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ABSTRACT Predictive control has emerged as a promising control method in a variety of technological
fields. Model predictive control, as one of the subdivisions of this control method, has found a growing
number of applications in power electronics andmotor drives. In practical implementations, model predictive
control faces performance degradation of the controlled plant due to its dependency on a model. There are
considerable numbers of review papers that are devoted to the different points of view of predictive control.
However, the existing literature lacks a review study that addresses the solutions for parameter dependency
of the model predictive control method. Recently, model-free predictive control has been used in drives
and power electronics as a solution for dealing with the model-dependency of the model predictive control
method. There are many papers that have used such methods. In this paper, a classification is proposed for
the different implementation types of model-free predictive control or similar methods that address model
parameter uncertainties. Additionally, a comparison between the methods is also presented.

INDEX TERMS Control systems, estimation, inverters, motor drives, power conversion, power electronics,
predictive control.

I. INTRODUCTION
Predictive control has been considered as a part of optimal
control theory since 1960s [1]. The model predictive control
(MPC), a branch of predictive control, has found growing
applications in motor drives and power electronics. MPC
implies the idea of employing amodel of a plant under control
to predict the future behavior of the control system’s out-
put. The prediction provides the capability to solve optimal
control problems for minimizing the tracking error of the
predicted output with respect to a desired reference [2].

During the last two decades, several reviews have been
conducted of the MPC literature from various points of view.
One of the earliest survey studies reviewed MPC theory and
design techniques [3]. A part of that review deals with the
robustness issues, indicating that this has been an impor-
tant topic since the very beginning. Robust MPC theory
and implementation methods are presented and surveyed
in [2], [4]. The theory allows for the systematic handling of
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system uncertainties. The early approach of robust MPC is
based on min–max optimal control problem formulations in
which the controller acts according to the worst-case eval-
uations of the cost function. The constraints of the optimal
control problem must be satisfied for all possible uncertainty
realizations [5]. However, designing the controller for the
worst case may be overly conservative. The nominal per-
formance may have to be compromised in order to achieve
the best possible robustness [6]. Offline MPC has also been
reviewed. It allows the optimization to be carried out offline,
thus reducing the time-consuming calculations, which is one
of the drawbacks of the conventional MPC [7]. Another
review surveys the three decades of development of themodel
predictive control; this paper divides the growth of themethod
into three steps, each belonging to one decade [8].

The application of MPC method in its different forms
is also addressed in the field of drives and power elec-
tronics, including active filters, distributed generation, and
renewable energy, etc. [9]–[12]. In [13], two different MPC
schemes, namely, finite control set (FCS) (direct) and contin-
uous control set (using PWM), are studied and compared by
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implementing the controllers via the explicit form of MPC.
In addition, three strategies for reducing the computational
complexity of the MPC are studied [14]. In [15], a sur-
vey on predictive control methods in power electronics and
drive systems is presented with an informative classification.
It emphasizes that the control system’s performance generally
depends on the accuracy of the plant model. The paper [16]
offers a similar review, including the latest developments,
but it does not address robustness against model parameter
mismatch. The MPC schemes in motor drive applications are
comparatively studied with an emphasis on the control of
medium-voltage induction motors in [17]. In addition, three
different approaches for the predictive current control of per-
manent magnet synchronous (PMS) machines are discussed
in [18]. Another comparative study, regarding the control
objective, is conducted to investigate the FCS model pre-
dictive torque and model predictive current control schemes
of induction motor drives in [19]. Although the effect of
parameter mismatch is studied for both schemes, indicating
that some cases of mismatch lead to instability of the control
system, solutions to improve the robustness against parameter
mismatch are not discussed. Four different schemes of the
FCS model predictive torque control of PMS motors are also
reviewed in [20]. The schemes are compared according to
the results of experimental tests. However, the dependency
of the control system on the accuracy of the model is not
investigated. The review study [21] discusses the application
of MPC in wind turbines. It concludes that there is great
potential to effectively use the vast literature on robust MPC
in wind energy applications.

The theory of model-free predictive control (MFPC) has
emerged in the field of control as an alternative to robust
MPC method to cope specifically with the issues caused by
the model-based nature of MPC [22]. That the performance
of a plant under MPC relies heavily on accurate knowledge
of the model is a well-known fact. Nevertheless, it is quite
challenging to achieve model accuracy in real-world appli-
cations. The challenges are due to two main facts. Firstly,
the model parameters usually vary from their nominal values
during the system operation under the influence of different
factors, including operating point and ambient conditions.
Additionally, the parameters of the model may be unknown
in, for example, plug-and-play applications. Therefore, less-
ening the dependency of the control system on the model is
now an emerging area of research. The theory is based on the
idea of a model-on-demand framework. Instead of estimating
a global model, the input and output data corresponding to a
small neighborhood around the operating point are exploited
to estimate the system dynamics locally and on-demandwhen
the need for a model arises [22]. Unlike the robust MPC
method, the optimization problem in the MFPCmethod is the
same as that in the MPC method. As is extensively reviewed
in the next section, the MFPC method is increasingly applied
to motor drives and power electronic applications. This is
particularly due to the emerging applications in technologies

such as drones, electric vehicles, and wireless power transfer
systems that have widely variable operating points working in
harsh ambient conditions. Many papers investigate different
methods of MFPC of motor drives and power electronic con-
verters. Nevertheless, to the best of the authors’ knowledge,
no review papers or tutorial work is available in the literature
in this field.

This paper first presents the basic formulation and struc-
ture of major MFPC strategies according to a novel com-
prehensive classification and then addresses various methods
of MFPC as applied to motor drives and power electronic
converters. It elaborates on the basic analytical and imple-
mentation aspects of the control methods by introducing a
novel classification. It also describes the methods’ similari-
ties and differences, rather than providing detailed formula-
tions of each method. Of course, space limitations preclude
mentioning all research activities in this area. Nevertheless,
the authors attempt to review many major developments in
the field during the past decade.

The paper is organized as follows. A literature review on
the application of MFPC in power electronics and drives
is presented in section II. Section III concisely outlines the
MPC theory. Section IV presents the principles of MFPC
and a classification of its application in power electronics
and drives; this section builds on the literature review of
Section II. Section V discusses the implementation of three
major MFPC schemes using mathematical equations and
system block diagrams. The section ends with a comparison
between the different schemes. Concluding remarks are given
in section VI, where some unresolved challenges and practi-
cal issues are mentioned.

II. LITERATURE REVIEW
As one of the earliest implementations of the MFPC method
in the field of motor drives, a current control method
is proposed for IPM motors with a simple but effective
structure [23]. The method does not require any prior knowl-
edge of the controlled motor’s parameters. Only one switch-
ing state is actuated by the inverter in each control period
as the method works based on the FCS predictive control.
The variations of the current vector components over a con-
trol period, provided by the corresponding inverter switching
states, are stored in the look-up table. The look-up table must
be continuously updated every time that the switching state
of the inverter changes. The idea is to use the stored input
and output data for predicting the future variations of the
current vector. The key point is that the variations are almost
constant over a short period (e.g., a couple of control periods).
Therefore, the stored data can be used for the predictions of
the next sampling period. In this method, current sampling
is conducted twice per switching interval in order to calcu-
late the current variation. A similar method is adopted for
controlling a three-phase voltage source inverter driving a
three-phase load in [24] and a dual air-gap transverse-flux
permanent magnet brushless motor in [25]. Furthermore,
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themethod is applied to a synchronous reluctancemotor drive
with some improvements in [26]; this method adopts one
current sampling per switching interval.

In the methods discussed above, if a voltage vector is not
applied for a while, its corresponding data in the look-up
table cannot be updated. The old data stored in the look-up
table may no longer be accurate for the predictions due to the
possible change of the operating point, such as the rotation
of the rotor. In some cases, the inaccuracy is so severe that
it results in instability in the control system. A solution is
proposed to overcome this drawback in [27]. In this approach,
if a switching state has not been applied over a predefined
number of sampling periods, it is actuated regardless of which
state is designated by the optimization. However, applying
the non-optimal voltage vectors results in considerable per-
formance deterioration. The same method is also used for
controlling a three-phase AC/DC converter in [28] and a dual
air-gap transverse-flux six-phase permanent magnet machine
in [29]. The method is further improved by utilizing more
synthesized voltage vectors instead of just seven by using
two of the inverter basic voltage vectors in one sampling
period [30], [31]. Although this may lead to a lower torque
ripple and current THD, measuring the current difference
would be challenging in practical implementations. In other
words, the lower the current components’ ripple, the more
difficult it would be to detect the current difference over a
sampling period.

The authors of [32] propose a solution to overcome
the look-up table updating issue in the aforementioned
model-free predictive current control methods. Current vari-
ations corresponding to all of the inverter switching states
are estimated by using data of only the three most recent
sampling periods. As a result, the stagnation of the look-up
table updating problem is resolved by guarantying continuous
updating without actuating any non-optimal switching state
of the inverter. However, the proposed method imposes an
excessive computational burden on the CPU due to the recon-
struction of current variations. The reconstruction results
in 210 possible combinations of three switching states, which
can be gathered together in six different groups. A faster
algorithm for the reconstruction that is based on the voltage
vectors’ group identification is introduced to deal with such
a time-consuming solution [33]. Additionally, an improved
version of the approach described in [33] has been published;
it proposes a method for compensating for the effect of the
rotor movement on the current predictions [34].

Another model-free predictive current control method for
PMS motors is proposed in which a data-driven ultra-local
model of the motor with parametric uncertainties and inverter
nonlinearities is established via input and output data of the
drive system [35]. The method estimates an uncertain term of
the derived model through algebraic parameter identification
techniques. Then, the model is used to calculate reference
voltage vectors in a deadbeat fashion. The reference voltages
are then synthesized using the SVM technique. Hence, the
method needs a voltage modulator. A similar approach is

also used to improve the robustness of the motor drive con-
trol against mechanical parametric uncertainties [36]. This
method adopts an ultra-local model through the input and
output data of the speed loop under parametric uncertainties
and external disturbances. Then, the derived model is used
to generate the torque reference command in a predictive
manner. The ultra-local model is further used as the predic-
tive model to achieve another model-free predictive current
control for PMS motor [37]. The difference between this
method and those previously mentioned is the way in which
the voltage vector is synthesized. The phase andmagnitude of
the reference voltage vector are optimized in a two-sequence
optimization algorithm. The Lagrange interpolation polyno-
mial is used to optimize the phase of the voltage vector, and
the optimum magnitude of the voltage vector is then deter-
mined by minimizing a cost function. Finally, the optimal
voltage vector is synthetized by using three of the inverter
basic voltage vectors. A model-free predictive current control
based on the discrete SVM is proposed to reduce the switch-
ing frequency compared to continuous SVM-based methods;
it does sowhilemaintaining a steady-state performance that is
better than those seen in non-modulator-based methods [38].
The ultra-local model is also utilized to determine a reference
voltage vector based on the principles of deadbeat current
control. The voltage sector containing the reference voltage
vector is divided into nine sub-sectors. Finally, the optimal
voltage vector, which is a combination of three basic voltage
vectors of the sector, is obtained and applied to the inverter.
Furthermore, a two-level cost function is proposed for the
sequence optimization of the selected basic voltage vectors
in the combination. The method is effective in reducing the
inverter’s average switching frequency. The use of observers
such as sliding mode and extended state observers instead
of using the algebraic parameter identification techniques are
also adopted to estimate the uncertain terms [39]–[43].

The measured current variations in previous successive
sampling periods are used to achieve correct predictions
without using the motor parameters [44]–[46]. Unlike the
conventional model-free predictive current control [23], these
methods do not use a look-up table for storing the related data
of all switching configurations. Thus, they do not face the
stagnation problem. Four parameters related to the current
vector variation, two for each component, are continually
estimated online. The current variation (output variation) and
the applied voltage vector (input) data of two consecutive
sampling periods are used for the estimation [44]. It is impor-
tant to filter the estimated values digitally to avoid spikes.
A similar approach is also proposed for model-free predictive
torque control of PMS motors [47], [48] and direct power
control of grid-connected converters [49]. The recursive least
square method is adapted to model-free predictive current
control of synchronous motors as an alternative estimation
technique by using the data from at least two previous sam-
pling periods [45].

MFPC method is adapted to different power electronic
converters [41], [43], [49]–[56]. An improved model-free
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predictive current control of a PWM rectifier is proposed
to reduce the prediction error [56]. To do so, the difference
between the measured current in the present sampling period
and the predicted current at the previous sampling period
for the existing instance is added to the next step prediction
as compensation. The errors are multiplied by a factor that
should be carefully tuned. However, the prediction errors of
the inverter switching configurations differ from one another.
Hence, adding the prediction error related to a switching
configuration to the prediction related to another switching
configuration using a constant gain would not be a proper
solution.

There are some predictive control methods in which,
instead of directly predicting the control variable by using
the MFPC approach, the measurement data is used to correct
prediction errors [57]–[60]. The methods are not, however,
completely model-free. By using a two-degree-of-freedom
control, the robustness of the predictive torque control
of PMS motors is improved via feed-forward compensa-
tion while maintaining a strong reference tracking perfor-
mance [57]. A predictive current control method for PMS
motors is proposed in which the prediction errors of current
components in each sampling period are stored in a look-up
table [58]. The motor’s initial parameters (ideal model) are
used for the predictions. Then in each sampling period,
the difference between measured current components and the
predicted ones are stored in the look-up table as the predic-
tion errors. The look-up table consists of the inverter’s main
switching configurations and the corresponding current com-
ponents’ prediction errors. When a switching configuration is
followed in a sampling period, the provided prediction error
corresponding to that configuration is updated in the look-up
table. The next time the same configuration is applied, the
corresponding error value stored in the look-up table is used
to compensate for the conducted prediction. A proportional
gain is also used to adjust the impact of the compensation. The
same error suppression solution is also applied to predictive
torque control of the surface-mounted PMS motors [59]. The
corrected predicted current components are used in predic-
tions related to the torque calculation. However, this method
is not robust against the mismatch in permanent magnet
flux and winding resistance parameters [60]. Additionally,
two latter methods suffer from the problem of stagnation
of look-up table updating, as previously discussed, when
some of the inverter switching configurations are not actu-
ated for a while [60]. The problem is resolved by using the
prediction error data of two consecutive previous sampling
periods to compensate for the predictions of the next sampling
period [60]. The look-up table is therefore no longer needed in
this method. Two coefficients are estimated in each sampling
period; they can be used to correct the errors related to all of
the inverter voltage vectors. These coefficients are updated
continually in each sampling period.

A variety of solutions for the reduction of model depen-
dency of the predictive control was surveyed in this
section for motor drives and power electronic converters.

Considering the similarities and differences in how they are
implemented, a classification method is proposed in this
paper.

III. PRINCIPLE OF MODEL-BASED PREDICTIVE CONTROL
The basic principles of model-based predictive control are
briefly presented here [1]. The method predicts future per-
formance of the system. An optimal control is then adopted
to force the system to produce the desired performance. The
MPC, which is one of the predictive control methods, makes
use of a model of the plant under control for the predictions.
The model in discrete-time state-space form can be presented
as [1]:

x̂ (k + 1) = Ax (k)+ Bu (k) , (1)

y (k) = Cx (k)+ Du (k) , (2)

where x (k) and x̂ (k + 1) are the system state vectors at the
current and the next instants, respectively. Also, u (k) and
y (k) are input and output vectors, respectively, at the current
instant. A, B, C, and D are the system, input, output, and
disturbance matrices, respectively. An objective function, J ,
which is a function of system states and inputs, is defined to
formulate the system’s desired performance as:

J = f (x (k) , u (k) , . . . , u (k + N )) , (3)

whereN is a positive number known as the prediction horizon
and is the number of future instances over which the control
can predict the system’s performance. The vector u (k + N )
is the system input at the instance k + N . The sequence of
the inputs prior to u (k + N ) is also included in J, as shown
in Fig. 1 [1]. The figure shows the reference and actual states
of the system in addition to the discrete inputs in consecutive
instances from the past up to instance k + N . It can be seen
that the system error decreases as time goes on, and the actual
state gets closer to the reference. Commonly, J includes the
absolute or the square tracking error between a reference and
a predicted value of the system output. The objective function
may include other parts to fulfill non-regulatory desirable
objectives. It is common to define the objective function
as a weighted sum of different objectives. The optimization
problem is to find the inputs such that J is minimized, subject
to the system’s restrictions. The system model presented by
(1) and (2) is used in finding the solution. A general solution
is complicated. A simple solution, however, is to evaluate the
value of J for all possible inputs in each sampling period.
Then, the lowest value of J determines the best input for the
next period. The solution consists of a sequence of optimal
input signals. However, the controller will apply only the first
element of the sequence. Once the selected input is applied to
the system, the system model and the objective function are
updated by using the most recently measured data. Therefore,
the predictive horizon is regarded as a moving window of
instances [1].

As per the descriptions presented above, a functional block
diagram of general model-based predictive control is shown
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FIGURE 1. Working principles of model-based predictive control [1].

FIGURE 2. A functional block diagram of general model-based predictive
control.

in Fig. 2, where the tasks of prediction and optimization are
distinguished. The superscript ‘‘∗’’ is used for the reference
value, whereas a hat symbol indicates predicted or estimated
variables.

IV. PRINCIPLES OF MODEL-FREE PREDICTIVE CONTROL
It is evident from the previous section that the performance
of the MPC algorithm heavily depends on the knowledge of
the system model, i.e., (1) and (2). However, the parameters
of the system usually vary over time. Therefore, a practical
model should be time-varying. However, such amodel cannot
be obtained without excessive computational burden, which
is not desirable in the actual implementation of the control
system. Furthermore, a perfect initial parameter identification
procedure for an unknown plant is also another issue. Mis-
match between the model and the controller parameters may
lead to performance degradation, and even in some cases,
the instability of the control [19].

An alternative approach is to use an on-demand model to
handle the predictions [22]. The basic idea is to store the
system’s performance information in a database and use it
for predicting system dynamics instead of using a constant
model [22]. In fact, the input-output information from a small
neighborhood in the vicinity of the current operating point
is used to predict a local model of the system instead of
estimating a large global model covering the entire operating
range. In some MFPC methods, this data-driven model is
replaced by a look-up table containing the input and output

FIGURE 3. A functional block diagram of general MFPC method.

FIGURE 4. A simple block diagram of Type I MFPC method.

data of the control system. The data-driven model/look-up
table is updated continually during each sample time. It is
then linearized and used in predicting the system’s behavior.
A general block diagram of the control system is shown
in Fig. 3. Here, the ‘‘predicting model’’ block of Fig. 2 is
replaced with ‘‘data-driven predictions’’.

MFPC methods have recently seen increasing applications
in the field of power electronics and drives with different
schemes. Although the approaches and formulations are dif-
ferent, they share the common idea of making the predictions
free of a systemmodel or at least less dependent on it. For this
purpose, in some cases, the data-driven model/look-up tables
are directly used for predictions, and in some other cases, they
are used for modifying the predictions or system inputs. Here,
the methods are categorized into three main groups according
to the extent to which they are model-free.

A. TYPE I—TOTALLY MODEL-FREE
Type I methods do not use any model for predic-
tions [23]–[34]. Instead, the predictions are carried out by
directly using the system’s previous input and output data,
which are stored in a look-up table. The look-up table con-
tains the values of the output variations corresponding to all
available finite numbers of the control system inputs. The
stored data may be provided by directly measuring the output
in each sampling period or estimating it by using some output
measurements and the appropriate mathematical equations.
Fig. 4 shows a simplified block diagram of this type of MFPC
method.

B. TYPE II—USING AN ULTRA-LOCAL MODEL
Themethods of this group aremore similar to the basicMFPC
approach that adopts an ultra-local model for the predictions.
They use a model with one or more uncertain terms that
should be estimated continually via the system’s input and
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FIGURE 5. A simple block diagram of the Type II MFPC method.

FIGURE 6. A simple block diagram of Type III MFPC method.

output data. The model is then utilized in the control system’s
prediction stage [35]–[49], [54], [55]. A general block dia-
gram of this type is shown in Fig. 5. It can be seen that there
is no need for a look-up table. Hence, these methods do not
face the problem of stagnation of look-up table updating.

C. TYPE III—PREDICTION CORRECTION
The third category is devoted to the methods in which an
ideal model of the plant is used. However, by using the
input, output and previous prediction data of the system, some
correction factors are estimated to compensate for the predic-
tions [56]–[61]. Another approach is to compensate for the
control inputs that are going to be applied to the control plant
in the upcoming sampling period [62]–[71]. A general block
diagram is illustrated in Fig. 6. In addition, two different
approaches for correcting the prediction are shown in Fig. 7.
In the figures, Ŷ0 is the output predicted by an ideal model
of the plant with nominal parameters. The correction can be
made by modifying the ideal prediction conducted using the
nominal model, as shown in Fig. 7(a), or by modifying the
inputs, as illustrated in Fig. 7(b).

V. MODEL-FREE PREDICTIVE CONTROL OF DRIVES AND
POWER CONVERTERS
The mathematics and some detailed description of each type
of MFPC method introduced in the previous section, are
adapted to drives and power electronics as summarized in this
section. The last subsection contains a comparative table of
the surveyed control schemes, which serves as the conclusion
of this section.

A. TYPE I—TOTALLY MODEL-FREE
The idea is that the output (e.g., components of the current
vector) variation provided by each input, i.e., an inverter

FIGURE 7. Different approaches of Type III MFPC methods.
(a) Compensation of predicted output. (b) Compensation of calculated
control input.

voltage vector, can be considered constant for that input, over
a couple of sampling periods, when the sampling time is
reasonably short. Therefore, the output variations are stored
in a look-up table for each of the corresponding inputs.
The data-driven look-up table, instead of using the system
model, can be used to predict the value of the output for
the next sampling period [23], [34]. Fig. 4 shows a simple
block diagram of this type of model-free method. The data
in the look-up table should be updated continuously. In each
sampling period, when an input is applied to the plant under
control, the output variation corresponding to that input is
updated in the look-up table. A problem arises when using the
look-up table for methods in which the output variations for
all available inputs are directly measured [23]–[31]. In fact,
if an input is unapplied to the system for some successive
sampling periods, its corresponding data in the look-up table
cannot be updated. When the obsolete data is used for the
predictions, it may result in performance degradation or even
instability in the control system [27], [45]. This problem
is known as stagnation of the data updating and is shown
in Fig. 8. It shows the periodic stagnation of data updating in
the look-up table for an output variation (1id ) corresponding
to the voltage vector of number 1 during the steady-state
operation of a drive system. The applied voltage vectors
are also shown in Fig. 8(a). It is seen from Fig. 8(b) that
the corresponding data field in the look-up table cannot be
updated when voltage vector number 1 does not drive the
output in some periods.

As a solution, some methods have been proposed in which
the look-up table is updated using the estimated variation
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FIGURE 8. An example of look-up table updating stagnation. (a) Applied
voltage vectors, (b) Look-up table data of d-axis current component
variation corresponding to voltage vector number 1.

of the output for unapplied inputs [32]–[34]. It helps the
continuity of the look-up table updating mechanism.

Type I MFPC method is well-suited to FCS predictive
control due to the limited numbers of system inputs (inverter
voltage vectors) and the lack of a voltage modulator. As an
example, the basics of the method are described for the
predictive current control of a PMS motor with a two-level
inverter based on the method proposed in [23]. A block
diagram of the control system is illustrated in Fig. 9. In this
control system, the stator current is the system output. The
control inputs are selected according to the inverter’s eight
possible switching configurations. Considering the one-step
delay of the digital processor [72], [73], a cost function is
defined to minimize the tracking errors of the inputs as:

Ju =
∣∣∣i∗a (k)− îa (k + 2)

∣∣∣
u

∣∣∣+ ∣∣∣i∗b (k)− îb (k + 2)
∣∣∣
u

∣∣∣
+

∣∣∣i∗c (k)− îc (k + 2)
∣∣∣
u

∣∣∣ , (4)

where u ∈
{
−→v 0, . . . ,

−→v 7
}
is a basic voltage vector of the

inverter. The phase current can be predicted as:

îx (k + 1)
∣∣∣
u
= ix (k)+ 1̂ix (k)

∣∣
u , x ∈ {a, b, c} , (5)

where 1̂ix (k)
∣∣
u is the predicted variation of a phase current

over one sampling period. The calculation of this term is
performed using the motor model in MPC. However, under
the MFPC method, the prediction can be conducted using the
input and output data of the control system without the need
for a model. In this method, it is assumed that for a short
interval, each voltage vector can provide a specific variation
for each of phase currents that is nearly constant over the
sampling periods within the interval. Thus, the variations of
the phase currents in a sampling period are stored in a look-up
table for corresponding voltage vectors. Based on the afore-
mentioned assumption, the current variation can be extracted
from the look-up table for an intended voltage vector. In other

FIGURE 9. A block diagram of Type I MFPC system based on the method
proposed in [23].

words:

1ix (k)|u ≈ 1iLUTx

∣∣∣
u
, u ∈

{
−→v0 , . . . ,

−→v7
}
, (6)

where 1iLUTx

∣∣
u is the stored data of one-period variation of

the phase currents in the look-up table. Finally, substituting
(6) into (5) gives:

îx (k + 1)
∣∣∣
u
= ix (k)+ 1iLUTx

∣∣∣
u
, x ∈ {a, b, c} , (7)

By using (7), the stator current is predicted without using
themotor model. The predicted values can be used to evaluate
the cost function of (4) in order to select the optimal voltage
vector.

B. TYPE II—USING AN ULTRA-LOCAL MODEL
An ultra-local, data-driven model is used for the predictions
in this type of MFPC method. The derived model typically
contains one or more uncertain terms that should be esti-
mated continually via the input and output data of the control
system. The estimation methods can be classified into two
approaches. The first approach uses algebraic parameter iden-
tification techniques [35]–[38], [55], or observers [39]–[43],
and the second one exploits the inherent nature of the control
variable ripples (output ripples) to estimate uncertain parts
of the ultra-local model [44]–[49], [54] instead of adopting
observers. The stability of the control system in the first
approach where the observers are used may be an issue that
should be considered.

In the first approach, the ultra-local model can be described
in a general form as:

dY (t)
dt
= F(t)+ αU (t), (8)

where Y (t) and U (t) are the system output and input vectors,
respectively, and F(t) refers to the known and unknown parts
of the system containing uncertain terms. There is also a
scaling factor, α, which should be chosen by the designer. To
describe some details of this approach, the predictive current
control of a surface-mounted PMS motor is considered [35].
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Accordingly, (8) is modified as:

dix(t)
dt
= fx(t)+ αxux(t), x ∈ {d, q} . (9)

where αx ensures that dix
/
d t and ux(t) have the same order

of magnitude. It can be set as 1
/
Ls, and Ls is the stator

inductance of the motor. Furthermore, fx(t) can be expressed
as:
fd (t) =

−Rs
Ls

id + ωr iq −
(
Vd,par + Vd,dead

)/
Ls

fq(t)=
−Rs
Ls

iq−ωr id−
ωrλm

Ls
−
(
Vq,par+Vq,dead

)/
Ls

(10)

where Vd,par and Vq,par are the disturbance voltages caused
by parametric uncertainties. In addition, Vd,dead and Vq,dead
denote inverter dead-time and nonlinearities. The parame-
ter Rs is the winding resistance, and ωr is the angular fre-
quency of the rotor flux vector. Considering the reference
current constant over two sampling periods and discretizing
(9) results in:

u∗x =
1

2Tsαx

(
i∗x (k + 2)− ix (k)

)
−
f̂x (k)
αx

, x ∈ {d, q} . (11)

The uncertain term, f̂x(t), which is assumed to be constant
over a short period of TF , should be estimated using the
voltage and current data of the motor. The algebraic parame-
ter identification techniques from [35], [74] are used for the
estimation resulting in:

f̂x = −
3!

T 3
F

∫ TF

0
[(TF − 2δ) ix (δ)

+αxδ (TF − δ) ux (δ)] dδ, x ∈ {d, q} . (12)

where TF = nFTs is the window sequence length. This
means that the estimation is made by using the data of
nF + 1 sampling periods. Additionally, the compound trape-
zoidal formula is used to calculate the integrator in (12),
and the real-time implementation in the digital controller
is described in [35]. Substituting (12) into (11) for a given
current reference, one can obtain the reference voltage vector
components that should be synthesized and applied to the
inverter through a voltage modulator. Although this method’s
estimation improves the robustness of the control system,
the choice of parameter αx requires initial knowledge of the
motor inductance parameter. Hence, this is a shortcoming of
this approach compared to the Type I MFPC methods.

The second approach of Type II estimates all of the uncer-
tain terms of a derived ultra-local model using the inherent
ripples of the output [44], [45], [47], [49]. Thus, this approach
is well-suited for FCS predictive control. The general formu-
lation of the model is:

dY (t)
dt
= F1(t)U (t)+ F2(t), (13)

where F1(t) and F2(t) are the varying uncertain functions that
are estimated online using the input and output data of the

control system without requiring any knowledge of the plant
parameters [44], [45]. Two implementations are described
here for predictive current control of the PMS motor drives.
Accordingly, (13) is modified as:

dix(t)
dt
= f1x(t)ux(t)+ f2x(t), (14)

The terms f1x (t) and f2x (t), where x ∈ {d, q}, are
defined as:

f1d (t) = 1
/
ld
(
id , iq

)
f2d (t) =

(
ωr iqLq

(
id , iq

)
− Rsid

)/
ld
(
id , iq

)
f1q(t) = 1

/
lq
(
id , iq

)
f2q(t) =

−
(
ωrλm + ωr idLd

(
id , iq

)
− Rsiq

)
ld
(
id , iq

) ,

(15)

where Lx and lx are apparent and incremental inductances of
the motor, respectively. They can vary due to saturation or
cross-saturation effects. A discrete form of (14) is obtained
as:

îx (k + 1) = ix (k)+ f1xux (k)+ f2x , x ∈ {d, q} . (16)

Due to the high sampling frequency of the FCS predictive
control, it can be assumed that the values of f1x and f2x
are constant over a couple of consecutive sampling periods.
Hence, an estimation method that typically uses the current
variation and voltage data of only the two most recent sam-
pling periods has been proposed for f1x and f2x [44]. The
estimation uses only input and output data of the control
system as:

f̂1d =
1id (k − 1)−1id (k − 2)

TsVm [cosϑ (k − 1)− cosϑ (k − 2)]
f̂2d = 1id (k − 1)

/
Ts − f̂1dVm cosϑ (k − 1)

f̂1q =
1iq (k − 1)−1iq (k − 2)

TsVm [sinϑ (k − 1)− sinϑ (k − 2)]
f̂2q = 1iq (k − 1)

/
Ts − f̂1qVm sinϑ (k − 1),

(17)

where Vm = 2Vdc
/
3. Substituting the estimated values

of (17) into (16), the current components can be predicted
without using any of the motor parameters. By applying a
two-step prediction to compensate for the one-step delay of
the digital controller [35], one can derive a reference voltage
vector corresponding to the control input reference, i.e., i∗x as:

u ∗x =
[
i ∗x (k + 2)− îx (k + 1)− Ts f̂2x

]/
Ts f̂1x . (18)

Finally, instead of evaluating a cost function, the inverter
voltage vector that is the nearest one to the reference voltage
vector is selected as the optimal input to be applied to the
motor in the next sampling period. It is important to digitally
filter the estimated values so as to ensure a good performance
despite the non-idealities in themeasurements. A flowchart of
the method is given in Fig. 10.

Another manner for estimating ultra-local model uncertain
terms is adopted based on the recursive least square (RSL)
method [45]. This method is suited to the estimation of
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FIGURE 10. A flowchart of one of the Type II approach 2 MFPC methods
proposed in [44].

parameters during normal operations of a process with a
varying operating point structure. In a discrete form, (11) can
be rearranged as:

1ix
Ts
=
[
ux (k) 1

] [
f1x f2x

]T
= φ ux Fx , (19)

where φ ux and Fx are the regressor and uncertain coefficient
vectors, respectively. According to the standard RSL algo-
rithm, a set of equations that should be solved recursively is
given as:
Gx (k) = Qx (k − 1)8T

x

(
8xQ (k − 1)8T

x + χ I
)−1

F̂x (k)= F̂x (k − 1)+Gx (k)
(
δx (k)−8x F̂x (k−1)

)
Qx (k) = (Qx (k − 1)− Gx (k)8xQx (k − 1))

/
χ

(20)

Matrix Gx (k) is a gain matrix for weighting the errors
between measurements and estimations made by using
the coefficients’ vectors. Additionally, 8x is the regres-
sor matrix that contains all the regressor vectors related
to the current components’ variations involved in esti-
mating F̂x (k), i.e., those related to measurements vector
δx (k) =

[
1ix (k)

/
Ts,1ix (k − 1)

/
Ts, . . .

]T . The estimation
error covariance matrix is denoted Qx (k) by. In addition,
a forgetting factor, χ , is used in (20) in order to weight the
old estimation data. By substituting the estimated coefficients
into (19), the current components’ variations are calculated;
thus, the current vector can be predicted without any knowl-
edge of the motor parameters. Finally, the predictions are
evaluated in a cost function to select the optimal voltage
vector for the inverter.
A simple block diagram of the implemented control sys-

tems of Type II model-free predictive current control of PMS
motors is shown in Fig. 11.
Experimental results of the d- and q- axis components of

the current vector of a motor drive with certain specifications
are shown in Fig. 12 under 100% mismatch in the model-
based predictive current controller inductances [44]. This

FIGURE 11. A block diagram of the predictive current control of PMS
motors implemented based on Type II MFPC method.

FIGURE 12. Steady-state experimental waveforms of the d- and qaxis
components of a motor current under 100% error in the motor inductance
values [44].

kind of mismatch may happen in the case of improper param-
eter identification of the motor or under a deep saturation.
It can be seen that the performance improves considerably
after the model-free predictive current control method is
enabled.

C. TYPE III—PREDICTION CORRECTION
The third type of MFPC adopted in power electronics is
based on the correction of calculations conducted using the
nominal parameters of the controlled plant. Using the input,
output and previous predictions of the system, some correc-
tion factors are estimated in order to compensate for the next
sampling period’s predictions [56]–[61], or reference volt-
ages [62]–[71]. Compensation for the predicted output has
been adopted mainly in the FCS predictive control, whereas
the compensation for the calculated control input (voltage) is
commonly applicable in modulator-based predictive control
methods such as deadbeat predictive control.

In order to compensate for the output prediction error,
which is caused by using the ideal model of the controlled
plant, a lumped disturbance term that contains the mismatch
value between the ideal model and the real one is defined.
This term is then estimated and added to the upcoming predic-
tions to minimize the prediction error, as shown in Fig. 7(a).

The literature provides a variety of methods for estimating
the correction term. A simple solution has been proposed to
improve the robustness of the FCS predictive torque control
of the PMSmotors [56]. A systematic change in the controller
structure from feedback to partial feedforward improves
the closed-loop robustness against model mismatch.
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The controller uses the error between the predicted and the
measured current at the end of the previous sampling period.
However, the error is not the same for different voltage
vectors [58]. Therefore, using the calculated error from the
previous sampling period to compensate for the prediction
error in the next sampling period, in which a different voltage
vector may be applied, is not the best solution. Finding the
right value to be added as a compensation term motivated
the authors of [58], [59] to propose that the prediction error
corresponding to all voltage vectors be stored in a look-up
table. The prediction error data related to a voltage vector in
the look-up table is updated when the vector is applied to the
motor. Hence, the look-up table is continually updated during
the operation of the control system. The prediction error in
each sampling period is calculated by simply subtracting
the measured current from the predicted current. The last
prediction error of every voltage vector, which is stored in
the look-up table, is used in the prediction stage for the same
voltage vector to compensate for the related prediction error.

The ideal model of a surface-mounted PMSmotor used for
primary output prediction is given as:

did
dt
= −

Rs0
Ls0

id + ωiq +
vq
Ls0

diq
dt
= −

Rs0
Ls0

iq − ωid +
vq
Ls0
−
ωλm0

Ls0
.

(21)

where subscript ‘‘0’’ denotes a nominal parameter value.
Applying the forward Euler approximation for a sampling
period of Ts gives the uncompensated predicted current com-
ponents as:

îd0 (k + 1)
∣∣∣
u
= id (k)

+
Ts
Ls0

(
−Rs0id (k)+ Ls0ωiq (k)+ vd |u

)
îq0 (k + 1)

∣∣∣
u
= iq (k)

+
Ts
Ls0

(
−Rs0iq (k)− Ls0ωid (k)− ωλm0 + vq

∣∣
u

)
,

(22)

where u ∈ {V0, . . . ,V7}. This uncompensated model, which
uses constant motor parameters, results in a prediction error
at the end of each sampling period, as the motor parameters
have a different value from the model parameters. This error
can be calculated as:

εx (k)|u = îx0 (k)− ix (k) , x ∈ {d, q} , (23)

where îx (k) is a predicted current component for kth sam-
pling instance. This prediction is conducted at the (k-1)th
sampling period. It should be noted that ix (k) is a current
component of the measured motor currents. A key point that
this method is based on is that although the prediction error
differs for variant voltage vectors, the error for a given voltage
vector is nearly constant during a short interval. In other
words, for each voltage vector, the error between the pre-
dicted and measured values of the current components does
not change significantly in comparison with the last time that
particular voltage vector was applied. The prediction errors

FIGURE 13. Prediction error for different voltage vectors.

of the d- and q-axis current components over ten successive
sampling periods are shown in Fig. 13. The figure also indi-
cates the voltage vectors that are applied. It can be seen that
the errors are nearly equal for the same voltage vectors over a
short period in which the rotor rotation can be neglected. For
instance, the prediction errors are nearly equal for all three
times that V2 is applied to the motor during 0.5 s. Therefore,
the last prediction errors corresponding to each voltage vector
are stored in a look-up table. They are used to compensate for
the prediction of the corresponding voltage vector as:

îx (k + 1)
∣∣∣
u
= îx0 (k + 1)

∣∣∣
u
+ F̂x (k + 1)

∣∣∣
u
, (24)

where the compensating term, F̂x (k + 1)
∣∣∣
u
, is expressed as:

F̂x (k + 1)
∣∣∣
u
= kx εx |LUT :u , (25)

in which, kx is a weighting factor between 0 and 1. The error
values are taken from the look-up table.
Fig. 14 shows the simulation results of a PMS motor

current components under the conventional MPC and the
proposed Type IIIMFPCmethod in [58]when there is a 150%
error in the inductance parameter. The effectiveness of the
proposed method of [58] can be seen in this figure.
The look-up table is continually updated during every

sampling period. However, if a voltage vector is not applied
for a dozen sampling periods, its related error data in the
look-up table cannot be updated. Therefore, as in Type I
MFPCmethods, this outdated data affects the predictions and
cost function evaluations which in turn results in a deteri-
orated performance. To avoid this problem, a method has
been proposed to estimate the error terms without using a
look-up table [60]. The prediction errors of two consecutive
sampling periods are used to estimate the compensation term
for the prediction of the next sampling period. The method is
explained for the current control of a surface-mounted PMS
motor. In a space vector form, the predicted current vector
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FIGURE 14. Steady-state simulation waveforms of the d- and q-axis
components of a motor current under 150% error in the motor inductance
values [58].

using the initial motor parameters, ˆ̄Is, is obtained as:

ˆ̄Is (k + 1) = Īs (k)+
Ts
Ls0

(
Ū (k)−Rs0Īs (k)−jλm0ωejθr

)
,

(26)

where Ū (k) is the inverter voltage vector applied at the kth
sampling period. The prediction error that results from the
model parameter mismatch can be expressed as:

ε̄I (k)|Ū =
(
Ts
Ls0
−
Ts
Ls

)
Ū (k − 1)

−

(
Rs0Ts
Ls0
−
RsTs
Ls

)
Īs (k − 1)

−

(
λm0Ts
Ls0
−
λmTs
Ls

)
jωejθr (27)

The error difference between the prediction errors of two
consecutive sampling periods can be calculated as:

1σ = ε̄I (k)− ε̄I (k − 1) . (28)

As the variations of the second and the third terms of (27)
during a short period can be assumed negligible in compari-
son with the first term, substituting (27) into (28) results in:

1σ ∼=

(
Ts
Ls0
−
Ts
Ls

) (
Ū (k − 1)− Ū (k − 2)

)
. (29)

By defining K1 as Ts
(
1
/
Ls0 − 1

/
Ls
)
, it can be estimated

without using the model parameters as:

K̂1 = 1σ
/(
Ū (k − 1)− Ū (k − 2)

)
. (30)

The second and third terms of (27) can be denoted byK2 as:

K2 = −

(
λm0Ts
Ls0
−
λmTs
Ls

)
jωejθr

−

(
Rs0Ts
Ls0
−
RsTs
Ls

)
Īs (k − 1) . (31)

FIGURE 15. A block diagram of the predictive current control of PMS
motors implemented based on Type III MFPC method.

The coefficient K2 can be estimated as:

K̂2 = 1Īs(k) − K̂1Ū (k − 1). (32)

The prediction error compensation vector can be
expressed as:

ˆ̄F(k + 1) = −K̂1Ū (k) − K̂2, (33)

Finally, according to Fig. 7(a), the compensated predicted
current vector is obtained as:

ˆ̄Is(k + 1) = ˆ̄Is0(k + 1)+ ˆ̄F(k + 1), (34)

As mentioned before, since the method does not utilize a
look-up table, it does not face the problem of stagnation of
the look-up table updating. A block diagram of the latter two
methods is shown in Fig. 15.

Disturbance observer (DOB) techniques for compensation
of the predictions have also been adopted as another solution
to improve the robustness against model mismatch. Amethod
is proposed for FCS model predictive torque control of an
induction motor using DOB [61]. The method not only
improves the robustness against mechanical load distur-
bances but also compensates for model uncertainties in
torque, flux and current predictions. The equations of rotor
flux and stator current observers are given as:

d ˆ̄λr
dt
=
LmRr
Lr

īs −
(
Rr
Lr
− jω

)
.λ̄r

+Kλrp
(
λ̄r −

ˆ̄λr

)
+ f̂λr

df̂λr
dt
= Kλri

(
λ̄r −

ˆ̄λr

)
,

(35)



d ˆ̄is
dt
=

TsLr
L2m − LrLs

(
Rs īs − v̄s

)
−

TsL2mRr(
L2m−LrLs

)
Lr
īs−

TsLm
L2m − LrLs

(
Rr

Lr − jω

)
λ̄r

+Kisp
(
īs − ˆ̄is

)
+ f̂is

df̂λr
dt
= Kisi

(
īs − ˆ̄is

)
,

(36)
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TABLE 1. Comparison of the reviewed MFP control methods in the field of power electronics.

where Ls, Lr and Lm are stator, rotor and mutual inductances,
respectively, and Rr is the rotor resistance. The vectors ī and
λ̄r are the stator current and rotor flux space vectors, respec-
tively. In addition, f̂λr and f̂is are lumped disturbances of the
rotor flux and stator current, respectively. The coefficients
Kλrp, Kλri, Kisp and Kisi are observer gains. The details of the
observer gain design and the stability of the observer can be
found in the paper [61].

Many classic methods have also been proposed to improve
robustness of modulator-based predictive control [62]–[71].
They mostly operate as depicted in Fig. 7(b). As they have
reached a relatively mature level and their approaches are
outside the scope of this paper, i.e., MFP control, they are
not discussed in detail here.

D. COMPARATIVE STUDY
In this subsection, the aforementioned methods of MFPC
in motor drives and power electronics are briefly compared
to one another. Three types of control method are repre-
sented in TABLE 1. Each type is divided into two approaches
according to how it is implemented. It is worth noting that
approach 2 of Type I control scheme comprises the methods
based on look-up tables that adopt output variation esti-
mation for the non-applied control inputs over a control
period [32]–[34].

It is seen in the table that Type I methods do not require any
mathematical model in their implementation. Instead, they
adopt the data-driven look-up table that is updated contin-
ually. Type II method uses an ultra-local data-driven model
for the predictions. The model has some uncertain terms that
are estimated continually using the system input and output
data. The plant parameters are rarely included in the model.
However, the nominal parameters of the plant are exploited
in the model used in Type III MFPC methods. There are
some compensating schemes to correct the prediction errors
aroused from using the ideal model instead of the model with
actual parameters of the plant. Type II methods do not adopt
a loo-up table so they are immune to the problem of data
stagnation. Approach 1 of Type II and most of the methods of
Type III MFPC need gain tuning. Care must be taken particu-
larly in gain selection for observer-based methods. Improper
gain tuning may result in instability issues. TABLE 1 also
compares the methods in terms of the computational burden

imposed on the processor. The look-up table-based methods
have the advantage of simplicity and low computational bur-
den. In fact, their computation burden is nearly the same as the
one of conventional FCS-MPC method, which is fairly low
for a two-level three-phase inverter, owing to the development
of high-speed processors. However, approach 2 of Type I
needs extra computations for data reconstruction to overcome
the stagnation problem.On the other hand, recursive solutions
in some methods of Type II, approach 2, need a relatively
higher computations compared to other methods of this type.
Also, different kinds of observers used in approach 2 of
Type III MFPC methods impose more computational burden
to the processor compared to the solution adopted in the
methods of approach 1 of this type.

VI. CONCLUSION
This paper studies different types of model-free predic-
tive control methods in motor drives and power electronic
converters. The brilliant advantage of these methods is nulli-
fying the effects of model parameter mismatch in the predic-
tive control. This parameter robustness results in improved
performances and enhanced stable systems under different
operating points. The paper also introduces a classification
system for discussed methods that is based on their imple-
mentation and formulation. Different aspects are taken into
consideration in order to draw comparisons between them.
Type I control methods benefit from not requiring a model of
the controlled plant. Furthermore, their calculation burden is
low. However, these methods generally face stagnation of the
data updating. Type II methods utilize an ultra-local model
to make predictions. The model is derived from the input and
output data of the control system. No look-up table is needed.
Hence, Type II methods do not face the stagnation problem
of data updating. Type III methods use the input and output
of the control system to compensate for the prediction error
or modification of the reference voltage vector. They need the
nominal parameters of the control plant model.

It seems that the current measurement is the most chal-
lenging step in the implementation of the model-free meth-
ods. Any inaccuracy in the measurement affects the control
method and derived ultra-local model (where required). Since
the current variation over a sampling period should be mea-
sured in most of these methods, the measurement would be
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more challenging at high sampling frequencies considering
the acquisition latency. In addition to the short control inter-
val, which results in difficulties in current variation detec-
tion, the inverter dead-time is another issue that should be
dealt with. Another critical issue that needs to be further
researched in light of model-free predictive control of motor
drives is the robustness of the control system against load
disturbances. Few papers have addressed this issue and have
proposed somemodel-free solutions. Nonetheless, robustness
against mechanical disturbances needs much more attention
especially in speed-controlled plug-and-play motor drives.
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