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ABSTRACT This paper proposes a depth from light field (DFLF) method specifically to deal with occlusion
based on the foreground-background separation (FBS). The FBS-based methods infer the disparity maps by
accumulating the binary maps which divide whether each pixel is the foreground or background. Although
there have been widely studied to handle the occlusion problem with the cost-based method, there are
not enough researches to handle the occlusion problem with the FBS-based methods yet. We found that
errors around the occlusion boundary in the resulting disparity maps of the FBS-based methods arise from
the fattened foreground by the light field reprameterization. To avoid fattened foregrounds, the inferred
foregroundmaps in the front regionwith respect to the disparity axis could be utilized in the back region in the
three-dimensional volume construction, which corresponds to the cost volume construction in the cost-based
methods. With the front-to-back scanning manner of the FBS-based method, by successively excluding
inferred foreground maps, errors around occlusion boundary could be effectively reduced in the resulting
disparity maps. With synthetic and real LF images, the proposed method shows reasonable performance
compared to the existing methods and better performance than existing FBS-based methods.

INDEX TERMS Occlusion, depth estimation, foreground-background separation, light field, cost volume.

I. INTRODUCTION
Depth information plays important roles in various computer
vision and image processing applications such as saliency
detection [1]–[4], pose estimation [5]–[7], segmentation
[8], [9], and object detection [10], [11]. To obtain depth
information, various three-dimensional (3-D) imaging tech-
niques [12] had been developed including triangulation-based
(such as light field (LF) camera [13] and stereo camera [14]),
time-of-flight based imaging [12] (such as light detection
and ranging [15]–[17]), and etc. Among them, a LF camera
simultaneously captures four-dimensional (4-D) information
including both two dimensional (2-D) spatial and 2-D angular
information, where depth information is encoded.

In LF image processing, depth from LF (DFLF) is con-
sidered as a mid-level process whose performance directly
influences high-level user interface or applications-related
algorithms [18]. As a mid-level process, various methods
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have been studied to obtain a depth map with high accuracy
from LF image [18]–[20]. However, there are still many
practical problems such as occlusion boundary, camera noise,
low texture, fine structure, and so on [19].

According to a taxonomy of the DFLF [20], the existing
local DFLF methods could be categorized into 9 (3 × 3)
groups with the combination of two criteria: three LF rep-
resentations and three signal processing viewpoints. In view
of the LF representation, the local DFLF methods could
be categorized according to LF representation used for
derivations of the depth information: the epipolar plane
image (EPI)-based methods, the angular patch-based meth-
ods, and the focal stack-based methods. In the signal pro-
cessing viewpoint, according to properties of intermediate
images, there are three groups of the existing DFLF meth-
ods: the cost-basedmethods, the foreground-background sep-
aration (FBS)-based methods, and the depth model-based
methods. These nine categories could be individually
divided into two groups: conventional and learning-based
approaches.
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In the depth from stereo (DFS), which could be considered
as a subset of LF in view of input images, learning-based
approaches has been widely studied and shown the state-
of-the-art performance. With the learning-based approaches,
Žbontar and LeCun [21] proposed a method to learn stereo
matching, which can be considered as a cost-based method.
Concurrently, Dosovitskiy et al. [22] proposed an end-to-end
method for disparity estimation, which can be considered as
a depth model-based method. Recently, Zhang et al. [23]
and Xu and Zhang [24] proposed methods for the DFS
with the learning-based approaches in an end-to-end man-
ner whose pipelines are backboned on those of the conven-
tional DFS approaches. Also, the DFLF using learning-based
approaches show the state-of-the-art performance [25], [26].
Shin et al. [25] proposed the fully-convolutional neural net-
work in the end-to-end manner, which could be considered
as the depth model-based method. Tsai et al. [26] embedded
view selection network using the attention module in an end-
to-end manner based on the conventional DFLF pipelines.
Because the conventional approaches had been sufficiently
studied, it was possible for the learning-based approaches
to achieve the state-of-the-art performance. Although it is
obvious that the research trend is the learning-based approach
for high performance, the conventional approaches are also
important because it is a baseline for network architectures
of the learning-based approaches.

This paper proposes a method using the conventional
approach to handle the occlusion boundary problem in
the framework of foreground-background separation (FBS)-
based methods in the DFLF [27], [28]. Although the practical
problems have been widely dealt with frameworks of the
cost-based and depth model-based methods, those are not
sufficiently dealt with frameworks of the FBS-based meth-
ods. Using the LF reparameterization [29] for every possible
disparity plane with fixed disparity step size, the FBS-based
methods construct a 3-D volume where each 2-D slice is
divided into two regions: foreground and background. As
a local DFLF method, the 3-D volume constructed by the
FBS-based methods corresponds to the cost-volume in the
cost-based methods [20]. Around the occlusion boundary in
resulting disparity map of the FBS-based methods, errors
occurred because background regions are influenced by
the foreground regions. To reduce these errors, using the
front-to-back scanning manner of the FBS-based methods,
the proposed method successively excludes the foreground
information when computing slices in back sides of a given
disparity range. Fig. 1 briefly shows a flow of the foreground
information in the 3-D volume construction with the front-
to-back scanning manner. A disparity skip counting parame-
ter J determines which disparity plane in back side of the 3-D
volume would use the foreground information in front side of
the 3-D volume.

The framework of FBS-based methods was derived from
the optical phenomenon, which is called flipping [30]. With
respect to an in-focused plane, while the objects in the fore-
ground are non-flipped, the objects in the background are

FIGURE 1. A flow of the foreground information in the 3-D volume
construction with the front-to-back scanning manner in the proposed
method. By using the skip counting parameter J , a foreground map of
k − J th plane is utilized for computing foreground maps of kth plane.

flipped. Using the flipping phenomenon in LF images and
the LF reparameterization [29], Lee and Park [27] proposed
a framework for DFLF by accumulating binary maps, which
divide the foreground and background with respect to the
in-focused plane.

While it was possible to derive a hand-crafted feature
for the FBS because the LF has rich information, it is still
challenging to derive a hand-crafted feature for the FBS in the
DFS. Badki et al. [31] recently proposed the FBS for the DFS
using the learning-based approach. If the FBS framework for
the DFS with the conventional approach had been developed,
the FBS for the DFS could have been developed earlier.
In addition, the occlusion problem in DFS [32], monocu-
lar depth estimation [33], and semantic segmentation [34]
are still studied within both conventional and learning-based
approaches. In these methods, performance near occlusion
is not perfect yet. Especially in autonomous driving appli-
cations, to prepare for safety and unexpected circumstances,
we believe that any solution should properly handle the occlu-
sion problem and be explainable for their performance near
the occlusion boundary. In these contexts, a well defined
conventional approach might be not only needed for better
performance within learning-based framework but also help-
ful for explainability with deep learning techniques.

The contribution of this paper is as follows. First, an occlu-
sion handling method in the framework of the FBS-based
method is proposed without additional scene information,
which is different from the cost-based method. Second, with
a given disparity plane, a method converting a given single
2-D image (e.g., binary mask) to 4-D LF image is presented.
We believe that the second contribution can be utilized when
detected features at a certain disparity plane are transferred to
the other disparity plane.

The rest of this paper is organized as follows. In Section II,
the framework of FBS-based methods and occlusion han-
dling approaches in the existing DFLF methods are briefly

103928 VOLUME 9, 2021



J. Y. Lee et al.: Occlusion Handling by Successively Excluding Foregrounds

FIGURE 2. Foreground fattening around occlusion boundary in the FBS [27]. In ydk slices, 3-D volume, and xy slice, the white and black pixels represent
the foreground and background, respectively. In both ydk and xy slice, while GTs show sharp depth discontinuities, the resulting foreground maps by Lee
and Park [27] show that the depth discontinuities are ambiguous due to the foreground fattening.

introduced. In Section III, the proposed method is presented
in detail. In Section IV, the experimental results with syn-
thetic and real images are illustrated and discussed. Finally,
in Section V, the conclusion is given.

II. RELATED WORKS
A. LF REPARAMETERIZATION
With an input light field L0(x, y, u, v) and arbitrary disparity
plane d , the reparameterized LF Ld could be expressed as [29]

Ld (x, y, u, v) = L0(x + ud, y+ vd, u, v), (1)

where (x, y) and (u, v) signifies the spatial and angular coor-
dinates, respectively. The light field reparameterization is
a part of digital refocusing algorithm [13]. By averaging
the reparameterized LF, refocused image could be obtained.
Although the LF reparameterization was derived by moving
virtual focal plane in view of lenslet images, it could be also
interpreted in the subaperture images and EPIs. In view of the
subaperture images (or multi-view images), LF reparameter-
ization could be considered to warp multi-view images with
a certain disparity value at once. In view of EPIs, it could be
considered as EPI shearing, which slopes in EPIs correspond
to certain disparity values.

B. FBS-BASED METHODS
With given disparity range [dmin, dmax] and disparity step
size dstep, a set of quantized disparity planes 5 =

{d1, d2, . . . , dk , . . . , dK } could be pre-defined. The reparam-
eterized LF with a quantized disparity plane Ldk (x, y, u, v)
can be obtained by reparameterizing captured LF image
L0(x, y, u, v) to every possible disparity plane dk . With
Ldk (x, y, u, v), the FBS-based methods construct a 3-D vol-
ume C(x, y, dk ), which corresponds to the cost volume in
view of the cost-based methods. The 3-D volume of the
FBS-based methods is composed of multiple slices, and each

slice is divided into two regions: foreground and background.
Each slice of the initial 3-D volume Cdk (x, y) is computed
by the disparity sign voting which is derived from the opti-
cal phenomenon ‘‘flipping’’ [30]. Then, using the guided
image filtering [35], C(x, y, dk ) is refined to edge-preserving
smoothed 3-D volume C̃(x, y, dk ), which corresponds to the
cost volume filtering in the cost-based methods [36]. In
the FBS-methods, the ideal one-dimensional (1-D) profile,
which corresponds to the cost profile in the cost-based meth-
ods, along disparity plane is a sign function. At every spa-
tial location (x, y), zero crossing points are considered as
the candidates of optimal disparity. With candidates, errors
between ideal sign functions centered at the zero-crossing
points and an edge preserving smoothed 1-D profile C̃x,y(dk )
are computed by the sign function approximation. Among the
candidates, an optimal 1-D profile Ĉx,y(dk ) with a minimal
error is chosen [28]. In the rest of this paper, the nota-
tions of the 3-D volumes for 1-D, 2-D, and 3-D view-
points are used as follows: initial 3-D volume Cx,y(dk ) =
Cdk (x, y) = C(x, y, dk ), edge-preserving smoothed 3-D vol-
ume C̃x,y(dk ) = C̃(x, y, dk ) = C̃(x, y, dk ), and sign func-
tion approximated 3-D volume Ĉx,y(dk ) = Ĉdk (x, y) =
Ĉ(x, y, dk ).

Fig. 2 shows the foreground fattening around the occlusion
boundary in the FBS [27]. The first and second rows repre-
sent the ground truth (GT) and Lee and Park’s method [27],
respectively. With respect to the 3-D volume, the right side
shows a xy slice. On the left side of the 3-D volume, ydk slice
and the resulting disparity map by accumulating 3-D volume
along dk are shown. Compared to the GT, the resulting dispar-
ity map of Lee and Park [27] is fattened around the occlusion
boundary, where red arrows in ydk and xy slices indicate.
The fattened foreground is presented because the foreground
are spread into the angular patch of background by the
LF reparameterization. Thus, by successively excluding the
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foreground map obtained at the front plane along dk when
computing the foreground map at the back plane along dk ,
the fattened foreground could be effectively reduced.

C. OCCLUSION HANDLING IN DFLF
Although there are various DFLF methods, an overview in
this section is focused on the DFLF methods handling the
occlusion. The angular patch& cost-basedmethods [37]–[41]
used additional scene information such as color and/or edge
to make the cost volume itself robust to the occlusion bound-
ary. Chen et al. [37] proposed bilateral consistency met-
ric based on the color information in the angular patch.
Williem et al. [38] used the range kernel of bilateral filter
in the angular patch. Wang et al. [39] used edge informa-
tion to find occlusion boundary and divided the angular
patch into two regions based on a single occlusion model.
Zhu et al. [40] generalized a single occlusion model [39]
to a multiple occlusion model using K -means clustering,
with edge inforamtion as in [39]. Ai et al. [41] proposed a
more suitable cost volume construction method based on the
multiple occlusion model [40]. The focal stack & cost-based
method [42] constructed a single cost volume from multi-
ple partial focal stacks to obtain un-occluded information.
Strecke et al. [42] constructed 4 directed partial focal stacks
to obtain un-occluded focal stack. Similarly, as one of the EPI
& cost-based methods, [43] constructed a single cost volume
from those of multi-orientation EPIs to obtain un-occluded
information. Sheng et al. [43] constructed a single cost vol-
ume from 4 cost volumes, which are constructed by dif-
ferent directional EPIs, to obtain un-occluded information.
As one of the desired approaches in the EPI & cost-based
methods, Schilling et al. [44] proposed an occlusion han-
dling method, which directly integrated into a depth model
in the optimization without additional scene information. As
in Schilling et al.’s method [44], the proposedmethod handles
the occlusion boundary without additional scene information
in the framework of FBS. To make the cost volume itself
robust to the occlusion boundary, the proposed method uses
the information in the cost volume itself.

III. PROPOSED OCCLUSION HANDLING DFLF METHOD
Fig. 3 shows the block diagram of the proposed method.
Based on the framework of the existing FBS-based methods
[27], [28], in occlusion handling FBS method, the dispar-
ity sign voting is modified and the 4-D mask generation
is added to handle occlusion. The foregrounds from dk−J
are considered as occlusions at dk disparity plane, where J
denotes the skip counting parameter. The 4-D foreground
mask Fdkdk−J (x, y, u, v), which is initialized with zero, signifies
the reparameterized 4-D foreground mask into dk using the
foreground map at dk−J . With Fdkdk−J (x, y, u, v), to exclude the
foreground information, the disparity sign voting is modified
comparing to the existing FBS-based method [27].

Algorithm 1 shows a pseudo code for the occlu-
sion handling FBS algorithm. With a given disparity
range [dmin, dmax] and disparity step size dstep, a set of

Algorithm 1 Occlusion Handling FBS Algorithm
Require: L0(x, y, u, v), [dmin, dmax], dstep, J , 5, 8

L0(x, y, u, v): input LF image
[dmin, dmax]: disparity range
dstep: disparity step
J : skip counting parameter
5 = {d1, d2, . . . , dk , . . . , dK }
: a set of quantized disparity planes
j ∈ 8 = {1, 2, . . . , J}
: an initial set for occlusion handling FBS

1: for each j ∈ 8 do
2: k ← j
3: initialize Fdkdk−J (x, y, u, v) with 0
4: while k ≤ K do
5: Ldk (x, y, u, v) = LFreparam(L0(x, y, u, v), dk )
6: Cdk (x, y) = DSV (Ldk (x, y, u, v),F

dk
dk−J (x, y, u, v))

7: C̃dk (x, y) = GF(L0(x, y, uref , vref ),Cdk (x, y))
8: Fdk+Jdk (x, y, u, v) = 4DMaskGen(C̃dk (x, y))
9: k ← k + J

10: end while
11: end for
12: return C̃(x, y, dk ) for all dk

FIGURE 3. Block diagram of the proposed occlusion handling DFLF
method. Based on FBS [27], the 4-D mask generation block is added to
handle the occlusion boundary.

quantized disparity planes for disparity estimation 5 =

{d1, d2, . . . , dk , . . . , dK } is pre-computed. d1 and dK are
equal to dmin and dmax , respectively. dk is computed as dk =
dmin + dstep × (k − 1). With skip counting parameter J ,
an initial set for occlusion handling FBS 8 = {1, 2, . . . , J}
is pre-defined. LFReparam(·, ·), DSV (·, ·), GF(·, ·), and
4DMaskGen(·) are abbreviations of the functions for LF
reparameterization, disparity sign voting, guided image filter,
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FIGURE 4. Intermediate results of the disparity sign voting and edge-preserving smoothing by the proposed occlusion handling
DFLF method and Lee and Park [27]. For visualization, the red box in the lenslet image is enlarged. Whereas Lee and Park [27]
directly inferred Cdk

(x, y ) using Sxu
dk

, Syv
dk

, and δdk
, the proposed method additionally use F

dk
dk−J

whose foreground information is
obtained from dk−J plane. Compared to Lee and Park’s method [27], errors around occlusion boundary are reduced (See three
right-most sub-figures). Red pixels signify errors compared to GT.

and 4-D mask generation, respectively. If the occlusion han-
dling FBS is completed, the edge-preserving smoothed 3-D
volume C̃(x, y, dk ) is returned.

A. DISPARITY SIGN VOTING
The disparity signs Sxudk and Syvdk from xu and yv planes are
obtained using the LF gradients ∂Ldk /∂x, ∂Ldk /∂y, ∂Ldk /∂u,
and ∂Ldk /∂v [30]

Sxudk (x, y, u, v) = sgn
((

∂Ldk
∂x

)(
∂Ldk
∂u

))
, (2)

Syvdk (x, y, u, v) = sgn
((

∂Ldk
∂y

)(
∂Ldk
∂v

))
, (3)

respectively, where sgn(·) signifies the sign function. The
indicator functions of foreground MF

dk (x, y, u, v) and back-
ground MB

dk (x, y, u, v) are computed by the 4-D fore-
ground mask Fdkdk−J (x, y, u, v) and the 4-D background mask

Bdkdk−J (x, y, u, v) = 1−Fdkdk−J (x, y, u, v), respectively, with the
indicator function δdk (x, y, u, v) based on the relaxed Lam-
bertian assumption [30]. The disparity signs are separately
voted for foreground CF

dk (x, y) and background CB
dk (x, y).

With MF
dk and MB

dk , as an intermediate step, the foreground
and background of the disparity sign voting are represented as

CF
dk (x, y) =

∑
u,v(M

F
dk (x, y, u, v)

∑
ω S

ω
dk )

2
∑

u,vM
F
dk (x, y, u, v)

, (4)

CB
dk (x, y) =

∑
u,v(M

B
dk (x, y, u, v)

∑
ω S

ω
dk )

2
∑

u,vM
B
dk (x, y, u, v)

, (5)

respectively, where ω ∈ {xu, yv}. Because two directional
EPIs (xu and yv planes) are combined, the numerator in
(3) and (4) are devided by 2. A slice of the initial 3-D volume

Cdk (x, y) could be obtained by

Cdk (x, y) =

{
CF
dk (x, y), if BWdk−J (x, y) = 1,

CB
dk (x, y), otherwise,

(6)

where the decision (binary) map BWdk−J (x, y) =

Fdkdk−J (x, y, uref , vref ) and (uref , vref ) signifies the coordinates
of the reference view image. Since the reference view image
is always the same whether the LF image is reparameterized
or not, BWdk−J (x, y) could be extracted from Fdkdk−J (x, y, u, v).

That is, Fdkdk−J (x, y, uref , vref ) and Fdk−Jdk−J (x, y, uref , vref ) are
equal to each other because the reference (or center) view
image is not warped by the LF reparameterization. CF

dk (x, y),
CB
dk (x, y), and Cdk (x, y) could have the value between
−1 and 1.

Fig. 4 shows the intermediate results of the disparity
sign voting and edge-preserving smoothing by the proposed
method and Lee and Park [27]. Note that the disparity sign
voting is the same as used in [27] and [28]. While Lee
and Park’s method [27] directly separates the foreground
and background using Sxudk and Syvdk , the proposed method
separated the foreground and background using Sxudk , S

yv
dk , and

Fdkdk−J . B
dk
dk−J , M

F
dk , M

B
dk , and BWdk−J (x, y) could be obtained

from Fdkdk−J . In the mid-top region of Fig. 4, for CF
dk (x, y)

and CB
dk (x, y), the gray pixels represent not-interested region.

The other pixels represent the value of the disparity sign
voting based on gray scale color map with range [−1, 1].
That is, the pixels closer to 1 and −1 are represented as
white and black, respectively. Although the decision map
BWk−J (x, y) is a binary map, for visualization around the
occlusion boundary, it is represented as tri-map, where the
white, black, and gray pixels signify the foreground, back-
ground, and not-interested region. To compare the proposed
method and Lee and Park’s method [27], the red boxes in
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FIGURE 5. Intermediate results of 4-D mask generation by the proposed occlusion handling DFLF method and comparison to input LF
image. In the top-right, a reparameterized LF image and foreground map are overlapped for visualization. The overlapped image shows
that the foreground map generated by the proposed 4-D mask generation are well-aligned with the reparameterized LF image.

C̃dk (x, y) thresholding by 0 are enlarged on the right side of
each figure. The red pixels signify the errors compared to the
GT. Compared to Lee and Park’s method, the errors of the
proposed method are reduced.

B. 4-D MASK GENERATION
With a given edge-preserving smoothed slice C̃dk−J (x, y) of
the 3-D volume, the 2-D foreground mask BWdk−J (x, y) can
be obtained by

BWdk−J (x, y) =

{
1, if C̃dk−J (x, y) > 0,
0, otherwise.

(7)

Algorithm 2 shows a pseudo code of the 4-D mask
generation. To generate the 4-D foreground mask that
is aligned with reparameterized LF image Ldk (x, y, u, v),
the 4-D foreground mask is initialized with the 2-D fore-
ground mask BWdk−J (x, y) for all views. Since the 2-D
mask BWdk−J (x, y) is generated with the reparameterized
LF image Ldk−J (x, y, u, v), all object on the disparity plane
dk−J falls into the same angular patch of Ldk−J (x, y, u, v) in

Algorithm 2 4-D Mask Generation (4DMaskGen)
Require: BWdk−J (x, y)
1: for each (u, v) do
2: Fdk−Jdk−J (x, y, u, v) = BWdk−J (x, y)
3: end for
4: Fdkdk−J (x, y, u, v) = LFreparam(Fdk−Jdk−J (x, y, u, v), dk )

5: return Fdkdk−J (x, y, u, v)

view of lenslet image. Therefore, the initialized 4-D fore-
ground mask Fdk−Jdk−J (x, y, u, v) with BWdk−J (x, y) is aligned
with Ldk−J (x, y, u, v). To reparameterize the initialized 4-D
foreground mask Fdk−Jdk−J (x, y, u, v) to the disparity plane dk ,
the amount of d step × J needs to be reparameterized
in view of the disparity plane dk−J . By reparameterizing
Fdk−Jdk−J (x, y, u, v) to the amount of d step × J , Fdkdk−J (x, y, u, v)

can be obtained. Fdkdk−J (x, y, u, v) is returned and used in the
next step k + J .
Fig. 5 shows the intermediate results of 4-D mask gener-

ation by the proposed occlusion handling DFLF method and
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FIGURE 6. Comparison of resulting disparity maps of the existing methods and the proposed method on the synthetic dataset [48]
(Boxes, Cotton, Backgammon, and Pyramids from the top to bottom rows). (a) Reference view images. (b) GT disparity maps.
(c) EPINET [25]. (d) LFAttNet [26]. (e) SPO-MO [43]. (f) CAE [38]. (g) LF_OCC [39]. (h) OMG [40]. (i) OFSY [42]. (j) FBS-SFA [28]. (k) Ours.

comparison to the lenslet image of the input LF L0(x, y, u, v).
As input images of the disparity sign voting, the repa-
rameterized LF Ldk (x, y, u, v) and 4-D foreground mask
Fdkdk−J (x, y, u, v) are used. An input LF image L0(x, y, u, v) is
shown in form of the subaperture image in the top-left side.
Using L0(x, y, u, v), Ldk (x, y, u, v) is computed as shown in
the top-middle. At the bottom of the Fig. 5, BWdk−J , which
is computed at k − J plane, is used as an input of the 4-D
mask generation. At every viewpoint (u, v), Fdk−Jdk−J (x, y, u, v)
is initialized with BWdk−J . In view of the lenslet image, each
angular patch at (x, y) has the same value as shown in the
cropped image. The 4-D foreground mask Fdkdk−J (x, y, u, v),
which is used for the disparity sign voting at dk plane, is gen-
erated by reparameterizing Fdk−Jdk−J (x, y, u, v) from dk−J to dk
plane. For visualization, in the top-right of Fig. 5, the cropped
images of Ldk (x, y, u, v) and F

dk
dk−J (x, y, u, v) are overlapped

to qualitatively evaluate 4-D mask generation. With a three
channeled color image representation, the cropped image of
Fdkdk−J (x, y, u, v) is inserted into the red channel and that of
Ldk (x, y, u, v) is inserted into the green and blue channels.
Although Fdkdk−J (x, y, u, v) slightly over-covers Ldk (x, y, u, v),
the overlapped image shows a reasonable result. As shown
in Fig. 5, if the true disparity values at certain pixel (x, y) are
known, it is possible to obtain thewell-fitted foregroundmask
comparing to the reparameterized LF. However, the disparity
values are unknown in the estimation step and the optimal J
would be different for each scene and even for each region
in the same scene. Thus, the skip counting parameter J is
introduced for handling occlusion. Although the optimal J
is not applied to every pixel, occlusion could be effectively
handled by just introducing the skip counting parameter in
the proposed method.

The proposed 4-D mask generation method can be utilized
to not only the proposed DFLF method but also the other
applications where masking operation is needed. For exam-
ple, in LF matting [45]–[47], to further analyze light field
image according to the disparity axis, there might be some

FIGURE 7. Comparison to FBS-SFA [28]. The blue pixels signify the region
where the proposed method is better and red pixels signify the region
where FBS-SFA is better. (a) Boxes. (b) Cotton. (c) Backgammon.
(d) Pyramids.

cases that an obtained 4-D LF mask at certain disparity plane
needs to be transferred to the other disparity plane. Although
the existing light field matting methods show solutions for a
single layer, independently of the framework of the proposed
method, the 4-D mask generation might be usefully utilized
in a scenario where an obtained mask needs to be transferred
over disparity axis.

IV. EXPERIMENTAL RESULTS
With the synthetic image dataset [48], the proposed and exist-
ing methods are quantitatively and qualitatively evaluated.
With the real image dataset [49], the proposed method and
existing methods are qualitatively compared. In the synthetic
dataset, each scene has x × y = 512× 512 spatial resolution
and u × v = 9 × 9 angular resolution. In the real dataset,
each scene has x × y = 541 × 375 spatial resolution and
u× v = 14×14 angular resolution. For experiments with the
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TABLE 1. Performance evaluation on synthetic image dataset [48].

FIGURE 8. Comparison of resulting disparity maps of the existing methods and the proposed method in the real dataset [49]. (a) Reference
view images. (b) Lytro [50]. (c) SPO [51]. (d) CAE [38], (e) LF_OCC [39], (f) OMG [40], (g) FBS-SFA [28], (h) Ours.

real dataset, angular resolution is cropped to u × v = 9 × 9
with respect to the center pixel. The proposed method is
implemented in MATLAB on a PC with a 4.1 GHz CPU and
16 GB of memory. For fair comparison of the time complex-
ity, although the proposedmethod could be implementedwith
parallel processing tool, the proposed method is implemented
without parallel processing tool. Averaged runtimes of the
proposed method for a single slice with the synthetic dataset
and real dataset are 3.347 and 2.607 seconds, respectively.
With the same environment, averaged run-times of FBS-SFA
is measured as 2.110 and 1.592 seconds, respectively. The
skip counting parameter J and d step for the experiments on
the synthetic images are set to 7 and 0.02, respectively. Those
on the real images are set to 5 and 0.05, respectively. For run-
times, if the number of quantized disparity planes is 100 levels
for an LF image, the proposed method approximately takes
3.347×100 = 334.7 seconds for computing a single disparity
map from a given LF image.

In the website of 4-D LF benchmark [52], the proposed
method is abbreviated as FBSOCC-SFA. The resulting dis-
parity maps of the other scenes not presented in this paper
can be found at the website [52] in detail.

A. SYNTHETIC IMAGES
Fig. 6 and Table 1 show the qualitative and quantitative
evaluations on the synthetic dataset, respectively. As shown
in Fig. 6, for synthetic dataset, the resulting disparity maps
of FBSOCC-SFA is compared with a fully-convolutional

neural network using epipolar geometry (EPINET) [25],
attention-based view selection network (LFAttNet) [26],
the spinning parallelogram operator using multi-orientation
EPIs (SPO-MO) [43], constrained angular entropy cost
(CAE) [38], occlusion-aware LF depth estimation (LF_OCC)
[39], occlusion model guided antiocclusion (OMG) [40],
occlusion-aware focal stack symmetry (OFSY) [42], and
FBS-based method with the sign function approximation
(FBS-SFA) [28]. Although the results of various methods
are available on 4-D LF benchmark [52], the two methods
among the end-to-end learning-based methods (EPINET and
LFAttNet) and local methods handling occlusion among the
conventional approaches, which are grouped into the EPI &
cost-based (SPO-MO), angular patch & cost-based (CAE,
LF_OCC, and OMG), focal stack & cost-based (OFSY), and
angular patch & FBS-based (FBS-SFA) methods, are chosen
for the comparison. Qualitatively, the proposedmethod shows
reasonable performance compared to the existing methods.

In Table 1, the proposedmethod is compared to the existing
methods in terms of bad pixel ratio (BadPix (0.07)), mean
squared error (MSE), discontinuity, and averaged run-time
for images. BadPix (0.07) measures the percentage of error
pixels that are greater than 0.07 compared to the GT dis-
parity map. Discontinuity measures errors around occlusion
boundary with given occlusion boundary mask. The top three
performances are bold-faced for each metric. Although the
proposed method shows somewhat bad performance in terms
of BadPix(0.07) and discontinuity, it shows a reasonable per-
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formance in terms of MSE. Compared to the FBS-SFA [28],
the proposed method shows better performance for three
metrics. Averaged run-times of each algorithm for images are
shown in the last row in Table 1.

Fig. 7 shows comparisons between FBS-SFA [28] and
the proposed method. Fig. 7 is obtained by |FBSOCC-SFA
− GT| − |FBS-SFA − GT|. Blue pixels signify that the
FBSOCC-SFA is better whereas red pixels signify that the
FBS-SFA is better. Figs. 7(a)-(c) show that the blue pixels
are concentrated around relatively large occlusion boundary.
If occlusion boundary is relatively small or occlusion bound-
ary is not presented in a scene such as Fig. 7(d), there are
cases that the red pixels are concentrated. However, overall
quantitative performance of FBSOCC-SFA is improved as
shown in Table 1. If the disparity values for each pixel are
known, it is possible to reparameterize the foreground mask
to true disparity plane. Then, errors like the red pixels could
be also reduced. However, in this paper, our goal is to estimate
the disparity map, which is unknown value. Thus, by simply
introducing the skip counting parameter J , the occlusion
boundary is effectively handled in the proposed method.

B. REAL IMAGES
In Fig. 8, for three scenes from real dataset [49], the resulting
disparity maps of the proposed method is compared with
Lytro [50], the spinning parallolgram operator (SPO) [51],
CAE [38], LF_OCC [39], and OMG [40] whose codes are
publicly available. FBS-SFA [28] is also compared with the
proposed method for evaluating the improvement of perfor-
mance. For each scene, red and green boxes are enlarged
on the bottom side of each scene. Although the GT dispar-
ity maps are not provided, the proposed method shows the
reasonable performance. Especially around occlusion bound-
ary (the enlarged boxes of each scene), compared to the
FBS-SFA [28], the resulting disparity maps of the proposed
method have sharper boundaries than those of FBS-SFA.
Note that some resulting disparity maps of the existing meth-
ods have less contrast due to spiky artifacts.

V. CONCLUSION
In this paper, an occlusion handling method for DFLF based
on FBS is proposed. Based on the observation (foreground
fattening), with the front-to-back scanning manner, the pro-
posed method successively excludes the foreground informa-
tion obtained from (k − J )th step when inferring foreground
map of k th step. For both synthetic and real datasets, the pro-
posed method shows reasonable performance compared to
the existing methods and better performance than the existing
FBS-based methods. Recently, although the methods based
on deep learning have shown better performance than those
based on conventional approaches, we believe that the success
of the methods based on deep learning is supported by suf-
ficient researches of the conventional approaches. Based on
the proposed method, future work will focus on combining
the framework of the proposed method with deep learning
techniques.
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