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ABSTRACT An automatic system for heart arrhythmia classification can perform a substantial role in
managing and treating cardiovascular diseases. In this paper, a deep learning-based multi-model sys-
tem is proposed for the classification of electrocardiogram (ECG) signals. Two different deep learning
bagging models are introduced to classify heartbeats into different arrhythmias types. The first model
(CNN-LSTM) is based on a combination of a convolutional neural network (CNN) and long short-term
memory (LSTM) network to capture local features and temporal dynamics in the ECG data. The second
model (RRHOS-LSTM) integrates some classical features, i.e. RR intervals and higher-order statistics
(HOS), with LSTMmodel to effectively highlight abnormality heartbeats classes.We create a baggingmodel
from the CNN-LSTM and RRHOS-LSTM networks by training each model on a different sub-sampling
dataset to handle the high imbalance distribution of arrhythmias classes in the ECG data. Each model is also
trained using a weighted loss function to provide high weight for not sufficiently represented classes. These
models are then combined using a meta-classifier to form a strong coherent model. The meta-classifier is
a feedforward fully connected neural network that takes the different predictions of bagging models as an
input and combines them into a final prediction. The result of the meta-classifier is then verified by another
CNN-LSTMmodel to decrease the false positive of the overall system. The experimental results are acquired
by evaluating the proposed method on ECG data from the MIT-BIH arrhythmia database. The proposed
method achieves an overall accuracy of 95.81% in the ‘‘subject-oriented’’ patient independent evaluation
scheme. The averages of F1 score and positive predictive value are higher than all other methods by more
than 3% and 8% respectively. The experimental results show the superiority of the proposed method for ECG
heartbeats classification compared to many state-of-the-art methods.

INDEX TERMS Electrocardiogram (ECG), CNN, LSTM, bagging, ensemble, deep learning.

I. INTRODUCTION
Heart arrhythmia is any disturbance of the normal heart rate
where the heart may beat too slowly, too early, too fast,
or irregularly. Arrhythmias may cause symptoms including
feeling dizzy, palpitations, fainting, and shortness of breath.
Many arrhythmias are not dangerous; however, some arrhyth-
mias types such as atrial fibrillation, premature ventricu-
lar contractions, and excessive supraventricular ectopic are
associated with many cardiovascular diseases such as stroke,
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cardiac arrest or heart failure [1]–[3]. According to the World
Health Organization (WHO) [4], cardiovascular diseases are
the main cause of global mortality (about 31% of the global
mortality in 2016).

Electrocardiography (ECG) records the electrical activity
of the heart measured by a set of electrodes (usually 10)
attached to the patient’s skin. It’s a common and non-invasive
diagnosis technique to detect heart problems such as arrhyth-
mias. There are different types of ECG configuration [5]. For
example, 2-lead ECG is used to closely monitor the patient
for a long period of time through Holter monitor device. ECG
recording can remain from 24 to 48 hours and needs to be
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examined by a cardiologist to detect any heart problems. This
can be a tedious process and very time-consuming. Therefore,
finding an automated solution for analyzing and diagnosing
ECG waves is crucial.

A normal heartbeat on ECG has threemain waves as shown
in Figure 1: the P-wave, which reflects the atria depolariza-
tion; the QRS complex, which reflects the depolarization of
the ventricles and has the largest amplitude at R point; and
the T-wave, which reflects the repolarization of the ventri-
cles [6]. P-wave follows by a flat line called the PR segment
indicates that the electrical impulse moves to the ventricles.
ST-segment comes after the QRS complex shows that ventri-
cles are completely depolarized.

FIGURE 1. ECG wave of a normal heartbeat.

In this paper, we propose an ensemble of multi-model
deep learning methods to automatically classify heartbeats
arrhythmias in ECG data. Both convolutional neural net-
works (CNN) and long short-term memory (LSTM) are
adapted in the proposed system. In the beginning, we define
two different types of deep learning models. The first one is
based on combining CNN and LSTM and the other one is
extracting some classical features and fed them to the LSTM
model. All these models are trained on bootstrap samples of
the training data. LSTM has the ability to learn a temporal
representation of the data. CNN can effectively extract local
features from the raw sequential input. The additional clas-
sical features are less computationally expensive and help to
boost the discrimination capability of the proposed system.
Next, we introduced a deep learning network to fuse the result
of all the bagging models trained in the first phase. Finally,
in order to reduce the false positives, another CNN-LSTM
model is presented. The proposed system is tested on the
MIT-BIH arrhythmia dataset according to the recommenda-
tions of the Association for the Advancement of Medical
Instrumentation (AAMI) [7]. TheMIT-BIH dataset is heavily
unbalanced making the recognition of arrhythmia classes a
challenge. We address this problem by using the bagging
technique to train the models on different distributions of
the training data and reduce the imbalance level. Moreover,

wemodify the loss function by addingmoreweights tominor-
ity classes to encourage eachmodel to correctly classify them.
The main contributions of this paper can be summarized as:

• We propose multi-model deep learning method for auto-
matic classification of ECG heartbeats arrhythmias by
combining multiple deep learning models that are dif-
ferent in architecture and data-level to achieve a robust
classification for the imbalance heartbeats data.

• A bagging of deep learning models has proposed based
on two architectures: CNN-LSTM and LSTM combined
with RR intervals and higher-order statistics (HOS) fea-
tures to effectively classify all the heartbeat abnormality
classes.

• A fusion classifier is proposed based on a meta-learning
classification to dynamically formulate the final deci-
sion of the stack of deep learning models.

• A verification deep learning model is proposed to
address the problem of false-positive classification of
heartbeats arrhythmias in ECG signals.

• A weighted loss function is introduced for each deep
learning model for better handling the imbalance in the
data distribution.

• The proposed method is evaluated on the standard
MIT-BIH database using a ‘‘subject-oriented’’ patient
independent scheme that provides a realistic estimate of
the classification performance.

The rest of the paper is organized as follows. In Section II,
the related work of the ECG heartbeats arrhythmias classifi-
cation is discussed. Section III presents the details of the pro-
posed method. The experimental results and the ECG dataset
are discussed in Section IV as well as a comparison with the
state-of-the-art methods is presented. Finally, the conclusion
is provided in Section V.

II. RELATED WORK
The classification of ECG arrhythmia has received much
attention over the last two decades. According to the litera-
ture, there are three common steps: pre-processing, feature
extraction, and classification. Feature extraction methods are
mainly based on hand-crafted features such as morphologi-
cal features [8]–[11], heartbeat intervals [8], [9], RR inter-
vals [8]–[12], wavelet-based features [10]–[13], statistical
features [10], [11], [14]–[16], and Hermite coefficients
[14], [15]. However, hand-craft features like morphological
features have a large inter-patient variation, so it is not enough
to differentiate between different arrhythmia types. More
recently, feature extraction based on deep learning techniques
has emerged. For example, CNN has been used to extract fea-
tures from rawwaveform data as in [17]–[19]. In [20], CNN is
combined with LSTM to analyze the ECG time series. Auto-
encoder is employed in [21], [22] to obtain deeply coded
features. In [23], deep belief networks (DBN) is introduced
to extract features from raw ECG data. Some other works try
to hybrid both the hand-crafted features and deep learning
techniques. For instance, combining wavelet-based and RR
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intervals features with LSTM model [24], while in [25],
authors integrate morphological features, RR intervals, and
heartbeat intervals to DBN.

Many machine learning methods have been introduced
to classify the features extracted from ECG signals such
as support vector machine (SVM) [9], [11], [12], [14],
[15], [21], [26], decision tree [10], linear discriminants
(LDs) [8], AdaBoost [16], and deep learning methods
[17]–[20], [22]–[25] e.g. CNN, LSTM, auto-encoder, DBN.
However, there are some limitations on the existing methods
such as many of these methods are not scalable enough to
classify ECG records of new subjects due to its large varia-
tions that may have or carefully selected training/testing data
or classes without following the well-known AAMI recom-
mendations. Note that the works that do not follow the AAMI
recommendations cannot be included in any comparison.

The MIT-BIH arrhythmia database is the standard test
material for the performance evaluation of arrhythmia clas-
sification methods. There are two types of evaluation:
‘‘class-oriented’’ and ‘‘subject-oriented’’ [12]. In the ‘‘class-
oriented’’ evaluation e.g. [14], [16], [18], [20], [22], [27],
all the ECG records from all patients are put together and
then split into training and testing sets. However, this kind
of evaluation produces optimistic results that maybe not sen-
sible in real applications, as the inter-patient variation is not
considered due to the training and testing sets contain samples
from the same patients.

In the ‘‘subject-oriented’’ evaluation, the dividing of train-
ing and testing sets is based on the ECG patient’s records,
where a single patient’s records can only be in either
training or testing sets. This type of evaluation maintains
the inter-patient variation and provides a more practical
evaluation of the performance of heartbeat classification
methods. The ‘‘subject-oriented’’ evaluation can also be
categorized into the patient-specific [13], [17], [23], [24]
and patient-independent evaluation [8]–[12], [19], [25], [26],
[28]. In the patient-specific scheme, a small part at the
beginning of a particular patient’s record with the anno-
tated data is used to adapt a pre-trained classifier. This
improves the performance of patient-specific classifiers than
patient-independent. However, the cost of a patient-specific
scheme is much higher since it may require intervention from
an expert to label some heartbeats that making the entire
approach is not practical and time-consuming. In this paper,
we propose a deep learning patient-independent approach
that follows the ‘‘subject-oriented’’ scheme.

Many patient-independent approaches have been
introduced to classify heart arrhythmia, e.g. In [8], linear dis-
criminants have been proposed to categorize ECG heartbeats.
This method integrates a various set of features based on RR
intervals, heartbeat intervals, and ECG morphology. In [12],
RR intervals and morphological features extracted using
wavelet transform and independent component analysis have
been utilized to recognize irregular heartbeat. These features
are used to train a set of SVM classifiers independently
and then fused together to obtain the final decision. In [26],

the least-square twin SVM classifier is proposed to classify
sparse features computed over a Gabor dictionary. The learn-
ing parameters are optimized using particle swarm optimiza-
tion (PSO). In [28], Herry et al. characterize the ECG signal
by using heartbeats interval features and synchro-squeezing
transform to analyze time-varying oscillatory patterns of
heart rhythms and then classify these features by an SVM
classifier into four classes. However, the accuracy of these
methods is still restricted.

In an attempt to increase the ECG classification accuracy,
different ensemble-based techniques have been used to create
multiple instances and then combine them to produce a robust
model. In [9], Zhang et al. train an ensemble of SVMs using a
one-vs-one scheme to classify heartbeats. ECG morphology
and intra- and inter-beat intervals are used as input features.
The ensemble is made by using the product rule of all the cre-
ated models. The method is extended in [11] by training each
individual SVMmodel on one type of features and expanding
the extracted features to include wavelets, HOS, and local
binary patterns (LBP). In [10], Shi et al. use an extreme gra-
dient boosting model to perform hierarchical classification
of different heartbeats types. The method selects a subset of
features from a pool of hand-crafted features. However, all
these methods are mainly using hand-crafted features and not
generalize enough to classify ECG arrhythmia.

In the last few years, deep learning has led to impressive
performance in many applications such as object recogni-
tion due to its huge ability to detect salient patterns in the
input data. In [19], authors train CNN on raw ECG data
containing two consecutive heartbeats and add batch-weight
loss function to handle the imbalance problem in the ECG
dataset. However, the false-positive rate is significantly high
and the accuracy of recognizing the normal heartbeats (i.e. the
majority class) is considerably reduced. In [29], Jiang et al.
proposed over-sampling the minority classes to overcome
imbalance data and using auto-encoder as a feature extrac-
tor to be fed to CNN. However, the method becomes more
computationally expensive, and this over-sampling strategy
may also cause over-fitting. In [25], Mathews et al. use a
stack of Restricted Boltzmann Machines (RBM) to encode
the extracted hand-crafted features and form a deep belief
network (DBN). However, the method is heavily dependent
on the hand-crafted features which affect its generalization
ability to classify ECG arrhythmia. In [23], authors extend
the previous method by training the DBN on the raw ECG
data. However, the method is not taking a benefit of the
time-dependencies of ECG signal.

III. PROPOSED METHOD
Figure 2 shows an overall view of the proposed system.
We propose a cascade of a multi-model deep learning-based
ensemble to classify ECG heart arrhythmia by training the
models of each heartbeats class sequentially using a one-
vs-all scheme. The first step is pre-processing and segment-
ing the input ECG signals. Next, we create an ensemble
of two deep learning models using the bagging technique.
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FIGURE 2. An overview of the proposed method.

The first model (CNN-LSTM) is defined based on CNN and
LSTM, and the second model (RR-HOS-LSTM) is combin-
ing RR-intervals andHOS features with LSTM. Then, ameta-
learning classifier is proposed to fuse the output of all bag-
ging models. Finally, a verification network is introduced to
further check the validity of the predicated class for the input
ECG segment. The cascaded model is obtained by repeating
the same procedure consecutively for each heartbeat class.
If the input ECG heartbeat segment is classified as negative
at any stage, it will be tested by the next set of models for the
next heartbeat class.

A. PRE-PROCESSING AND HEARTBEATS SEGMENTATION
We apply two pre-processing steps as in literature [8], [9],
[11] to remove the baseline wandering and reducing the
high-frequency noise. First, the ECG baseline is obtained
by utilizing two median filters of 200-ms and 600-ms, one
after the other. The first median filter removes QRS com-
plexes and P-waves, while the second one removes T-waves.
To produce the baseline-corrected signal, the baseline is then
subtracted from the raw ECG signal. Next, the power-line and
high-frequency noise is removed by using a low-pass filter
with a cut-off frequency of 35 Hz. The resulted signal will be
employed as an input to the deep learning models. Figure 3
shows an example of ECG signal before and after the pre-
processing steps.

The ECG data consists of a sequence of heartbeats. Many
heartbeat segmentation algorithms have been proposed e.g.
Pan and Tompkins used adaptive thresholding to detect QRS
complex [30]. However, the main focus of this paper is on the
classification, thus to obtain the heartbeats segment, the anno-
tation of the QRS complex included with the MIT-BIH
database was used. Here, a window of 180 samples is taken
around the R-peak to represent the heartbeat.

B. CLASSICAL FEATURE EXTRACTION
The most common classical features used to describe ECG
data is RR intervals [8]–[12], [24], [25]. RR intervals are
defined as the time between R-peak points of succes-
sive heartbeats. Four RR intervals are usually computed:

FIGURE 3. An example of ECG signal before and after pre-processing. The
first row represents the raw ECG signal. The second row shows the ECG
signal after removing the baseline wandering. The third row represents
the ECG after removing the high-frequency noise.

pre-RR, post-RR, local-RR, and average-RR. Pre-RR is the
RR interval between the desired heartbeat and the past one.
Post-RR refers to the RR interval between the desired heart-
beat and the following one. Local-RR indicates the mean
of the past 10 RR intervals of a given heartbeat. Similarly,
average-RR is the average of the past 5 min RR inter-
vals of a given heartbeat. Moreover, the normalized ver-
sion of the previous four intervals is also computed by
dividing each feature on its global average with the same
ECG record.

HOS has shown to be better than the morphological
ECG [11], [15]. HOS indicates to skewness and kurtosis,
which measures sharpness and asymmetry of the heartbeat.
Here, the heartbeat is split to 6 intervals, and then the skew-
ness and kurtosis are measured over each one.
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C. DEEP FEATURE EXTRACTION
CNN and LSTM are exploited to highlight local and temporal
features of the ECG signal. CNN has employed to extract
spatial features, while LSTM has used to model long-term
contextual dependencies. In this paper, both models are uti-
lized to extract spatio-temporal features.

1) CNN
CNN is one of the successfully deep learning mod-
els in many fields, such as computer vision [31], [32],
natural language processing [33], [34], and speech recog-
nition [35]. Due to its high capability of extracting hier-
archical feature representation, that is relatively robust to
noise. It has some unique properties, such as weight shar-
ing, local connectivity, and spatial pooling. The CNN has
fewer parameters compared to the traditional feedforward
network.

CNN not only can handle 2D/3D inputs such as image
and video but also 1D sequences such as ECG signals. CNN
mainly consists of a sequence of convolutional layers and
pooling layers. Convolutional layers apply a set of learned
filters over the whole input sequence to generate feature maps
that highlight the existence of those features in the raw input
sequence. The feature maps generated by the convolutional
layers go through a non-linear transformation called an acti-
vation function. The output feature map xj at layer ` is defined
by convolving kernel k`i with the input feature map x`−1i as
follows:

x`j = σ (
∑
i

x`−1i ∗ k`i + b
`
j ) (1)

where b`j is the bias term, and σ is the activation function.
There are many activation functions in the literature, such as
sigmoid, tanh and rectified linear unit (ReLU). In the deep
neural networks, the ReLU is the most common activation
function because of its simplicity, and it is not saturated like
sigmoid function so it can alleviate the problems of vanish-
ing gradients. The pooling layer is applied to down-sample
each feature map to produce less sensitive features to local
translation and also reduce the number of model parameters.
Max-pooling is the popular function used in the pooling layer,
where the maximum value is computed for each window of
the feature map. Max-pooling has the ability to extract the
most prominent features. A stack of convolutional and pool-
ing layers allows learning high-level features as a function of
low-level features.

There are two additional layers that can be added to
any deep neural networks; dropout and batch normalization.
Dropout layer randomly removes a specified proportion of the
connections between two consecutive layers during training
the network in order to reduce the neural network over-fitting
problem. Batch normalization layer is normalizing the input
to a layer with the mean and standard deviation of the mini-
batch.

2) LSTM
One of the most chosen architectures for modeling time series
data is known to be the recurrent neural network (RNN).
RNNs have been employed in many applications such as
handwriting recognition [36], machine translation [37]. RNN
varies in the learning structure from feedforward neural net-
works by connecting the outputs of the current time step to the
inputs of the next time step. This allows the RNN to retain the
internal state for the sequential input to be processed.

The traditional RNN has some limitations due to the
problems of vanishing or exploding gradients that encounter
when modeling long-term dependencies. Therefore, LSTM
is proposed to overcome these limitations. The LSTM model
replaces the RNN neurons in the hidden layer with LSTM
neurons. LSTM has a special structure including a memory
cell and three gate regulators. The memory cell maintains
relative information about the dependencies between input
elements all over the processing of the sequence. LSTM
comprises three gates (input it , forget ft , and output ot gates)
to regulate the stream of information. The input gate controls
how much information to be stored in the memory cell. The
output gate manages the output information from the memory
cell Ct to the next LSTM unit. The output gate decides what
the hidden state ht should be. The forget gate allows the
memory cell to be reset. The following equations define the
process of the three gates and the memory cell of LSTM:

it = σ (wi · [ht−1, xt ]+ bi) (2)

ft = σ (wf · [ht−1, xt ]+ bf ) (3)

ot = σ (wo · [ht−1, xt ]+ bo) (4)

C̃t = tanh(wC · [ht−1, xt ]+ bC ) (5)

Ct = ft · Ct−1 + it · C̃t (6)

ht = tanhCt · ot (7)

where xt is the input at time t; wi,wf ,wo,wC are the weights,
bi, bf , bo, bC are the biases; σ, tanh are the sigmoid and
hyperbolic tangent activation functions.

D. BAGGING-BASED DEEP LEARNING MODELS
In this work, an ensemble of different deep learning models
is proposed to classify ECG heartbeats. The first model based
on an aggregation of CNN and LSTM. The RRHOS-LSTM
model combines the RR intervals and HOS features with
LSTM. The ensemble is created by using a bagging technique
to enhance the robustness of the model and address the data
imbalance issue.

The ECG arrhythmia dataset (MIT-BIH) is highly imbal-
anced, where 89% of the training records are labeled as
normal. This biased distribution of data highly affects the
learning process of minority classes. To increase general-
ization capability, we used the bootstrap method to create
small multiple subsets of data by randomly sampling with
replacement. In the beginning, we convert the classification
problem from a multi-class to binary using a one-vs-rest
strategy. where the data from one class is labeled as positive
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FIGURE 4. The architecture of the proposed CNN-LSTM with three convolutional, and max pooling layers and two
LSTM layers.

and all the other data from the rest of the classes are negative.
Then, the negative samples are randomly down-sampled for
each binary class model while holding the positive samples
the same to build the training set. This procedure is replicated
several times to construct multiple training sets. The deep
learning models are trained on these subsets of data in order
to achieve a collection of different models in both data level
and architecture.

The purpose of sub-sampling is not to get a balanced
dataset since minority classes contain a few hundred samples
compared to thousands of samples of the majority class.
The sub-sampling is producing an imbalanced dataset with a
pre-defined ratio between the negative and positive samples.
This is to keep many useful negative samples to improve the
overall accuracy of the model. The weighted loss function is
also utilized here to hinder the model from learning only the
majority class as discussed in Section III-G.

1) CNN-LSTM MODEL
The CNN-LSTM network, as shown in figure 4, includes
convolutional layer and max-pooling repeated for 3 times,
and followed by 2 LSTM layers. The input of this model
comprises 5 consecutive heartbeats, where 2 previous and
2 successor heartbeats accompany the present heartbeat. The
network input has a size of 900 (5×180). The input of filters
set to 64 for all convolutional layers. The kernel size of each
convolutional layer set to 5. The kernel moves one step (i.e.
stride equal to 1) over the input sequence at a time and is
convoluted with the corresponding input elements. After each
convolutional layer, the ReLU activation function is applied.
For each max-pooling, the pooling size set to 2 with stride 2.
This cuts the output size of each layer by half. We introduce
a dropout of 20% after each max-pooling layer to minimize
the over-fitting of the network.

Two LSTM layers are the last configuration of the CNN-
LSTM network, accompanied by a softmax layer to pre-
dict the output class. the LSTM layers derived the temporal
dynamics from CNN’s features. The number of hidden neu-
rons of each LSTM unit is 100. The output of the hidden state

of each neuron of the first LSTM layer is used as an input to
the next LSTM layer. The last LSTM layer returns the last
hidden state output which captures an abstract representation
of the input sequence. The probability of the heartbeat output
class is produced by the softmax function.

2) RRHOS-LSTM MODEL
The RRHOS-LSTM model blends HOS and RR intervals
features with LSTM. As shown in Figure 5, the RRHOS-
LSTM consists of a feature extraction layer followed by an
LSTM. RR intervals are obtained to reveal global and local
information regarding the R-peak of two sequential heart-
beats The number of RR intervals features is 8 as described
in Section III-B. HOSmeasures high-order statistical features
from the input heartbeats. HOS extracts 60 features from five
successive heartbeats, where 2 predecessor and 2 successor
heartbeats accompany the current one. The number of the
input features to the LSTM is 68. The input features are pro-
cessed by the LSTM to learn temporal dynamics. A dropout
layer of 20% is added after the LSTM to reduce the model
over-fitting. The output hidden states for each time step of
the LSTM are produced and given to a softmax layer to label
the input ECG heartbeat.

FIGURE 5. The proposed RRHOS-LSTM architecture with one feature
extraction layer followed by one LSTM layer.
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E. FUSION CLASSIFIER
The fusion classifier combines the output of all bagging mod-
els in order to form an ensemble model. The fusion classifier
is a meta-learner that can correct the predictions from the
base models and boost the overall system performance. It is a
feedforward neural network that takes the probabilistic output
of the RRHOS-LSTM and CNN-LSTM models as an input.
The input size of the fusion classifier is 2 ∗ N , where N is
the total number of the bagging models. The fusion classifier
includes (see Figure 6) two fully-connected layers preceded
by a batch normalization layer. The number of hidden neu-
rons is 500 in each dense layer, and each neuron has ReLU
activation function. Between the two dense layers, a dropout
layer with a 20% ratio is added. A softmax function is used
in the final layer to generate a probability distribution over
predicted output classes.

FIGURE 6. The proposed fusion classifier architecture with a batch
normalization and two fully connected layers.

F. VERIFICATION NETWORK
Finally, a verification network is introduced to validate the
performance of the fusion classier and decrease the false
positive. It is a deep neural network based on the CNN and
LSTM. The verification network (as shown in Figure 7) com-
prises 3 consecutive layers of convolution and max-pooling
followed by two LSTM layers. Dropout regularization is
the difference between the CNN-LSTM model described in
Section III-D1 and the verification network. Two dropout
layers are used in the verification network, the first one after
the convolutional part and the second one after the LSTM
layers. The dropout rate is set at 50% in order to reduce the
network’s over-fitting. Note, the RRHOS-LSTM is not used
at this stage to reduce the model complexity and the over-
fitting problem.

We repeat the same procedure consecutively for each heart-
beat class to form a cascade model to accomplish the classi-
fication system. The proposed system has two binary models
per class: the fusion classifier, which merges the output of
bagging of CNN-LSTM and RRHOS-LSTM models, and
the verification network. In the cascade scheme, suppose the
number of heartbeat arrhythmia classes is C , we need to have
C − 1 of the fusion classifiers and the same number for the

verification networks. We exclude the normal class from hav-
ing its own models so that if the testing sample is classified
as negative by all binary models from the other classes then it
is classified as a normal heartbeat. The testing samples go to
the first fusion classifier representing the first class, and then
transfer to the verification network if it is labeled as positive
for confirmation. If it is classified as negative by one of the
two models, then it moves to the subsequent fusion classifier
and verification network and so on.

G. WEIGHTED LOSS FUNCTION
Since the ECG data distribution is highly imbalanced and
performing over-sampling of the minority classes may cause
over-fitting and increasing the time complexity of training the
model, we proposed to use weighted loss function to force
each model to give more attention to the minority classes.
In this work, we use a weighted cross-entropy as a loss
function with the softmax layer. The weighted cross entropy
loss function L can be defined as:

L = −
M∑
c=1

βcyo,c log(po,c) (8)

where βc is the weight function for class c, yo,c is the
groundtruth binary indicator, and po,c is the predicted value
for the observation o to be classified as c. The weight βc is
defined based on the frequencies of the samples as follows:

βc =
Fj
Fc

(9)

where Fj is the number of samples of the majority class
and Fc is the number of sample for class c. The bootstrap
procedure is down-sampling the majority class according to
the specified ratio. Here, the ratio 1:4 is used, which means
the number of negative samples is four times larger than the
positive samples. The weighted cross-entropy loss function
is important to make sure the model is learning the minority
classes and not over-fitted by the majority class.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. ECG ARRHYTHMIA DATABASE
TheMIT-BIH database [38], [39] is a typical ECG arrhythmia
dataset for testing the efficiency of heartbeat classification
approaches. The dataset contains 48 recordings obtained from
47 subjects (22 women and 25 men) over approximately
30 minutes. The data is sampled at 360 Hz and associated
with the annotations of the R-peak location of each heartbeat.
The database encloses about 109,000 beats. The annotations
were carried out by multiple cardiologists independently, and
all disputes were reviewed and resolved. Each ECG record
composed of two-lead signals: the modified-lead II (MLII)
and the other signal is one of lead V1, V2, V3, V4, or V5.
In this work, MLII signals have only been used. Accord-
ing to AAMI recommended, four records with paced beats
are excluded, named as 102, 104, 107, and 217. Originally,
the MIT-BIH database classified the heartbeats to 16 types.
These types of heartbeats are grouped into five categories
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FIGURE 7. The proposed verification network architecture.

TABLE 1. Evaluation of different ratios using a bagging of CNN-LSTM classifiers.

according to AAMI recommends: Normal (N), Ventricular
ectopic beat (VEB), Supraventricular ectopic beat (SVEB),
Fusion (F), and Unknown beat (Q). The Q class is excluded
here since it has a comparatively very limited number of sam-
ples (i.e. 12 samples). Here, we follow the evaluation scheme
of ‘‘subject-oriented’’ patient independence. The database is
partitioned into the training set (DS1) and test set (DS2) as
in [8] to preserve inter-patient heterogeneity. Each dataset
comprises 22 ECG recordings from different subjects with
about the same number for each heartbeats type. This type
of evaluation scheme allows comparing different types of
heartbeats classification approaches in a fair. The training
set (DS1) is split into two sets, one for training the bagging
models and verification network which contains 90% of DS1,
and the other 10% for training the fusion classifier.

B. IMPLEMENTATION DETAILS
We run all our experiments on a single GPU Nvidia TITAN
Xp. TensorFlow library [40] is used to implement the pro-
posed models. We used Adam optimizer for training the
bagging models and RMSProp optimizer for the fusion and
verification network. The learning rate of all classifiers is
0.001. The batch size of the bagging models is 256, while
the fusion and verification network is 128. The batch normal-
ization is used in the fusion classifier for all classes except
for class F. All these parameters are optimized through a grid
search on the training set.

C. EVALUATION METRICS
The evaluation of the proposed method’s performance is
carried out using 6 metrics. These metrics includes accu-
racy (Acc %), F1 score (F1 %), specificity (Sp %),

sensitivity (Se %), positive predictive value (PPv %), and
Cohen’s Kappa (κ) and defined as follows:

Acc =
TP+ TN

TP+ TN + FP+ FN
, (10)

F1 = 2×
PPv× Sens
PPv+ Sens

, (11)

Spec =
TN

TN + FP
, (12)

Sens =
TP

TP+ FN
, (13)

PPv =
TP

TP+ FP
, (14)

κ =
P0 − Pe
1− Pe

(15)

where TP refers to the number of heartbeats from the given
class that are correctly classified. FP indicates the number
of heartbeats misclassified as from the given class. FN is
defined as the number of heartbeats originally from the given
class but misclassified as from one of the other classes.
Finally, TN indicates the total number of heartbeats that are
correctly classified as from the other classes. All these met-
rics are derived from the confusion matrix. Cohen’s Kappa
measures agreement between two raters. P0 is the observed
agreement between the raters (i.e. overall accuracy), and Pe
is the agreement by chance alone.

D. CLASSIFICATION PERFORMANCE
Firstly, we conduct an experiment for evaluating differ-
ent sampling ratios of CNN-LSTM bagging classifiers.
Table 1 reports the result of 4 sampling ratios for training
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TABLE 2. Evaluation of different size of input heartbeats on CNN-LSTM bagging models using one, three, or five beats as an input and also RRHOS-LSTM
bagging models using three or five beats.

TABLE 3. A comparison of the performance of combining bagging models using the proposed fusion classifier and the majority voting and then
validating the fusion results using the verification network.

CNN-LSTM bagging models to classify VEB, SVEB and F
classes individually using the one-vs-all scheme. The ratio
1:4 (i.e. the ratio of negative samples to positive samples is
4 to 1), gives the best results for all classes compared to other
ratios of 1:2, 1:6 and 1:8. For SVEB class, the F1 score and
the accuracy of 1:4 ratio are 30.04% and 84.31% that much
higher than the other ratios. For VEB class, the accuracy and
F1 score of all the ratios are generally high over 97% and 80%
respectively. For F class, the ratios of 1:2, 1:4, and 1:8 have
high accuracy at 95.72%, 92.97%, and 90.22% respectively.
The F1 score of 1:4 ratio is 9.13% and it is higher than the
F1 score of 1:2 ratio which is 8.62%.

The second experiment examines the effect of the num-
ber of consecutive heartbeats on a bag of CNN-LSTM and
RRHOS-LSTM classifiers where each bag is combined sep-
arately. We train 10 binary CNN-LSTM bagging models
on a different number of heartbeats: 1 beat, 3 beats, and
5 beats, where each model is trained individually on each
class (SVEB, VEB, or F) using the one-vs-all scheme. The
final decision is obtained by applying a majority voting
per class on the bagging models. As shown in Table 2,
the performance of CNN-LSTM classifiers is improved with
the increasing number of input heartbeats. Using 5 beats as
input achieves the highest performance for the classification
of all classes. In F detection, for instance, the accuracy of
CNN-LSTM using 5 beats is 92.97% compared to 87.12%
and 65.65% for using 3 and 1 beats respectively. F1 score
of 5 beats is 9.13%. It is much higher than 1 and 3 beats
(4.11% and 5.95% respectively). Both 3 beats and 5 beats
achieve comparable accuracy for the classification of VEB
with 98.21% and 98.47% respectively. 5 beats F1 score is
88.87% higher than the 1 and 3 beats (51.48% and 87.37%).
In SVEB detection, using 3 or 5 beats has a much higher sen-
sitivity (84.27% and 81.63%) than using one beat (67.22%).
F1 score for the 5 beats CNN-LSTM is 30.04% compared to
27.97% and 27.63% for CNN-LSTM based on 3 beats and
1 beat respectively.

Table 2 also shows in rows 4 and 5 the result of using a bag
of RRHOS-LSTMmodels. HOS is tested to be extracted from
3 to 5 consecutive heartbeats and combined with RR intervals
features which it is computed around the middle beat in the
input sequence. RR intervals features are the same in both
3 and 5 beats based RRHOS-LSTM classifier.

The performance of a bag of RRHOS-LSTM classifiers
based on 5 beats is better than 3 beats based. For instance,
for the VEB class, the 5 beats based models resulted in
an accuracy of 96.21%, a sensitivity of 94.62%, a speci-
ficity of 96.32%, and an F1 score of 76.41% compared
to 96.07%, 94.31%, 96.20%, and 75.69% respectively for
3 beats based models. For the SVEB class, the RRHOS-
LSTM based on 5 beats have higher accuracy and F1 score
of 69.22% and 18.43% compared to 67.00% and 17.13%. For
F class, positive predictivity and specificity of the 5 beats
based models are better with 4.22% and 84.51% com-
pared to 3.31% and 78.71% for the 3 beats based models.
As notice, the CNN-LSTM model gives better performance
than the RRHOS-LSTM model. However, the sensitivity of
the RRHOS-LSTM is superior for all classes which will
improve the overall performance of the combined model.

In the next experiment, a comparison between the fusion
classifier and the majority voting (see Table 3) to combine the
bagging models is performed. The fusion classifier (Table 3
row 1) aggregates the CNN-LSTM and RRHOS-LSTMmod-
els. The result of each individual bagging model is shown
in Table 2 rows 3 and 5 respectively. The fusion classifier that
combines both models demonstrates a significant improve-
ment than the individual models. For example, For VEB
class, F1 score, and the positive predictive value (93.47%,
and 91.41%) are much higher than each individual bagging
models of CNN-LSTM (88.87%, and 83.88%) and RRHOS-
LSTM (76.41%, and 64.08%). For F class, the F1 score
is 20.80% higher than the individual bagging models. For
SVEB class, the fusion classifier achieves performance better
than both bagging models. for instance, the F1 score of using
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FIGURE 8. t-SNE visualization for the learned representation of the fusion network on the test data. (a) For SVEB class (orange color) and all
other classes (blue color). (b) For VEB class (orange color) and all other classes (blue color). (c) For F class (orange color) and all other classes
(blue color).

TABLE 4. Confusion matrix over (DS2) MIT-BIH of the proposed method
using the fusion classifier and the verification network.

the fusion classifier is 32.71% compared to 30.04% and
18.43% for each CNN-LSTM and RRHOS-LSTM bagging
respectively.

The results of using the majority voting is shown in Table 3
(row 2). There is a noticeable enhancement by using the
fusion classifier than the majority voting. The accuracy of
the fusion classifier for SVEB and F classes (86.40% and
97.71% ) is much higher than the majority voting (78.65%
and 91.39%). Both methods have a comparable performance
on theVEB class. In contrast to themajority voting, the SVEB
detection is improved by using the fusion classifier.

Next, the verification network is employed to validate the
fusion classifier results as shown in Table 3 (row 3). The
verification network is a single deep neural network based
on CNN-LSTM architecture. It examines the output of the
fusion classifier to decide whether the positive classification
label is correct or not. The verification network shows a
significant improvement on the performance of the ECG
arrhythmia classification system. For VEB class, the F1 score
and positive productive value have improved to 94.23% and
94.55% compared to using the fusion classifier only (93.47%
and 91.41%) respectively. For class SVEB, the F1 score and
positive productive value (65.85% and 66.19%) are much
better than the fusion classifier (32.71% and 20.55%) with
much more specificity (98.56%) than the fusion classifier
(86.67%). For the F class, the verification network is sub-
stantially increased the positive productively and F1 score

of the proposed system by 27.41% and 5.61% respectively.
The sensitivity of the verification network is lower than the
fusion classifier for all, however the overall performance is
much better. Table 4 shows the confusion matrix of the pro-
posed method using the fusion classifier and the verification
network. The normal class N is labeled if the testing sample
is classified as negative by all binary fusion and verification
classifiers.

In order to visualize the learned representation, we used
the t-distributed stochastic neighbor embedding (t-SNE)
method [41]. The t-SNE is a nonlinear dimension reduc-
tion method that mapping high-dimensional data into a
space of two or three dimensions. The t-SNE is applied
on the 500-dimensional vectors of the last fully connected
layer (before the softmax layer) of the fusion classifier,
as shown in Figure 8. The fusion classifier is trained on
SVEB, VEB, and F classes separately as a binary classifier.
Figure 8 (a) and (b) show a good clustering and localization
for SVEB and VEB classes respectively. For the F class
(Figure 8 (c)), the cluster is appearing however, some feature
points are not localized enough.

Table 5 demonstrates the performance of the proposed
method compared to varies state-of-the-art methods that are
evaluated on the MIT-BIH DS2 dataset using the patient
independent evaluation scheme. The proposed method is
compared to the following methods: Sellami & Hwang [19],
Shi et al [10], ensemble SVM [11], Raj & Ray [26],
Mathews et al [25], Herry et al [28], Zhang et al [9],
Ye et al [12], and Chazal et al [8]. We compute the five
evaluation metrics for each class and add the average of
sensitivity, specificity, positive predictive value, and F1 score.
The overall accuracy is also computed. All these metrics
are computed from the confusion matrix provided by the
authors. The proposedmethod achieves superior performance
compared to the-state-of-art heartbeats classification meth-
ods. The overall accuracy of the proposed method is 95.81%
much higher than all the other methods. The second highest
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TABLE 5. A comparison between the proposed method and the state-of-the-art techniques.

TABLE 6. Comparing the training time (seconds), testing time (seconds),
and the number of parameters of the CNN-LSTM, RRHOS-LSTM, the fusion
classifier and the verification network in seconds.

method is the ensemble SVM [11] with an overall accuracy
of 94.47%. The proposed method has a much higher Cohen’s
Kappa coefficient (0.79) compared to the next best method
(0.75). This shows there is substantial agreement between the
proposed method and the ground truth. The proposed method
has the highest average F1 score and average positive predic-
tive value (71.06% and 74.97%) among all the other methods
with more than 8% and 3% improvement compared to the
next highest method. The proposed method has the highest
positive predictive value for classes SVEB, VEB, and F. This
means that our method is more likely to truly recognize the
abnormal classes than the other methods. For the specificity,
the proposed method achieves superior values comparing to
the state-of-the-art methods for the classes, VEB, SVEB, and
F (99.62%, 98.56%, and 99.79%). For the sensitivity, the pro-
posed method has the highest value for class N (98.03%) and
ranked the third for VEB class (93.91%) compared to the-
state-of-art methods. The sensitivity of classes F and SVEB
(19.33% and 65.51%) are not among the highest values due
to the verification network reduces the true positive values
of these classes in exchange for a significant reduction in the
false-positive values.

Table 6 shows the training and the testing time of the
different proposed models. The training times of a single
CNN-LSTM and RRHOS-LSTM are 18.67 and 3.5 seconds
respectively. For each ECG arrhythmia class, we train 20 bag-
ging models (i.e. 10 for CNN-LSTM and 10 for RRHOS-
LSTM) so that the total training time is 11.1 minutes. After
that, we train the fusion classifier to combine 20models into a
single classifier. It takes 15 seconds to train one fusion classi-
fier. The verification network needs 22 seconds to be trained.
The total training time of the different proposed models over
all classes is 13 minutes. The inference times of the fusion
classifier and the verification network for a single beat are 0.4
and 0.3 milliseconds respectively. Note, the inference time of
the fusion classifier also includes the inference time of the
CNN-LSTM and RRHOS-LSTM bagging models.

V. CONCLUSION
In this paper, a novel deep learning-based multi-model
ensemble is proposed which achieves superior classification
performance compared to the-state-of-the-art methods. The
proposed multi-model system consists of two different deep
learning bagging models. The first model is based on the
CNN and LSTM architectures and takes the raw ECG beats
as an input. The second model is based on a combination
of classical feature, i.e. RR intervals and HOS, and LSTM
model. Each model is trained on a sub-sample of the training
set using the bagging scheme. The deep learning bagging
models are fused using a meta-classifier. The result of the
fusion classifier is refined using another deep learning net-
work to verify the abnormal classes and reduce the false
positive.
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The proposed method is evaluated on the standard
MIT-BIH dataset to classify the heartbeats into four classes
according to AAMI recommendation using the ‘‘subject-
oriented’’ patient independent scheme. The overall accuracy
of the proposed method is the highest (95.81%) by more
than 1% from the nearest state-of-the-art method. The pro-
posed method provided positive predictive values of 97.48%,
66.19%, 94.55%, and 41.67% for N, SVEB, VEB, and F
classes. The sensitivities for these four classes were 98.03%,
65.51%, 93.91%, and 19.33%. The averages of positive pre-
dictive value and F1 score across all classes are higher than
all other methods by more than 8% and 3% respectively.
Results showed that the proposed ensemble of multi-model
deep learning can pick up useful information from using
multiple ECG beats as an input. The ensemble of differ-
ent deep learning models using the meta-learner approach
and then verifying it, allowing the proposed system to out-
perform state-of-the-art arrhythmia classifiers that based on
either traditional machine learning methods or deep neural
networks.
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