seen in (3). The total braking forces are determined
by considering brake pedal depths as seen in Fig. 9. The data
set was collected from the test-driving results obtained from
10 human drivers in a virtual environment.

Comparing the test results of EDPS and human drivers,
Fig. 27 and the top of Fig. 29 show that EDPS generally
takes a shorter driving time compared with human drivers.
The average results of 11th and 15th bar in Fig. 29 display
that EDPS results in average time savings of 59 s in the
total driving time. Since, human drivers normally consider
the current traffic light status within their vision range, they
decelerate unnecessarily by responding to the current red
light, even though the traffic light will be changed to green
light within a short time.

Regarding the accumulated energy of all human drivers
(gray thin lines) and the EDPS accumulated energy with
three preview distances, 200m, 150m, and 100m, Fig. 28
indicates that the EDPS energy profiles with the preview
distance of 200m and 150m can acquire more regenerative
energy compared with braking performed by a human driver
because the preview information and the optimization process
increase the regenerative braking force up to the regenerating
limit of the electrified powertrain. The EDPS profile with
preview distance of 100m has a similar scale to that of the
energy profile of human drivers.
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FIGURE 27. Comparisons in location profiles over total driving time and
traffic SPaT: EDPS using three different preview distances (100, 150,
200 m) vs. Human drivers.

FIGURE 28. Comparisons in recuperated energy profiles over trip
distances: EDPS using three different preview distances (100, 150, 200 m)
vs. Human drivers.

The energy recovery results of Fig. 30 and the bottom of
Fig. 29 also exhibit greater benefits of using EDPS compared
with those of human drivers because the recuperated energy
of EDPS is twice as much as that of human drivers when
comparing the 11th bar (the mean result of human drivers)
with 15th bar (the mean result of EDPS). EDPS results in
more recuperated energy than human drivers because it uses
remote communication with exterior sources for taking a fur-
ther preview distance and also to plan a more energy-efficient
speed profile by the optimization scheme using the map
information and traffic SPaT. In particular, the 200m test case
with the longest preview distance indicates the best energy-
recuperation performance. In addition, while the 100m test
case records a shorter driving time than that of human drivers,

FIGURE 29. Comparisons in average recuperated energy and trip time:
EDPS vs. Human drivers.

FIGURE 30. Comparisons in recuperated energy and trip time: EDPS using
three different preview distances (100, 150, 200 m) vs. Human drivers.

the recuperated energy is the least among other EDPS test
cases. This implies that the short preview distance decreases
the opportunity for it to be regenerated owing to the shorter
deceleration time compared with that of the other EDPS tests.
Another interesting observation is that the energy recovery
result for the 100m case is similar to the averaged one for
human drivers. For planning with consideration of energy
consumption aswell as energy recovery, 100mpreviewmight
outperform human drivers in energy-saving, because it can
provide opportunities of reducing the total duration of energy
consumption.

V. CONCLUSION
This paper presents an optimal deceleration planning sys-
tem called EDPS that provides a schedule of deceleration
speed over a period of time when approaching an upcoming
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deceleration event. The objective is to maximize energy
recuperation of regenerative braking and the proposed
EDPS incorporates preview information available from CAV
technology to determine optimal deceleration parameters.
An optimal control problem is formulated with practical
consideration of the energy recuperation model for the
commercial P2-type electrified vehicle. For energy-optimal
regenerative braking strategy, a parameterized deceleration
model is used and a feasible set of deceleration times of
the model are sought to maximize the energy recupera-
tion during the planning time. The deceleration time is the
key design parameter to be determined and is constrained
within an envelope reflecting the realistic deceleration limits
obtained by dedicated real-world driving tests. In addition
to the deceleration command limits, the system state con-
straints are dynamically adjusted by considering the road
load forces and the deceleration preference. For validation
and verification, the proposed EDPS with different preview
distances are tested and compared with human drivers in
a facility of human-in-the-loop driving tests. In simulation
case studies, the EDPS with longer preview distance attains
a better energy-recuperated potential because the energy-
optimal speed profile considering the system recuperation
limit can be continued for a longer duration. In DILS tests,
compared to 10 human drivers, the EDPS achieves a better
energy-recuperation performance and a shorter trip time in
virtual driving tests.

APPENDIX
A. DERIVATION OF A POLYNOMIAL-BASED
DECELERATION MODEL
This section presents the procedures for obtaining the main
parameters of the deceleration model in (30). To find
the parameters, consider a continuous deceleration profile
model as

ap(t) = rαθ (t)
(
1− θp(t)

)2
, (45)

where

θ (t) =
t
td
. (46)

To find the minimum of the deceleration profile model of
(45), the derivative of (45) at t = tM defined as the time at
minimum deceleration is written as

dap
dt

∣∣∣∣
t=tM

=
rα
td

(
1− (2p+ 2) θpM + (2p+ 1) θ2pM

)
= 0, (47)

where θM = θ (tM ). Solving the quadratic equation in (47)
yields the following solution set:

θ
p
M =


1

2p+ 1
for p ≥ 0,

−2p+ 1
2p+ 1

for −0.5 < p < 0.

(48)

In addition, using a(tM ) = α, the parameter r in (45) can
be represented as

r =
1

θM
(
1− θpM

)2 . (49)

With the substitution of (48) into (49), r can be
rewritten as

r =


(1+ 2p)

1
p+2

4p2
for p ≥ 0,

(1+ 2p)
1
p+2

16p2 (1− 2p)
1
p

for −0.5 < p < 0.

Integrating (45),

vf = vi + td rαθ2(t)
(
0.5− 2

θp(t)
p+ 2

+
θ2p(t)
2p+ 2

)
. (50)

Using the definition of (46) at t = td , θ(td ) = 1 and (50)
are arranged as

vf − vi
td
= rαq,

where vf = v(td ) and q is given by

q =
p2

(2p+ 2) (p+ 2)
.

Integrating (50) from ti to td ,

x(td )− x(ti) = vitd + sαrt2d , (51)

where the parameter s is defined as

s =
1
6
−

2
(p+ 2) (p+ 3)

+
1

(2p+ 2) (2p+ 3)
.

The ratio of the average speed during deceleration to the
final speed, φ, is defined as

φ =
vd − vf
vi − vf

, (52)

where another parameter vd is defined as

vd =
x(td )− x(ti)

td
. (53)

By substituting (51) and (53) into (52), and performing
some algebraic calculations, φ is rewritten as

φ =
s
q
=

2p2 + 15p+ 19
3 (p+ 3) (2p+ 3)

. (54)

Because the initial and final vehicle speeds during the plan-
ning time, vi and vf , are given with the determination of an
anticipative upcoming deceleration event, various candidates
of td (Nd in the discrete domain) can make various values
of φ from (52) and (53), which determines the values of p
from (54). With these candidate values of the parameter p,
various deceleration profile candidates can be generated by
the model (45), as shown in Figs. 14 and 15.
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