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ABSTRACT This paper addresses the 3D trajectory tracking problem of a novel underactuated under-
water vehicle with 4 propellers. A 5-DOF kinematic and dynamic model of the quadrotor underwater
vehicle (QUV) is established based on the underwater vehicle and quadrotor unmanned aerial vehicle
movement mechanism. A double-loop control structure is then developed. By constructing a Lyapunov
function for the outer-loop controller, a 5-DOF trajectory tracking error equation and a velocity virtual
control law are obtained. The inner-loop controller is built based on nonsingular integral terminal sliding
mode control (NITSMC). Finally, the effectiveness and robustness of our control algorithm are demon-
strated through numerical simulations. In particular, given a smooth, second-order derivable 3D reference
trajectory, the QUV can quickly track the trajectory and satisfactorily converges in the neighborhood of the
expected value in a finite time via NTISMC, which verifies its superiority compared with the other popular
backstepping control (BSC) method.

INDEX TERMS AUV, trajectory tracking control, nonsingular integral terminal sliding mode control.

I. INTRODUCTION
Autonomous underwater vehicles (AUVs) were developed
more than 60 years ago. AUVs carry power independently,
can perform a wide range of detections, and have been widely
used in marine scientific research, marine engineering opera-
tions, and national defense and military fields. To save energy
consumption and reduce underwater resistance, many AUV
designs are submarine-like [1]–[3]. An AUV is a type of
insufficient DOF underwater vehicle that lacks the ability
to move in the roll, sway and vertical directions. AUVs are
unable to complete the practical applications of wall-sticking
motion and one-DOF depth control. To solve the motion
defects of AUVs and simultaneously reduce their power con-
sumption and water resistance, an AUV imitating a quadrotor
UAV is proposed, which is generally called a QUV. The
quadrotor makes full use of the coupling relationship between
the four propellers to achieve 6-DOF motion. Combining its
propeller design with AUV, a new AUV model [4]–[7] is
obtained. However, due to its underactuated characteristics,
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the modeling and control of QUV are very difficult. The
commonly usedmethod is to adjust the placement angle of the
propellers in order to obtain thrust in other directions, which
changes the characteristics of the underactuated motion of the
quadrotor and only achieves vertical motion without combin-
ing the coupling dynamic equation of theAUV. In fact, the tra-
ditional AUV can easily derive the 5-DOF error equation
by using the simplified coordinate transformation equation
when performing trajectory tracking motion control. How-
ever, due to the particularity of the QUV activity angle, many
mathematical operations are required to derive the QUV’s
5-DOF error equation, which makes it difficult to research
QUV and greatly limits the systematic construction of
the QUV. To solve the abovementioned problems, this paper
proposes a new QUV model in section II by combining
the quadrotor drone model and the kinematic and dynamic
model of AUVs, which decouples the dynamic equation and
achieves a high efficiency in controlling the AUV’s motion.

To verify the correctness of the QUVmodel and the QUV’s
movement capability, 3D trajectory tracking of the QUV is
simulated. The 3D trajectory tracking problem has always
been a critical issue in the control of underwater vehicles.
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Lapierre and Pascoal [8], [9] proposed a nonlinear control
strategy that globally converges trajectory tracking error.
Strict proof-of-error convergence was also proposed. In terms
of control methods, Do and Jie [10] decomposed the desired
trajectory to obtain the virtual control law, and the back-
stepping method was used to design the actual control law.
Repoulias [11] was aimed at 2D trajectory tracking motion,
using the geometric relationship between the expected veloc-
ity in the S-F coordinate system and the coordinates of under-
water vehicles to obtain the expected (angular) velocity with
a controller by solving complex differential equations. Then,
the backsteppingmethodwas used to design the actual control
law. Li et al. [12] extended Repoulias’ method to 3D space
and designed an integral sliding mode controller to solve the
3D trajectory control problem. Jiang et al. [13] designed a
Lyapunov function to stabilize the tracking error and proved
that the derivative of the Lyapunov function is negative def-
inite. The virtual control law simplifies the design of the
actual control law. Bioinspired computing was then utilized
to replace the derivative of the virtual control law, and they
proposed integral sliding mode control. The control methods
of underwater vehicles also include PID control and adaptive
fuzzy control [14], [15], with new methods constantly being
proposed. Additionally, some nonideal situations during tra-
jectory tracking, such as obstacle avoidance or controller
thrust saturation, have also been extensively studied in recent
years [16]–[18].

Although there are various control methods for under-
water vehicles, these methods are based on the traditional
AUV model, and very few studies have been conducted
on 3D trajectory tracking with the QUV model. The roll
angle φ can be ignored when the AUV model performs coor-
dinate transformation, which simplifies the transformation
matrix. However, due to the particularity of QUV motion,
the roll angle φ is nonignorable, which makes the coordi-
nate transformation more complicated. To address this prob-
lem, in Section III, we propose a tracking error model of
QUV and derive a virtual control law. In addition, we also
apply the NITSMC method to stabilize the trajectory track-
ing error. The simulation results show that 3D trajectory
tracking control results with the tracking error model in
this paper are consistent with the actual motion of the
quadrotor. Moreover, it shows that the NITSMC method
is superior to the backstepping control method in terms of
control.

After a careful literature review, we find that some chal-
lenging problems are still worth studying. First, how to con-
trol a 5-DOF QUV is not studied well. Previous studies focus
much attention on the problem of trajectory tracking of tra-
ditional AUV model, while a few researches pay attention to
systematizing QUVmodeling. How to make them follow our
desired trajectory timely and accurately needs to be further
studied. Second, there are many advanced control structures
and approaches at present. However, how to apply them to
control a 5-DOF QUV model proposed in this paper is still
not clear. Thus, it is necessary to study the performance in

controlling a 5-DOF QUV to track a 3D trajectory, for the
aim of enriching the research scope of QUV controllers.

Regarding the above problems, this article proposes an
advanced controller to solve the 3D trajectory tracking prob-
lem for a novel underactuated AUV. The main contributions
of this article are listed as follows.

1) Establishing the kinematic and dynamic model of QUV
and proposing a 5-DOF error equation.

2) A double-loop control systemwith nonsingular integral
terminal sliding mode control is designed for QUV.

3) Simulations of 3D trajectory tracking of QUV verify
the accuracy of the model and the superiority of the
control method.

The remainder of this paper can be described as follows:
Section IV proves the stability of the virtual control law
and proves the stability of NITSMC. The convergent time
of NITSMC is briefly analyzed. In section V, the simulation
of 3D trajectory tracking via the NISTMC method is con-
ducted and compared with the BSC method.

II. MODELING A QUADROTOR UNDERWATER VEHICLE
The design concept of the QUV model draws on the motion
principle of the quadrotor UAV. This section will begin with
coordinate transformation based on the Euler angle and estab-
lish the kinematic model and dynamic model of the QUV
based on underwater vehicle modeling theory by Thor I.
Fossen [19], [20]. Finally, 5-DOF kinematic and dynamic
equations for the motion of the QUV are proposed.

A. THE PRINCIPLE OF QUV MOVEMENT
As shown in Fig. 1, M1, M2, M3, and M4 are four under-
water propellers that generate propelling forces F1, F2, F3,
and F4, respectively. MotorsM2 andM4 on the two diagonals
rotate counterclockwise, and M1 and M3 rotate clockwise to
generate the lift force and the reverse torque. Symmetrical
installation can offset the reverse torque. TheQUVmovement
includes the following parts.

FIGURE 1. Configuration of a quadrotor AUV.

1) ROLL, PITCH AND YAW
By increasing the speed of M3 and M4 by the same amount
while reducing the speed of M1 and M2, the lift behind is
greater than the lift in front, and the QUV pitches forward.
Similarly, by reducing the speed of M1 and M4 by the same
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amount and increasing the speed of M2 and M3 by the same
amount, the QUV will roll to the right; otherwise, by increas-
ing the speed of M1 and M4 while reducing the speed of
M2 and M3, the QUV will roll to the left.

By increasing the speed ofM2 andM4 by the same amount
while reducing the speed of M1 and M3 by the same amount,
the clockwise torque will increase, which makes the QUV
yaw clockwise. At this time, the total lift has not changed, and
there will be no vertical movement. In the same way, it can
achieve counterclockwise horizontal yaw motion.

2) SURGE, SWAY, AND HEAVE
Increasing the speed of all propellers, the QUV will float up
while the sum of lift and buoyancy is greater than gravity;
otherwise, it will dive. Let the QUV perform roll and pitch
motions to produce an angle with the horizontal plane first,
and then increase the speed of all propellers. The component
force of the resultant force on the horizontal plane is utilized
to complete the sway and surge.

The principle of the QUVmovement indicates that the yaw
motion of theQUV is relatively independent and unnecessary.
To simplify the model, the underwater vehicle discussed in
this paper will not consider yaw motion.

B. KINEMATIC MODEL
The earth frame E− ξηζ and underwater vehicle body frame
G − xzy used in this paper are marked as shown in Fig. 1.
The body-frame (angular) velocity ν can be translated into
the inertial (angular) velocity η̇ by the following kinematic
equations [20]

η̇ = J(η)ν (1)

where

J(η) =
[
J1 (η1) 03×3

03×3 J2 (η2)

]
(2)

With η = [η1, η2]> , η1 = [ξ, η, ζ ]>, η2 = [φ, θ, ψ]>,
ν = [ν1, ν2]>, ν1 = [u, v,w]>, ν2 = [p, q, r]>.
ξ, η, and ζ are the positions of surge, sway, and heave

in the earth frame, and φ, θ , and ψ are the roll angle, pitch
angle and yaw angle, respectively. u, v, and w are the linear
velocities of QUV in the X ,Y , and Z directions on the body
frame, and p, q, and r are the angular velocities of the QUV
in the K ,M , and N directions on the body frame.

For linear velocities, the conversion matrix J1 from the
body frame to the earth frame is given by

J1(η1)

=

 cψcθ −sψcφ + cψsφsθ sφsψ + cψsθsφ
sψcθ cφcψ + sφsθsψ −sφcψ + cφsθsψ
−sθ cθsφ cθcφ


(3)

where c, s and t denote cos(·), sin(·) and tan(·) in this paper,
respectively.

For angular velocities, the conversion matrix J2 from the
body frame to the earth frame is given by

J2 (η2) =

 1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (4)

Considering the movement of QUV in reality, φ is required
to satisfy |φ| < π/2, and to avoid singular values, θ is
required to satisfy |θ | < π/2. Substituting formulas (2), (3),
and (4) into formula (1) and ignoring ψ , the kinematic model
with 5 DOFs can be obtained as

ξ̇ = ucθ + vsφsθ + wcφsθ

η̇ = vcφ − wsφ

ζ̇ = −usθ + vcsφ + wcφcθ

φ̇ = p+ qsφtθ

θ̇ = qcφ

(5)

Remark 1: The difference between the 5-DOF equa-
tions of QUV and traditional AUVs is the angle of rota-
tion. QUV relies on the θ angle and the φ angle to
generate the surge and sway motion components, which
makes the kinematic equation more complicated than the
traditional AUV.

C. DYNAMIC MODEL
The 6-DOFmodel of the underwater vehicle can be described
by the following nonlinear kinematic equation.

Mv̇+ C(v)v+ D(v)v+ g(η) = τ (6)

where M = MRB + MA; Cv = CRB + CA; MRB is the
rigid-body system inertia matrix;MA is a 6×6 system inertia
matrix of the added mass terms; CRB is the rigid-body Cori-
olis and centripetal matrix; CA is the added mass coefficient
for underwater vehicles;D is the total hydrodynamic damping
matrix; and the vector τ represents the propulsion forces
and moments. These parameter matrices can be calculated or
estimated as follows:

The notations of SNAME(1950) are used in the dynamic
model of QUV, which are summarized in Tab. 1.

TABLE 1. Notations and descriptions.

1) INERTIA MATRIX
The QUV uses four propellers as the main power, which are
deployed symmetrically on both sides of the body. Due to the
characteristics of this structure, the vehicle is approximately
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symmetrical about the x − y, x − z, and y − z planes in the
body frame.

The inertial matrixM includes the hydrodynamic addmass
matrix MA and the rigid-body system inertia matrix MRB,
which are defined as

MRB =

[
mI3×3 03×3
03×3 Ic

]
(7)

where Ic = diag
(
Ix , Iy, Iz

)
and Ix , Iy, Iz are inertia moments.

MA = − diag
(
Xu̇,Yv̇,Zẇ,Kṗ,Mq̇,Nṙ

)
(8)

2) CORIOLIS AND THE ADDED MASS MATRIX
The Coriolis-centripetal matrix C includes a rigid-body Cori-
olis and centripetal matrix CRB and a hydrodynamic Coriolis
and centripetal matrix CA. When QUV is allowed to move
only at a low speed, CA can simply be described as

CA(ν)

=


0 0 0 0 − Zẇw Yẏv
0 0 0 Zẇw 0 − Xu̇u
0 0 0 − Yv̇v Xu̇u 0
0 − Zẇw Yv̇v 0 − Nṙr Mq̇q

Zẇw 0 − Xu̇u Nṙr 0 − Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(9)

Assuming that the center of gravity coordinates coincide
with the origin of the buoyancy coordinate, the rigid-body
Coriolis and centripetal matrix CRB can simply be repre-
sented as follows:

CRB(ν)

=


0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
−mw 0 mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0


(10)

When the QUV is considered to have three symmetry
planes, only the linear uncoupled damping term should be
considered

3) HYDRODYNAMIC DAMPING MATRIX
The QUV is considered to have three symmetry planes, so to
simplify the modeling, only the linear uncoupled damping
term should be considered.

D(ν) = − diag
{
Xu,Yv,Zw,Kp,Mq,Nr

}
(11)

4) STATIC
The static force g(η) refers to the combined force of the
moment of gravity (W) and buoyancy (B) on the QUV.
In the actual design of an underwater vehicle, the origin of
the body frame is taken as the center of gravity of the vehicle,
and the center of buoyancy is slightly higher than gravity,

i.e., the actual position of the center of gravity in the body
frame is [0, 0, 0], the actual position of the buoyancy center
is [0, 0, zB], and then the static force of the QUV is

g(η) =


−(B−W )sθ
(B−W )cθsφ
−(B−W )cθcφ

zBBsφcθ
zBBsθ
0

 (12)

5) THRUST
The calculation formula of the thrust and thrust moment is as
follows [21]:

τ =
[
0, 0,U1,U2,U3, 0

]> (13)

where U1 is the total lift produced by the four propellers,
which is proportional to the square of the speed under ideal
conditions, and U2 and U3 are the moments produced by the
propellers in the K andM directions of the body frame. Their
specific definition is

U1
U2
U3

 =


CT
(
�2

1 +�
2
2 +�

2
3 +�

2
4

)
−

√
2b
2

CT
(
�2

1 −�2
2
−�3

2
+�4

2
)

−

√
2b
2

CT
(
�1

2
+�2

2
−�3

2
−�4

2
)
 (14)

where �i(i = 1, 2, 3, 4) is the speed of propellers M1-M4,
b is the torque length, and CT is the lift coefficient of the
propeller. It can be seen from formula (14) that increasing�2
and �3 will boost the thrust U2 and the QUV will roll to the
left, which meets the principle of QUV movement.

Substituting formulas (7), (8), (9), (10), (11), (12) and (13)
into formula (6), the simplified 5-DOF dynamic model that
ignored yaw motion can be obtained:

0 = − (m− Xu̇) u̇+ Xuu− (m− Zẇ)qw− sθ (B−W )
0 = − (m− Yv̇) v̇+ Yvv+ (m− Zẇ)pw+ cθsφ(B−W )
U1 = (m− Zẇ) ẇ− Zww− (m− Xu̇)qu+ (m− Yv)pv
−cφcθ (B−W )
U2 = (Ix − Kṗ)ṗ− Kpp+ (Yv̇ − Zẇ)vw+ BzBcθsφ
U3 = (Iy −Mq̇)q̇−Mqq− (Xu̇ − Zẇ)uw+ BzBsθ

(15)

III. 3D TRAJECTORY TRACKING ON A QUADROTOR
UNDERWATER VEHICLE
In this section, 3D trajectory tracking of the QUV is dis-
cussed. In the first part, tracking error equations for the QUV
are established, and the Lyapunov function is designed to
obtain the virtual control law of angular velocity. The sec-
ond part uses NITSMC to gradually converge the tracking
error. The trajectory studied in this paper is time-varying, and
to avoid singular values when reverse solving the expected
angular velocity, the trajectory must be a continuous and
smooth 3D curve that has a second time derivative.
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Note that the subscript d and the subscript e are used to rep-
resent the expected value and the tracking error, respectively.
The superscript B is used to represent the body frame.

A. ESTABLISHMENT OF THE 3D TRJECTORY TRACKING
ERROR EQUATION
The movement mechanism of the QUV is similar to that of a
quadrotor, where the relatively independent yaw angle ψ can
be ignored. Let the coordinates of any point on a continuous
trajectory curve in 3D space be (ξd , ηd , ζd ). Similarly, let
the expected angle be (φd , θd ). The expected velocity is the
time derivative of the coordinates, which can be expressed

as (ξ̇d , η̇d , ζ̇d ). Clearly, wd =
√
ξ̇2d + η̇

2
d + ζ̇

2
d , ud = 0, and

vd = 0. According to the geometric relationship, the desired
angle can be expressed by the desired velocity. Hence,

θd = arctan(ξ̇d/ζ̇d ) and φd = − arctan(η̇d/
√
˙ξ2d +

˙ζ 2d ).
According to the conversion relationship (5) between the

angular velocity and angle, combined with the derivative
of the desired angle, the expression of the desired angular
velocity pd and qd can be listed as

φ̇d =
η̇d (ξ̈d + ζ̈d )− η̈d (ξ̇2d + ζ̇

2
d )√

ξ̇2d + ζ̇
2
d (ξ̇

2
d + η̇

2
d + ζ̇

2
d )

θ̇d =
ξ̈d ζ̇d − ξ̇d ζ̈d

ξ̇2d + ζ̇
2
d

qd =
θ̇d

cφd
pd = φ̇d − qd sφd tθd

(16)

At moment t , the tracking errors of the 5-DOF in the earth
frame are denoted as

ξe = ξ − ξd ηe = η − ηd ζe = ζ − ζd

φe = φ − φd θe = θ − θd

Apparently, the velocity error and angular velocity error in
the earth frame can be written as

η̇e = J(η)ν − Jd (η)νd (17)

To simplify the calculation of the virtual control law, trans-
fer the tracking errors from the earth frame to the body frame ξBeηBe

ζBe

 = J−1
1 (η1)

 ξeηe
ζe

 (18)

Since the transition matrix is a nonsingular orthogonal
matrix, the stabilization is still equivalent after the conver-
sion. Taking the time derivative of tracking errors (18) in the
body frame, we can deduce that ξ̇Beη̇Be
ζ̇Be

 = J̇1
−1

(η1)

 ξeηe
ζe

+ J1−1(η1)

 ξ̇eη̇e
ζ̇e


=

(
φ̇
∂J1−1(η1)

∂φ
+ θ̇

∂J1−1(η1)
∂θ

) ξeηe
ζe



+J1−1(η1)
(
J1(η1)ν1 − J1d (η1)ν1d

)

=

(
φ̇
∂J1−1(η1)

∂φ
+ θ̇

∂J1−1(η1)
∂θ

)
J1(η1)

 ξBeηBe
ζBe


+ν1 − J1−1(η1)J1d (η1)ν1d (19)

Substituting the error transition (18) and angular veloc-
ity (3) into (19), the 5-DOF tracking error equations are
expressed as

ξ̇Be = u+ wdcφd sθe − qcφsφηBe + qc
2φζBe

η̇Be = v− wd (cφd sφcθe − cφsφd )
+(p+ qsφtθ )ζBe + qsφcφξ

B
e

ζ̇Be = w− wd (cφdcφcθe + sφsφd )
+qc2φξBe − (p+ qsφtθ) η

B
e

φ̇e = pe + qsφtθ − qd sφd tθd
θ̇e = qcφ − qdcφd

(20)

Since the pitch angle and roll angle are meaningless in
the body frame, it is unnecessary to transfer the angle to
the body frame. Therefore, the critical situation of trajectory
tracking is letting (20) gradually converge in a finite time.
If ε is defined as the asymptotically stable range in the sense
of Lyapunov, then convergence of the tracking error can be
expressed as

lim
t→∞
|ξBe | < ε lim

t→∞
|ηBe | < ε lim

t→∞
|ζBe | < ε

lim
t→∞
|φe| < ε lim

t→∞
|θe| < ε (21)

Obviously, trajectory tracking errors will be stabilized
when (21) is satisfied.

B. DESIGN OF THE CONTROL LAW BASED ON INTEGRAL
TERMINAL SLIDING MODE
The sliding mode control method and backstepping con-
trol method are commonly used to stabilize the tracking
errors (21). However, designing a sliding mode surface of
the tracking errors will complicate the actual control law.
A simple Lyapunov function proposed by Jiang et al. can
stabilize the tracking errors and simplify the actual control
law.

Setting the Lyapunov function as follows

V =
1
2
(ξBe )

2
+

1
2
(ηBe )

2
+

1
2
(ζBe )

2
+1− cφe + 1− cθe (22)

Taking the time derivative of V and substituting (20) into
the derivative of V yields

V̇ = ξBe ξ̇
B
e + η

B
e η̇

B
e + ζ

B
e ζ̇

B
e + φ̇esφe + θ̇esθe

= ξBe (u+ wdcφd sθe)

+ηBe (v+ wdcφsφd − wdcφd sφcθe)

+ζBe (w− wd sφsφd − wdcφcφdcθe)

+sφe(p− pd + qsφtθ − qd sφd tθd )

+sθe(qcφ − qdcφd )
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= ξBe u+ η
B
e (v+ wdcφsφd (1− cθe))

+ζBe (w− wd sφsφd − wdcφcφdcθe)

+sφe(p− pd + qsφtθ − qd sφd tθd − wdcθeηBe )

+sθe(qcφ − qdcφd + wdcφdξBe ) (23)

Introduce ξBe and ηBe into virtual control laws αp and αq.
Let the derivative of V be negative definite, so the designed
virtual control law can be written as

αw = wd (sφsφd + cφcφdcθe)− k1ζBe
αp = pd − qsφtθ + qd sφd tθd + wdcθeηBe − k2sφe
αq = (qdcφd − wdcφdξBe − k3sθe)/cφ (24)

where k1, k2, k3 > 0 are undesigned control parameters.
When ξBe , η

B
e , ζ

B
e , φe and θe converge to zero, QUV fol-

lows the trajectory. Although we designed the virtual control
law of w, p, q, these variables are not directly controllable.
Therefore, the tracking error stabilization problem is now
transformed into a properly designed actual control law to
track the virtual control law with a high control quality.
The efficiency and robustness of sliding mode control in
nonlinear systems can converge the deviation of the actual
control law and the virtual control law. For a first-order
controlled object, integral sliding mode control with an inte-
gral (ISMC) error is generally used to improve the control
quality. The integral sliding mode can make the system only
have a sliding stage by obtaining a suitable initial position,
which also ensures robustness, but the convergence time
might tend to be infinite. Nonsingular terminal sliding mode
control (NTSMC) can ensure that the system state converges
to zero in a finite amount of time. In addition, its dynamic
performance is better than ordinary slidingmode control [22].
The NITSMCmethod, which combines the two control meth-
ods, can achieve convergence in a limited amount of time and
improve the control quality. The following designs a nonsin-
gular integral terminal sliding surface first. Then, the actual
control law is designed via the NITSMC method, and the
stability and convergence time are analyzed.

To establish the NITSMC model, the error and integral
error between the actual control law and the virtual control
law are defined.

ew1 =
∫ t

0
ew2dt ep1 =

∫ t

0
ep2dt eq1 =

∫ t

0
eq2dt

ew2 = w− αw ep2 = p− αp eq2 = q− αq (25)

The sliding surface of the NITSMC presented in [22] is
defined as

 s1s2
s3

 =

ew1 +

1
β1
ea1/b1w2 sgn(ew2)

ep1 +
1
β2
ea2/b2p2 sgn(ep2)

eq1 +
1
β3
ea3/b3q2 sgn(eq2)

 (26)

where βi, ai, bi are undesigned control parameters, and
βi > 0, ai and bi are both positive odd numbers that satisfy
ai > bi and 1 < ai/bi < 2.

Let the Lyapunov function of NITSMC be Vs = 1
2 s
>s,

where the time derivative of Vs is

V̇s = s>ṡ = s>
(
ė1 +

1
β

a
b
e2a/b−1ė2

)
(27)

To let Vs be negative definite, substituting 5-DOF deriva-
tive equations (15) and (26) into (27), the actual control law
can be defined as

U1 = (m− Zẇ)
(
α̇w − β1

b1
a1
e2−a1/b1w2 − h1 sgn(s1)

)
−Zww− (m− Xu̇)qu+ (m− Yv)pv− (B−W )cφcθ

U2 = (Ix − Kṗ)
(
α̇p − β2

b2
a2
e2−a2/b2p2 − h2 sgn(s2)

)
−Kpp+ (Yv̇ − Zẇ)vw+ BzBcθsφ

U3 = (Iy −Mq̇)
(
α̇q − β3

b3
a3
e2−a3/b3q2 − h3 sgn(s3)

)
−Mqq+ (Zẇ − Xu̇)uw+ BzBsθ (28)

where hi(i = 1, 2, 3) represents the speed at the moving point
of the system approaching the sliding mode switching sur-
face. Setting hi(i = 1, 2, 3) larger can obtain a faster approach
speed but can also more easily cause control chattering. Note
that 0 < 2 − a/b < 1, which limits e(2−a/b)2 from yielding a
singular value.

Furthermore, the derivative of the virtual control law is
introduced in (28), which will cause a derivative explosion
when deriving the virtual control law. This can be avoided by
replacing a low-pass filter with the derivative of the virtual
control law. In the sliding mode control system, an ideal
sliding mode is formed by introducing the sgn(·) function as
an ideal switching function that constantly causes chattering.
By introducing the saturation function sat(·) instead of sgn(·),
chattering can be either avoided or weakened.

The expression of the saturation function sat(·) is

sat(s) =


1 s > 1

s/1 |s| ≤ 1
−1 s < −1

(29)

where 1 is the boundary size of the saturation function.
A schematic diagram of the proposed overall control system
for the QUV is shown in Fig. 2.
Remark 2: As shown in Fig. 2, the QUV control system

can be composed of inner loop control and the outer loop
control. The inner loop control system stabilizes the actual
(angular) velocity to achieve the virtual (angular) velocity
via NITSMC, while the outer loop control reversely solves
the virtual control law according to the given trajectory and
realizes the 3D trajectory tracking of the QUV.

C. STABILITY ANALYSIS
In this section, the stability of the Lyapunov function that
derives the virtual control law, and the actual control law are
proven.

The pivotal condition for the global convergence of the
tracking error is that the derivative of the Lyapunov function
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FIGURE 2. Schematic diagram of the control system for QUV.

that derives the virtual control law is negative definite. Sub-
stituting the virtual control law (24) into (19) yields

V̇ = ξBe u+ η
B
e (v+ wdcφsφd (1− cθe))

−k1
(
ζBe

)2
− k2s2φe − k3s2θe (30)

Considering a certain situation in which |cθe| ≤ 1, we can
deduce that

(
ξBe u+ η

B
e (v+ wdcφsφd (1− cθe))

)
≤ |ξBe u +

ηBe (v+ 2wd ) |. The derivative of V satisfies the following:

V̇ ≤ −k1
(
ζBe

)2
− k2s2φe − k3s2θe+|ξBe u+ η

B
e (v+2wd ) |

(31)

The negative definite condition of (31) is related to the
undetermined formula |ξBe u+ η

B
e (v+ 2wd ) |. The following

proves that this undetermined formula is bounded.
Lemma 1: Jiang, Y The surge velocity u, the sway

velocity v and the heave velocity w are all bounded.
Jiang, Y. designed a Lyapunov function of v to prove that

v is bounded. It can be concluded that u,w are bounded
in the same way. For a given smooth curve, wd is abso-
lutely bounded. Obviously, ξBe and ζBe are also bounded
while setting a reasonable starting position, which reveals the
undetermined formula |ξBe u + η

B
e (v+ 2wd ) | ≤ M, where

M is its upper bound. By selecting the appropriate param-
eters k1, k2, k3 satisfying k1

(
ζBe
)2
+ k2s2φe + k3s2θe ≥ M,

Lyapunov is negative definite. Finally, according to Lyapunov
Stability Theory, the 5-DOF tracking error is asymptotically
convergent.

For the stability of the Lyapunov function (27), substitut-
ing (26) into (27) yields (32), as shown at the bottom of the
next page.

Combined with the actual control law (28),

V̇s =
3∑
i=1

si

{
e2 +

1
βi

ai
bi
eai/bi−12

×
(
− βi

bi
ai
e2−ai/bi2 − hi sgn(si)

)}

=

3∑
i=1

si
1
βi

ai
bi
eai/bi−12

(
− hi sgn(si)

)
= −

3∑
i=1

hi
1
βi

ai
bi
eai/bi−12 |si| = −

3∑
i=1

h′i|si| ≤ 0 (33)

where h′i = hi 1βi
ai
bi
eai/bi−12 (i = 1, 2, 3). Because hi, βi,

ai, bi (i = 1, 2, 3) are all positive numbers, h′i > 0 (i = 1,
2, 3 and e2 6= 0). Therefore, V̇s ≤ 0, which means s ≡ 0
when V̇s ≡ 0. According to the Lasalle Invariance Principle,
we have s → 0 when t → ∞. Then, according to the
Terminal Sliding Model Properties [23], when t → ∞,
e → 0. Finally, the control law satisfies the Lyapunov
stability condition as long as e2 6= 0.

The convergence time of NITSMC is related to its param-
eters. Assume the time from s(0) 6= 0 to s(tr ) = 0 is tr .
Considering a general case where V̇s = sṡ = −h|s|, we have

ṡ = −
h′|s|
s
= ±h′ (34)

The integration of t from 0 to tr can be calculated as∫ s=s(tr )

s=s(0)
ds =

∫ t=tr

t=0
±h′dt (35)

Namely, we can deduce that s (tr )−s(0) = ±h′tr . The time
at which the sliding surface converges to zero can be written
as tr = |s(0)|/h′. Assume that the time from x(tr ) 6= 0 to
x(tr + ts) = 0 is ts. The sliding surface s therefore equals 0,
while t ∈ (tr , ts), which means−βe1 = ėa/b1 . The integration
of t from tr to tr + ts can be calculated as∫ 0

e1(tr )
(−βe1)(−b/a)de1 =

∫ tr+ts

tr
dt (36)

Therefore, the convergent time can be written as

ts =
a

βb/a(a− b)
e1(tr )1−b/a (37)

Remark 3: The control object adopting this controller can
approach the trajectory faster by setting appropriate param-
eters. It can be seen from (37) that if b/a → 1 or β → 0,
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then ts →∞. Therefore, we should not set b/a close to 1 or
β close to 0.

IV. SIMULATION OF TRAJECTORY TRACKING BASED
ON NITSMC
In this section, a series of numerical simulation experiments
will be conducted to verify the effectiveness and feasibil-
ity of the QUV control method. The detailed QUV model
parameters are selected from references [24], [25] [26] and
shown in Table 2. The simulation experiments are divided
into two categories: one is one-dimensional depth control,
and the other is three-dimensional curves composed of sin(.)
and cos(.) functions. The units of all variables in this paper
use SI.

A. DEPTH CONTROL
Compared with traditional AUVs that use vertical rudders to
move in the ζ direction [11], the underwater vehicle designed
in this paper has advantages in terms of depth control. The
traditional submarine underwater vehicle has no independent
actuator in the vertical direction, so it needs the assistance
of the vertical rudder; therefore, the coupling velocity in the
horizontal direction is inevitably generated. In our model,
the four propellers can generate vertical upward or downward
thrust independently, without generating velocity and angular
velocity in other DOFs, which dramatically simplifies the
difficulty in terms of depth control.

The trajectory of the vehicle must be a second-order deriv-
able, so the tanh(·) function is used instead of the step func-
tion. The desired position for the QUV in the ζ direction is
as follows, with the purposes of verifying the universality
and versatility of the controller in the lower dimension and
highlighting the movement advantages of our QUV model.

ζd =


5 tanh (100t) 0 ≤ 5s
5 tanh (100(t − 5))+ 5 5 < t ≤ 10s
−15 tanh (100(t − 10))+ 10 10 < t ≤ 15s
5 tanh (100 (t − 15))− 5 15 < t ≤ 20s

(38)

The initial motion states of QUV are u0 = 0(m/s), v0 =
0(m/s), w0 = 0(m/s), p0 = 0(rad/s) and q0 = 0(rad/s).
The initial position and angle are z0 = 0(m), φ0 = 0(rad)
and θ0 = 0(rad), respectively, and the simulation duration is
800 seconds.

TABLE 2. Model parameters.

Fig. 3 shows the trajectory of the QUV tracking of the
desired position in the ζ direction, and Fig. 4 shows the ζ error
value of the trajectory tracking. From these figures above,
it can be determined that when the desired position changes,
it takes approximately 2 seconds to reach the given position
and then remain stable. In fact, when the output is not limited,
the larger the output value, the shorter the time for the QUV
to reach the desired value. The specific time to stabilize is
related to the actual output of the QUV. In general, depth
control is rapid and accurate.

B. HELIX CURVE TRACKING
This section demonstrates the efficacy and precision of
NITSMC in a representative helix curve 3D trajectory. More-
over, in this experiment the control method is compared with
the backstepping method to reveal the former’s advantages.

ξd = 10 sin(0.01t)
ηd = 10 cos(0.01t)
ζd = 0.3t

(39)

The initial motion states of QUV are u0 = 0(m/s), v0 =
0(m/s), w0 = 0(m/s), p0 = 0(rad/s) and q0 = 0(rad/s).
The initial position and angle are ξ0 = 0(m) η0 = 8(m) ζ0 =
0(m) φ0 = 0(rad) and θ0 = 0.3(rad), respectively, and the
simulation duration is 800 seconds.

Fig. 5 is the 3D helix curve trajectory of the QUV, where
the black line is the desired trajectory, the blue line is the
actual trajectory of the QUV with NITSMC, and the red line
is the actual trajectory of the QUVwith backstepping control.

Fig. 6 illustrates the projections of the actual and prede-
fined desired QUV trajectory in the three directions of ξ , η,
and ζ . Apparently, both BSC and NITSMC can successfully

V̇s = s1

{
ew2 +

1
β1

a1
b1
ea1/b1−1w2 (ẇ− α̇w)

}
+ s2

{
ep2 +

1
β2

a2
b2
ea2/b2−1p2 (ṗ− α̇p)

}
+ s3

{
eq2 +

1
β3

a3
b3
ea3/b3−1q2 (q̇− α̇q)

}
= s1

{
ew2 +

1
β1

a1
b1
ea1/b1−1w2 ×

( 1
m− Zẇ

(
Zww+ (m− Xu̇)qu− (m− Yv)pv+ cφcθ (B−W )+ U1

))}
+s2

{
ep2 +

1
β2

a2
b2
ea2/b2−1p2 ×

( 1
Ix − Kṗ

(
Kpp− (Yv̇ + Zẇ)vw− BzBcθsφ + U2

))}
+s3

{
eq2 +

1
β3

a3
b3
ea3/b3−1w2 ×

( 1
Iy −Mq̇

(
Mqq+ (Xu̇ + Zẇ)uw− BzBsθ + U3

))}
(32)
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FIGURE 3. Depth tracking.

FIGURE 4. Depth tracking error.

FIGURE 5. 3D view of the trajectory.

drive QUV to track the desired curve. At the initial moment,
the QUV is right on the desired trajectory in both the ξ
and ζ directions; therefore, it always follows the trajectory
and keeps the error within a small range. However, there is
a large error at the initial moment in the η direction. It is
obvious that QUV with NITSMC is faster at reaching the
trajectory. The convergence times of the η tracking error for
the NITSMC and BSC methods are approximately 100 s
and 120 s, respectively.

Fig. 7 refers to the response curve of the QUV tracking
position error based on each method. After the QUV runs
stably (approximately 100 s), for the control method based on
NITSM, the errors in the 3 directions remain in [−0.28, 0.28],
[−0.07, 0.07] and [0, 0.05], respectively, and for the control
method based on BSC, the errors in the 3 directions remain
in [−0.50, 0.46], [−0.49, 0.46] and [0, 0.17], respectively.

FIGURE 6. Helix curve tracking.

FIGURE 7. Tracking error.

In addition, the error in the ξ direction is slightly larger than
that in the other two directions at the turning point of the
trajectory, which is related to the parameters of the model.

Fig. 8 shows the values of φ and θ and the expected φd
and θd during the trajectory tracking of the vehicle. In the
initial stage, the φ angle drastically changes to a negative
value because the QUV needs to move closer to the expected
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FIGURE 8. φ angle and θ angle tracking.

value in the η direction, forcing the body to rotate around
the X axis of the body frame by a negative angle φ. With
the help of NITSMC, φ changes back to φd and quickly
converges to the expected value and is faster than BSC. For
angle θ , the rapidity of BSC is obviously slower than that
of NITSMC. Throughout the whole tracking process, φmax is
0.324(rad), φmin is −0.324(rad), θmax is 0.329(rad), and
θmin is −0.330(rad), which are all within the small angle
range that the QUV can accept.

C. AGGRESSIVE CURVE TRACKING
We selected another more adventurous tracking trajectory
to test the robustness of the control method. The spatial
trajectory setting is as follow:

ξd = 10 sin(0.02t)
ηd = 8 cos(0.03t)
ζd = 0.3t

(40)

The initial motion states of QUV are u0 = 0(m/s), v0 =
0(m/s), w0 = 0(m/s), p0 = 0(rad/s) and q0 = 0(rad/s).
The initial position and angle are ξ0 = 5(m), η0 = 5(m),
ζ0 = 0(m), φ0 = 0(rad) and θ0 = 0(rad), respectively, and
the simulation duration is 800 seconds.

Fig. 9 is the spatial curve trajectory of the QUV, where the
black line is the desired trajectory, the red line is the actual
trajectory of the QUVwith backstepping control, and the blue
line is the actual trajectory of QUV with NITSMC.

Fig. 10 illustrates the projections of the actual and prede-
fined desired QUV trajectory in the three directions of ξ , η,
and ζ . It can clearly be seen that both control methods can
enforce vehicles to track the predefined trajectorywith a rapid
speed. Due to NITSMC’s advantages, QUV responds quickly,
and its trajectory is closer to the desired trajectory.

Fig. 11 refers to the response curve of the QUV tracking
position error based on each method. In the first 100 s,

FIGURE 9. 3D trajectory.

FIGURE 10. Aggressive curve tracking.

it is obvious that the NITSMC error converges more quickly
than that of BSC. After the QUV runs stably (approximately
100 s), for the control method based on NITSM, the error
in 3 directions remains at [−0.81, 0.83], [−0.31, 0.30] and
[−0.01, 0.43], respectively, and for the control method based
on BSC, the error in 3 directions remains at [−1.04, 1.02],
[−0.34, 0.34] and [0, 0.64], respectively.

Fig. 12 shows the relationship between the angle of the
QUV movement and the desired value. The initial detailed
part of the angle change is shown through a partially
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FIGURE 11. Tracking error.

FIGURE 12. φ angle and θ angle tracking.

enlarged view. It can be observed that the initial φ drops
sharply from 0 to a negative angle. This is because η0 = 5
but ηd0 = 10, so the QUV must rotate a negative angle
around the X axis in the body frame to move in the neg-
ative direction of η. Similarly, with the initial ξ = 5 and
xid0 = 8, the QUV must rotate around the Y axis at
a positive angle to chase the desired value. In the entire
tracking process, φmax is 0.670(rad), φmin is −0.670(rad),
θmax is 0.630(rad), and θmin is −0.635(rad), which are all
close to the limit where the QUV can move.

Regardless of the kind of curve given, theNITSMCmethod
has a shorter convergence time in terms of velocity and
position tracking than the BSCmethod. In general, according
to the simulation results and compared with BSC, we may
safely draw the conclusion that the nonsingular integral
terminal sliding mode method can realize the control of

QUV trajectory tracking in a finite amount of time, with a
high control quality and good robustness.

V. CONCLUSION AND FUTURE WORK
To solve the trajectory tracking control problem of an under-
actuated underwater vehicle with a new structure, this paper
first established a 5-DOF kinematic and dynamic model of
the QUV. Then, a controller with a double-loop structure was
designed. According to three positions and two angle errors in
the earth frame, a Lyapunov function was designed to obtain
the virtual control law of the desired angular velocity αw, αp
and αq. The inner loop controller enables the angle velocity
track to the specified value by designing the non-sigular
integral terminal sliding mode control so that the overall
position of the QUV tracks the desired trajectory. Finally,
through a series of simulation experiments that included
vertical depth control and three-dimensional curve trajectory
with the NITSMC and BSC methods, the effectiveness and
robustness of the control method were verified.

In terms of future work, the controller design part of this
paper does not consider underwater environment interference
or parameter perturbation issues. Thus, the influence of envi-
ronmental resistance will be taken into consideration in our
next stage of work. Furthermore, the model parameters of
the QUV need to be determined accurately via computational
fluid dynamics tools or experiments; however, Nan et al. pro-
posed a new data-driven adaptive predictive control method
to control unknown autonomous underwater vehicles [27]
when the parameters are difficult to determine. Additionally,
the propeller mathematical modeling part is not considered in
this paper, and we ideally assume that the input is unrestricted
without a dead zone. Yang et al. provided an effective method
that considers handling of the actuator’s dead zone [28]. It is
essential to focus on this practical issue.
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