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ABSTRACT Autonomous/self-driving vehicles have gained significant attention these days, as one of the
intelligent transportation systems. However, those vehicles have risks related to their physical implementa-
tion and security against cyber threats. Therefore, this study proposes a new security-by-design model for
estimating the uncertainty of autonomous vehicles and measuring cyber risks; thus it assists decision-makers
in addressing the risks of the physical design and their attack surfaces. The proposed model is developed
using neutrosophic sets that efficiently tackle multi-criteria decision-making (MCDM) problems with
extensive conflicting criteria and alternatives. The proposed model integrates MCDM, Analytic Hierarchy
Process (AHP), Multi-Attributive Border Approximation Area Comparison (MABAC), and Preference
Ranking Organization Method for Enrichment Evaluations II (PROMETHEE II), along with single-valued
neutrosophic sets (SVNSs). An illustrative case considering ten risks in self-driving vehicles is used to
validate the feasibility of the proposed model. Compared to the state-of-the-art methods, the proposed model
is considered consistent and reliable to deal with and represent uncertainty and incomplete risk information
using neutrosophic sets.

INDEX TERMS Autonomous vehicles, attack surfaces, cyber threat, MCDM, AHP, MABAC,
PROMETHEE II, ranking risks.

I. INTRODUCTION
Intelligent Transportation Systems (ITS), especially
autonomous/self-driving vehicles, have become real in our
era. Autonomous vehicles are one of the major categories
of ITS that could result in reducing the requirements of
drivers, decreasing transportation expenditures, and improv-
ing traffic flows. Those vehicles can be connected with
other ones, where they are connected using communica-
tion techniques and tools which are known as vehicles
to everything (V2X) [1]. V2X can be represented
in various technological forms, including vehicle-to-
infrastructure (V2I), vehicle-to-vehicle (V2V), vehicle-to-
pedestrian (V2P and vehicle-to-network (V2N) systems.
In this essence, ITS contains an intelligent system, robotic,
and computerized driving technology combined coherently.
It is expected that autonomous vehicles are going to be used
in countries, cities, and streets [2].
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Previous studies have introduced various features, advan-
tages, and benefits of these driverless vehicles. These benefits
include increased mobility for older adults and incapacities,
enhancing motorists’ and walkers’ safety, reducing pollution,
and crashes [3]. In this context, this automated technology can
have manufacturing and cyber risks [4]. The risks of manu-
facturing are interaction among the electronic infrastructure,
user, and utonomous technology that can cause troubles for
the user, walkers, and anything on the road [5]. In California,
rear-end crashes are considered common crashes of driverless
vehicles [6]. The risks of cybersecurity include attack sur-
faces and vectors, where various vulnerabilities in the physi-
cal implementation of the vehicles would be exploited using
various attacking techniques such as denial of service (DoS)
and Distributed DoS (DDoS) attacks [7].

In 2040, autonomous vehicles are expected to be 40%
of vehicles [8]. This would help recognize how people use
and adapt these vehicles for achieving safety on roads [9].
The safety of the vehicles is a vital issue due to usage in
different areas like transportation operations and terrorist

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107657

https://orcid.org/0000-0002-3819-0714
https://orcid.org/0000-0001-6127-9349
https://orcid.org/0000-0002-3988-1437
https://orcid.org/0000-0002-2109-7871


M. Abdel-Basset et al.: Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

intervention [10]. Being technology-dependent, driverless
vehicles could imply risks. Moreover, these vehicles have
a complex system that contains various risks like vehicles
to infrastructure and V2V systems [11]. Consequently, there
is no full security in a system that does not contain attack
surfaces or vectors. When systems have interactions with
humans, this would produce vulnerabilities [12]. These risks
contain uncertainty and incomplete information which make
it a decision problem. To do so, fuzzy sets have been devel-
oped to address the uncertainty of incomplete information
and model uncertainty of cyberattacks. Fuzzy sets work with
true and false (T, F) situations but cannot deal with inde-
terminate (I). The generalization of fuzzy sets introduces an
intuitionistic fuzzy set and interval value intuitionistic fuzzy
set. The interval value intuitionistic fuzzy set cannot express
the inconsistency and indeterminacy information. Another
drawback of the interval value intuitionistic fuzzy set that
the range of membership and non-membership degrees must
gratify the sum of membership and non-membership degrees
within a closed interval value [0, 1] [13]. To overcome these
drawbacks, the neutrosophic set is introduced with truth,
falsity and indeterminacy (T, I, F) membership [13]. This can
deal with inconsistency and indeterminacy of risk informa-
tion. Single-valued neutrosophic sets (SVNSs) are considered
a subclass of neutrosophic sets. This can be used in vague,
incomplete, uncertain vagueness, and inconsistent informa-
tion, and cyberattack information.

In this paper, the ranking of driverless vehicle risks is
introduced as an MCDM problem with the neutrosophic
sets, including AHP, MABAC, and PROMETHEE II. The
main objective is to introduce our hybrid framework for
ranking driverless vehicles’ associated risks in uncertain cir-
cumstances. This hybridization introduces a better collective
alternative than a single technique; i.e. one technique can
complement the other [14]. The use of the three methods can
perfectly rank the risks of autonomous vehicles.

By capturing risk information, AHP introduces the best
decision by setting importance to decision-makers [15].
AHP is applied to many problems such as manufacturing
processes, education, modeling attack surfaces, and their vec-
tors [16]. Additionally, its hierarchical structure can accom-
modate decision-making problems in various dimensions.

MABAC is a powerful MCDM technique that is sim-
ple and precise with a systematic and straightforward
computation approach. However, all criteria are assumed
compensatory [17]–[18]. PROMETHEE II is constructed
on non-compensatory standards. The outranking results of
PROMETHEE II are calculated from pairwise judgments
of alternatives in contradiction of each attribution in fewer,
uncomplicated, and simple calculations [19]. The main con-
tributions of this study can be summarized as follows:
• We employ an MCDM with a hybrid framework model
of neutrosophic sets, involving AHP, MABAC and
PROMETHEE II, to effectively model and rank risks
associated with autonomous vehicles and accomplish
high safety and security to drivers and pedestrians.

• We autonomously evaluate the risks of driverless vehi-
cles concerning each criterion. Then, we apply the AHP
method to determine theweights of criteria and apply the
MABAC and PROMETHEE II methods to rank risks.

• We provide a comparative analysis with Pythagorean
fuzzy AHP, TOPSIS, VIKOR to determine the proposed
model’s effectiveness for ranking risks of driverless
vehicles.

• We introduce a sensitivity analysis to examine the
credibility of the proposed model via changing the
weights of criteria under ten risk scenarios for measuring
the ranking of driverless vehicles constrained to these
changes.

The remainder of this paper is organized as follows. Section II
introduces the literature review. Section III provides the def-
initions of the problem. Section IV presents the methodol-
ogy of this study. Section V presents the application of the
proposed methodology. Section VI provides a comparative
analysis of previous studies. Section VII shows the sensitiv-
ity analysis. Section VIII presents managerial implications.
Section IX concludes the study.

II. LITERATURE REVIEW
This section reviews the main evaluation criteria, and then the
sub-criteria for each main criterion.

Transport plays a vital role in developing social and eco-
nomic nationalism—transport costs enormous money to be
safe and healthy for passengers and walkers [20]. Transport
roads face many risks that threaten walkers and drivers [21].
Many injure and approximately 1.2 million death worldwide
that cause by motor vehicle crashes on the roads [22]. Rea-
sons for accidents vary from driver’s experience in different
situations, driver’s awareness of road emergencies, weather
conditions, traffic conditions, failure of the brake, and high
speed [23], [24]. To reduce these causalities, and reducing
human errors, driverless vehicles can be used in improved
safe routes [25]. That is, driverless vehicles have the potential
to introduce more safe roads.

There are some recent studies in the field of ITS that have
been applied undermany scenarios. For instance, Li et al. [26]
proposed a combined trajectory planning and tracking algo-
rithm for vehicle control under the effects of the traffic
environments and human driving styles. Chen et al., [27]
suggested two techniques to improve the stability of the
policy model training with as little manual data as possible
on end-to-end autonomous driving. Chen et al. [28] devel-
oped a deep Monte Carlo Tree Search (deep-MCTS) control
method for vision-based autonomous driving for predicting
driving maneuvers to assist in enhancing the stability and
performance of driving control. Amini [29] introduced a
data-driven simulation and training engine capable of learn-
ing end-to-end autonomous vehicle control policies using
only sparse rewards for allowing virtual agents to drive along
a continuum of new local trajectories.

Some studies focus on software and hardware risks in self-
driving vehicles [30]. The related software/hardware risks
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could be internet crashes, failures in a Global Position Sys-
tem (GPS), failure in sensors, and losses in signals that
could be occurred via cyberattacks [4], [31]. As a result,
Bhavsar et al. [32] presented that 14% of sequential failure in
the vehicle component and consequences found 158 per one
million mi of travel failure of the infrastructure of a piece.
Lee and Kolodge [33] introduced driverless vehicles’ atti-
tudes and theirmotivation factors. Cyber-attacks, such asDoS
and DDoS, could exploit the vulnerabilities of autonomous
vehicles which would corrupt the infrastructure, causing fail-
ures and harming the economy of these vehicles [34].

These risks contain uncertainty and incomplete informa-
tion. Michelmore et al. [25] suggested assessment techniques
for uncertainty to predict crashes in autonomous driving.
Huang et al. [35] proposed a model to assess uncertainty in
testing data-driven self-driving. Sener and Zmud [36] treated
uncertainty in using self-driving vehicles. La Torre and Men-
divil [37] made amodel risk aversion of average investors and
their desire to maximize the expected return with the least
risk; they used the probability multi-measure to overcome
uncertainty and incomplete information.

Moreover, to overcome this uncertainty and incomplete
information, researchers use fuzzy sets in their studies.
Zolfaghari and Mousavi [38] used the hesitant fuzzy sets
and VIKOR method to rank and ordered risks of projects
under uncertainty of conditions. Faizi et al. [39] used hesitant
fuzzy sets as well. Hesitant fuzzy sets are a generalization
of the fuzzy set to deal with the delay in decision making
to rank reversal paradox and using imperfect information.
The fuzzy sets can deal correctly with uncertainty. Still, they
cannot deal with indeterminate values, so the researchers
introduce the intuitionistic fuzzy sets and interval-valued
intuitionistic fuzzy sets that deal with uncertainty. These
improvements introduce the non-membership and member-
ship degree, unlike classical fuzzy sets [40]. The neutro-
sophic set is a generalization of fuzzy sets and can handle
uncertainty and incomplete information as it represents the
truth, indeterminate and falsity (T, I, and F). They handle
problems with uncertainty, ambiguity, vague, and inconsis-
tency. The application of neutrosophic sets has been applied
in many fields, such as medical diagnoses, machine learn-
ing, optimization design, image processing, algebraic system,
and computational intelligence [41]–[45]. SVN is a subclass
of neutrosophic sets that can be used in the engineering
field giving the ability and potential to represent inconsis-
tent, vague, ambiguous, imperfect, incomplete, and uncertain
information. Yang et al. [46] introduced the SVNSs with the
rough systems and produced a hybrid model. The neutro-
sophic sets for conflicting criteria and alternatives are named
MCDM. Yang et al. [46] introduced SVNSs with MCDM
to measure the values between options and ideal choices.
The neutrosophic sets use MCDM techniques to deal with
uncertainty, such as AHP, VIKOR, TOPSIS, MABAC and
PROMETHEE [47], [48].

Saaty developed the AHP method that can be utilized
for weighting criteria and ranking alternatives in MCDM

activities [49]. AHP method is applying in many fields to
assess the conflicting criteria. Lyu et al. [50] used the AHP
method to rank the risk of construction shield tunnels in
Jinan. Ilbahar et al. [51] applied the AHP to rank the risk
assessment for occupational health and safety. Bakioglu and
Atahan [52] proposed a model consisting of Pythagorean
fuzzy AHP, TOPSIS, and VIKOR to rank driverless vehicles’
risks. They used seven main criteria and ten criteria with
eight risks. The main limitation of their study that it does
not take into consideration the indeterminacy value. Also,
Karasan et al. [10] proposed the Pythagorean fuzzy AHP
to analyze driverless vehicles’ risks. They used four main
criteria and twenty sub-criteria main limitations of their study
used the fuzzy sets and did not handle indeterminacy.

MABAC is an MCDM method proposed by Pamučar and
Ćirović in 2015 [17]. MABAC is a consistent and reliable
method. It stands for multi-attributive border approximation
area comparison. Pamučar and Ćirović [17] used theMABAC
to select the transport and handle resources. Wang et al. [53]
applied the MABAC method with q-rung orthopedic.
Wei et al. [54] applied theMABACmethod for green supplier
selection.

Brans and Vincke suggested the PROMETHEE-I and
PROMETHEE-II techniques which received much atten-
tion, for their reliance on the principle of partial and
total arrangement [55]. Debbarma et al. [56] applied the
PROMETHEE II method to determining the optimal
performance-emission trade-off vantage in a hydrogen-biohol
dual fuel endeavor. Sianturi et al. [57] explored the use of the
Extended PROMETHEE II method in solving the problem
of determining the best students and generate more efficient
decisions. They used four criteria in the determination of
best student and policy makers can add other criteria. Each
methodology has drawbacks in which policymakers should
take into consideration [58]. A single model or technique
cannot introduce a better solution for many problems [59].
Therefore, a hybrid model can effectively deal with issues
than a single one. To conclude the literature review, and to
the best of our knowledge, no study of ranking the risks
of driverless vehicles considering different criteria and risks
handling the indeterminacy value at the same time.

III. PROBLEM DEFINITION
This section explains the main evaluation criteria in deter-
mining the risks that would affect self-driving vehicles,
and then the sub-criteria for each major criterion. Risks of
self-driving vehicles are assessed through nine sets of criteria:
legislation criterion, unregulated industry criterion, financial
aspects criterion, increased exposure to radiation criterion,
hardware criterion, traffic criterion, accidents criterion, mal-
functions criterion, and remote control and hacking criterion.
The legislation criterion includes one sub-criterion, namely
legislation and data protection. The unregulated industry cri-
terion is divided into two sub-criterion, namely limited infor-
mation on technology, and safety standards. The financial
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aspects criterion includes three sub-criterion, namely oper-
ating cost, revenue potential, and the number of passengers.

The increased exposure to radiation criterion includes one
sub-criterion, namely serious health problem. The hardware
criterion contains three sub-criterions: IT infrastructure, hard-
ware integration and requirements, and robustness. The traffic
criterion includes one sub-criterion, namely Traffic crowd-
ing. The accidents criterion comprises three sub-criterions:
road accidents, weather conditions, and the false security
of sense to passengers. The malfunctions criterion contains
three sub-criterions: human errors, software malfunctions,
and mechanical malfunctions. Last, the remote control and
hacking criterion includes three sub-criterions: theft of pri-
vate data, hacking, and computer viruses. The main criteria
and their sub-criteria are listed as follows:

A. LEGISLATIONS S1
Consider S1 the main criterion refers to legislation and data
protection.

1) LEGISLATION AND DATA PROTECTION S11
For driverless vehicles, responsibility is an important
issue. Responsibilities are defined in situations of when
malfunction, injure of walkers, damage the drivers or
manufacturers [60].

B. UNREGULATED INDUSTRY S2
Consider S2 as the main criterion refers to unregulated indus-
try and limited information of technology. The industry of
driverless vehicles is unregulated which is good for devel-
opers, companies, and manufacturers but not for users and
customers. With an unregulated industry, there is reduced
quality, high cost, and a decrease in profit [61].

1) LIMITED INFORMATION ON TECHNOLOGY S21
Risks can result from limited information on technology. That
is, many manufacturing errors are due to a lack of driverless
vehicle technology.

2) SAFETY STANDARD S22
Many new companies in the driverless vehicles market with
no formal announced safety standards. Users must check all
information about driverless vehicles.

C. FINANCIAL ASPECTS S3
Consider S3 as the main criterion for financial aspects such as
the operating cost, the number of passengers, and profit [62].

1) OPERATING COST S31
Risks related to the operating cost of driverless vehicles
result in developers cannot add some features due to the high
operation costs.

2) REVENUE POTENTIAL S32
Risks of driverless vehicles can occur due to expected and
actual revenue. When less revenue than expected is gained,

it is always harder tomake upgrade decisions as it may double
the chances of risks in the driverless vehicles market.

3) NUMBER OF PASSENGERS S33
The increased number of passengers of driverless vehicles
can increase awareness of the project and attract more rev-
enue to the project.

D. INCREASED EXPOSURE TO RADIATION S4
Consider S4 as the main criterion for risks caused by exposure
to radiation.

1) SERIOUS HEALTH PROBLEM S41
Driverless vehicle components, such as GPS, sensor, Blue-
tooth, Wi-Fi can produce harmful radiation risks for users
and customers with prolonged usage. Outcomes of elec-
tronic radiation can cause health problems like eye issues,
headaches, and so on.

E. HARDWARE S5
The hardware components of driverless vehicles may fail.
So that driverless companies produce more robust compo-
nents such as sensors.

1) IT INFRASTRUCTURE S51
Failure risks can occur when infrastructure components fail.
The infrastructure robustness depends on the technical capac-
ity and the associated effective operations. [62].

2) HARDWARE INTEGRATION AND REQUIREMENTS S52
Risks can occur due to problems in hardware safety require-
ments, worst-case testing, functional testing under normal
conditions, and incorrect specifications of the hardware.
Hardware should contain the safety requirements, safety life-
cycle of hardware, and testing of hardware.

3) ROBUSTNESS S53
Risks can occur in driverless vehicles due to the less robust-
ness of hardware. Risks come from when the hardware of
driverless vehicles is broken down.

F. TRAFFIC S6
Consider S6 as the main criteria regarding traffic. The system
of driverless vehicles should be tested on many roads and
cars. With mixed traffic, driverless vehicles can be risky and
confused due to having various levels of automation [63].

1) TRAFFIC CROWDING S61
Traffic crowing can cause many risks for driverless vehicles.

G. ACCIDENTS S7
Many accidents of driverless vehicles can be caused by roads,
so developers should take into account all types of roads and
possible problems to avoid accidents.
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1) ROAD ACCIDENTS S71
Accidents can occur due to problems with roads. This makes
it an important risk to consider.

2) WEATHER CONDITIONS S72
Driverless vehicles cannot be programmed for high weather
conditions consequences which may cause many accidents.
Weather conditions can affect sensors and their connectivity
to other devices. That is a possible risk that comes from
decreasing the visible area of a driverless vehicle.

3) THE FALSE SECURITY OF SENSE TO PASSENGER S73
Risks can occur due to false security of sense to passengers
from driverless vehicles.

H. MALFUNCTIONS S8
Consider S8 as the main criterion that refers to components
failure in driverless vehicles.

1) HUMAN ERRORS S81
Malfunctions can be caused by human errors or component
failure.

2) SOFTWARE MALFUNCTIONS S82
Driverless vehicles have the risk of software failure due to
bugs by developers or due to the complexity of the developed
program.

3) MECHANICAL MALFUNCTIONS S83
Risks related to malfunctions of mechanical parts of vehi-
cles may result in real accidents. Malfunctions can occur in
self-driving vehicles more than conventional vehicles [64].

I. REMOTE CONTROL AND HACKING S9
Consider S9 as the main criterion for remote control and
hacking of driverless vehicles. Hackers may get into systems
to change how the driverless vehicle system operates [63].

1) THEFT OF PRIVATE DATA S91
Data privacy is still an issue in such systems.

2) HACKING S92
Malicious hacking is one of the serious remote-control
attacks which may cause many problems with driverless
vehicles [52].

3) COMPUTER VIRUSES S93
Due to connected computer systems in driverless vehicles,
a possibility of injecting viruses and other harmful programs
into driverless vehicle systems.

IV. METHODOLOGY
A. NEUTROSOPHIC LINGUISTIC INFORMATION
In a quantitative form, it cannot evaluate many prob-
lems because it contains incomplete, vague, ambiguous,

TABLE 1. Single valued neutrosophic scale.

inconsistent, and uncertain information to assess informa-
tion in qualitative form. Neutrosophic linguistic information
can be used in different fields. Table 1 presents the linguis-
tic terms that experts used to make decision matrices. The
extremely bad term was expressed to the least term, and the
extremely good described the highest term. Each linguistic
term has the SVNSs. That includes the truth, indeterminacy,
and falsity. These SVNSs convert to one crisp value to be used
in the proposed model easily and smoothly.

B. SUGGESTED HYBRID MCDM APPROACH
MCDM handles the composite decision problems which
include various conflicting criteria. MCDM procedures com-
pute an ideal alternative or rank alternatives in which the
maximum ranked is measured as the best alternative to the
experts. One of the main characteristics of self-driving vehi-
cles is their imprecision in various fields. Since the problem
of ranking driverless vehicle risks has a set of selected alter-
natives with conflicting criteria, MCDM procedures may be
efficiently applied to deal with this problem. They rank the
risks involved in driverless vehicles in four primary phases
by suggested methodology.

In the first phase, the objective, criteria, and risks are deter-
mined. In this field and survey of the literature, the criteria
and alternatives are collected and described, making pairwise
comparisons through the group of consulting experts. In the
first three steps, the hierarchy tree that shows the objective
from study, criteria, and alternatives is built. Then, from
steps 4 to 7, the neutrosophic set steps are calculated, and
a matrix of the decision matrix’s opinions.

In the second phase, the AHP method is used to determine
the weights of criteria from steps 8 to 11.

In the third and fourth phases, MABAC and
PROMETHEE II are applied using selected criteria and
risks. The rest of the steps show the suggested hybrid
MCDMprocedure. The proposedmethodology is represented
in Fig. 1.

In this work, the following MCDM procedures are imple-
mented to rank the risks of the driverless vehicle:
X The MABAC method
X The PROMETHEE II method

The steps of the decision-making algorithm are briefly
defined as follows:
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FIGURE 1. The framework of suggested methodology.

Step 1. Applying the neutrosophic sets the first step is
to determine the goal from this study that ranking risks of
self-driving vehicles.
Step 2. Collecting the main criteria and sub-criteria

risks of self-driving vehicles, where x refers to criterion
(x = 1, 2, 3, . . . . . . .a).

Step 3. collecting alternatives risks of self-
driving vehicles; where y refers to alternative (y = 1, 2,
3, . . . . . . .b) and o refers to several criteria and p refers
to the number of alternatives and build a hierarchy
tree to show the objective, main and sub-criteria, and
alternatives.
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Step 4. According to SVNNs in Table 1 [58], [65] the
pairwise comparisons decision matrix that collects opinions
of experts is built as:

KM
=


kM11 · · · kM1x
...

. . .
...

kMy1 · · · kMxy

 (1)

where M indicates the number of experts.
Step 5. Applying the score function to convert SVNNs to

crisp values as [18].

S
(
kMxy
)
=

2+ TM
xy − IMxy − FMxy

3
(2)

TM
xy, I

M
xy,F

M
xy, present truth, indeterminacy, and falsity of

the SVNNs.
Step 6. Combine the pairwise comparison matrix to make

one matrix that aggregates the expert’s opinions as:

kab =

∑M
M=1 kxy
M

(3)

Step 7. The aggregation of the pairwise comparison matrix
that contains the judgments of decision-makers is built as:

K =

 k11 · · · k1a
...

. . .
...

kb1 · · · kxy

 (4)

Step 8. Applying the AHP method the first step is to
compute the normalize matrix from the aggregation pairwise
judgments as:

wb
y =

wy∑b
y=1wy

; y = 1, 2, 3, . . . . . . .b (5)

Step 9. From the normalized matrix determine the row
average weights (priorities) of main and sub-criteria (local
weights) as:

wx =

∑a
x=1

(
kxy
)

b
; x = 1, 2, 3, . . . . . . .a;

y = 1, 2, 3, . . . . . . .b; (6)

Step 10. Compute global weights of sub-criteria by multi-
ply main criteria weights by sub-criteria (local) weights
Step 11. Check the consistency ratio (CR) to validate the

opinions of experts are consistent or not by first calculate
the lambdamax(compute the weighted columns by multiply
the weights of criteria by the value of aggregation pairwise
matrix, then sum the value row of weighted columns this
results in the weighted sum, finally divide the weighted sum
by weights of criteria) then compute the consistency index
and finally calculate the CR as.

CR =
CI
RI

And CI =
lambdamax − o

o− 1
(7)

where o refers to the number of criteria. lambdamax is the
maximum eigenvalue. CI is a consistency index and RI is a

random index. If the CR is less or equal to 0.1 the opinion of
experts is accepted otherwise the value of opinion experts not
consistent then reevaluate the matrix.
Step 12. Starting from this step, the MABAC method

is applied. Equations (1-4) are applied to construct the
aggregated pairwise comparison matrix between criteria and
alternatives.
Step 13. From the aggregation matrix between criteria and

alternatives, the normalized matrix of the decision matrix is
constructed as:

Zxy =
kxy − k−y
k+y − k−y

; x = 1, 2, 3, . . . a,

y = 1, 2, 3, . . . ..b for Beneficial criteria (8)

Zxy =
kxy − k+y
k−y − k+y

; x = 1, 2, 3, . . . a,

y = 1, 2, 3, . . . ..b for Non− Beneficial criteria (9)

where k−y = min(ky) and k+y = max(ky), also Zxy is normal-
ized value. Where the beneficial criteria refers to positive cri-
teria and the non-beneficial criteria refers to negative criteria
(cost criteria)
Step 14.From the normalized decisionmatrix, theweighted

normalized of the decision matrix is computed as:

Ẑxy = Wy +Wy ∗ Xxy; x = 1, 2, 3, . . . a,
y = 1, 2, 3, . . . ..b (10)

Step 15. From the weighted normalized matrix, the border
approximation area matrix is determined as:

Ry = (5a
y=1Ẑxy)

1/a
; y = 1, 2, 3, . . . .b (11)

Step 16.Calculate the distance from the border approxima-
tion area as:

Dxy = Ẑxy − Ry; x = 1, 2, 3, . . . a, y = 1, 2, 3..b (12)

Step 17. The total distance from the border approximation
area is determined as:

Tx =
∑b

y=1
Dxy; x = 1, 2, 3, . . . a; y = 1, 2, 3, ..b (13)

Step 18.The risks are ranked according to the total distance
value to order the risks of self-driving vehicles.
Step 19. Applying the PROMETHEE II method is started.

The first step is to apply Eqs (1-4) to construct the aggregation
pairwise comparison between criteria and alternatives.
Step 20. From the aggregation, the pairwise comparison

matrix normalizes the decision matrix.

Exy =
kxy − k−y
k+y − k−y

; x = 1, 2, 3, . . . a,

y = 1, 2, 3, . . . ..b for Beneficial criteria (14)

Exy =
k+y − kxy

k+y − k−y
; x = 1, 2, 3, . . . a,

y = 1, 2, 3, . . . ..b for Non− Beneficial criteria (15)

where k−y = min(ky) and k+y = max(ky).
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FIGURE 2. The objective, main criteria, and sub-criteria and risks hierarchy tree.

TABLE 2. The aggregated value of decision matrices between the main criteria.

Step 21. Use the normalized matrix to compute the
evaluative difference of yth alternatives concerning other
alternatives.
Step 22. Determine the preference function fy(a, b) as.

fy (a, b) = 0 if Eay ≤ Eby (16)

fy (a, b) = Eay − Eby if Eay ≥ Eby (17)

Step 23. Then aggregate preference functions value in one
matrix as:

G (a, b) =

[∑o
y=1Wyfy (a, b)

]
∑o

y=1Wy
(18)

Step 24. Determine the leaving (Positive) and entering
(Negative) outranking flows.
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TABLE 3. Final weights for the nine main criteria and twenty sub-criteria.

FIGURE 3. Final weights of main criteria.

The leaving flow 9+ is determined [59], [66] as

9+ =
1

p− 1

∑p

b=1
G(b, a)b = 1, 2, ..p(a 6= b) (19)

The negative flow 9+ is determined as.

9− =
1

p− 1

∑p

b=1
G(b, a)b = 1, 2, . . . ..p(a 6= b) (20)

Step 25. The net outranking flow for each risk is deter-
mined [52], [66] as:

9 = 9+ −9− (21)

Step 26. The risks are ranked according to net outranking
flow 9.

V. APPLICATION
To assess the associated risks, the nine main criteria, twenty
sub-criteria, and ten alternatives are proposed based on the
ones introduced in [52]. Fig. 2 shows the objective, main
and sub-criteria, and risks. With three experts, using Eq (1)
and using the scale in Table 1, the opinion of experts are
gathered in a pairwise comparison listed in Tables (10-12).
The comparison matrix of nine main criteria is proposed for
the first, second, and third experts demonstrated in Table 13 to
Table 18. The score function is calculated using Eq (2) to
obtain the crisp values. The pairwise judgment for three
experts is aggregated using Eq (3) and the aggregated deci-
sion is estimated using the (4) matrix in Table 2 for the main
criteria. The normalized decision matrix is determined using
Eq (5) as demonstrated in Table 19, and the row average
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FIGURE 4. The global weights of sub-criteria.

TABLE 4. The aggregated pairwise comparison matrix of three experts for MABAC and PROMETHEE II methods.

TABLE 5. The border approximation matrix for MABAC method.

TABLE 6. The total distance from the border approximation area.

is determined using Eq (6), then the weights of main and
sub-criteria are illustrated in Table 3.

Fig. 3 shows the final weights of the main criteria and
the relationship between the main criteria of the proposed
model on the vertical axis and the values of the weights on

the horizontal axis for each criterion. Fig. 4 depicted the
global weights of sub-criteria, as it reveals the relationship
between the sub-criteria of the proposedmodel on the vertical
line and the values of the weights on the horizontal line for
each criterion. The consistency is tested. CR is estimated
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FIGURE 5. Ranking of MABAC and PROMETHEE II.

TABLE 7. The leaving, entering and net outranking flows.

TABLE 8. The proposed and compared study ranking with different MCDM methods.

using Eq (7). CR is set at 0.079, which is less than 0.1 to
be accepted. Consequently, the weights of the criteria are
consistent.

The results of MABAC started with the opinion of
three experts in a comparison matrix with the scale

of SVNNs; after that, this scale is converted to a crisp
value and three comparison matrices are aggregated in one
matrix using Eqs. (1-4). The comparison matrix between
the criteria and alternatives is listed in Table 4. From
the aggregated comparison matrix, the normalized matrix
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FIGURE 6. The comparative analysis of main criteria weights between pythagorean fuzzy and neutrosophic AHP.

FIGURE 7. Comparative of sub-criteria global weights between pythagorean fuzzy and neutrosophic AHP.

is estimated using Eqs. (8-9). In Table 20, the normal-
ized decision matrix for the MABAC method for positive
and negative criteria, where the operating cost S31 is neg-
ative (non-beneficial) criteria and the rest of criteria pos-
itive (beneficial), applying Eq (9) for S31 and the rest
Eq (8). From the normalized decision matrix, the weighted
normalized decision matrix is estimated using Eq (10)
as demonstrated in Table 21. The border approximation
area matrix is calculated using Eq (11) as illustrated
in Table 5.

The distance from the border approximation area is mea-
sured using Eq (12), as listed in Table 21. The total distance
from the border approximation area is obtained from Eq (13)
as demonstrated in Table 6. The ranking of alternatives by
total distance is calculated. Fig. 5 shows this ranking, where
the cyber-attack R2 is considered as the best alternative and
has a higher ranking than the disruption risk R4. Fig. 5
shows the relationship between the risks on the vertical

axis and the ranking values on the horizontal line for each
risk.

The PROMETHEE II results: Eqs. (1-4) is applied to obtain
the aggregated pairwise comparison matrix from the opinion
of three experts. Then the normalized decision matrix is
estimated using Eqs. (14-15), as listed in Table 23. Eq. (15)
is used for calculating negative criteria (operating cost S31)
and the rest criteria are positive criteria using Eq (14). Then,
the evaluative difference is estimated for R1- R2, R1- R3, R1-
R4, R1- R5, R1- R6, etc, to risk 10. Then, using Eqs. (16-17),
the preference function is measured if R1- R2 is less or equal
to 0, and the preference function is zero if R1- R2 > 0
then the preference function is R1- R2. The preference in
the preference matrix is calculated using Eq (18), as demon-
strated in Table 24. Then, the leaving and entering outranking
flows are measured using Eqs. (19-20), as listed in Table 7.
The net outranking flows are measured using Eq (21),
as listed in Table 7.
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FIGURE 8. Comparative analysis of MCDM methods.

FIGURE 9. Comparative analysis between pythagorean AHP and neutrosophic AHP.

TABLE 9. The aggregation rank in differ scenarios.

A. RESULTS AND DISCUSSION
In this work, three experts were asked to assess the judg-
ment comparison by single-valued neutrosophic scale for

main criteria, sub-criteria, and risks for each criterion.
Then three judgment comparison matrices were used from
the main criteria and each sub-criteria in three comparison
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FIGURE 10. Sensitivity analysis of ranking alternatives.

TABLE 10. Evaluation pairwise comparison matrix for nine main criteria by first expert.

TABLE 11. Evaluation pairwise comparison matrix for nine main criteria by second expert.

matrices. Then the comparisonmatrices are aggregated in one
matrix for main and sub-criteria. After that, the AHP method
is applied.

By applying the neutrosophic AHP, the study found
that traffic S6 has the highest weight in the main cri-
teria with a value of 0.119, the legislation S1 has the
least weight in the main criteria with a value equals
to 0.062.

In global weights of sub-criteria, the traffic crowding crite-
rion S61 has the highest weight with a value equals 0.119 and
the operating cost criterion S31 is the least weight in global
criteria with a value equals 0.014. CR is used to determine
the opinions of experts are valid or not. It is found that
CR equal to 0.079 which is less than 0.1; hence, we con-
clude that the experts’ opinions are consistent. The three
experts are asked to assess in a pairwise comparison matrix
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TABLE 12. Evaluation pairwise comparison matrix for nine main criteria by third expert.

TABLE 13. Evaluation pairwise comparison matrix for sub-criteria of unregulated industry criterion by all experts.

TABLE 14. Evaluation pairwise comparison matrix for sub-criteria of financial aspects criterion by all experts.

TABLE 15. Evaluation pairwise comparison matrix for sub-criteria of hardware criterion by all experts.

between criteria and alternatives. That is we have three
pairwise comparison matrices. After that, the three matri-
ces are aggregated into one matrix to allow for the appli-
cation of MABAC and PROMETHEE II methods to rank
risks.

In applying MABAC, start with the aggregated decision
matrix. The MABAC results as follows, cyber-attack risk
R2 is the highest-ranking with a total distance value equal

to −17.5799 and disruption/catastrophic risk R4 is the least
ranking of alternatives with a total distance value equal
to −17.8966.

The PROMETHEE II results are as follows, cyberattack
risk R2 is the highest-ranking with net outranking flow value
equal 0.198137 and disruption/catastrophic risk R4 is the least
ranking of alternatives with a net outranking flow value equal
to −0.10338.
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TABLE 16. Evaluation pairwise comparison matrix for sub-criteria of accidents criterion by all experts.

TABLE 17. Evaluation pairwise comparison matrix for sub-criteria of malfunctions criterion by all experts.

TABLE 18. Evaluation pairwise comparison matrix for sub-criteria of remote control and hacking criterion by all experts.

TABLE 19. The normalized matrix of nine main criteria for AHP method.

VI. COMPARATIVE ANALYSIS
A. FIRST COMPARATIVE ANALYSIS
The comparative analysis is used to give the proposed
hybrid method robustness and effectiveness. To do so, we
compared the proposed model under the neutrosophic

environment with this study. It produced a model with
Pythagorean fuzzy AHP, TOPSIS, and VIKOR. Comparing
the previous studies with ours is detailed below. Analysis
of (neutrosophic AHP and Pythagorean fuzzy AHP [52],
(neutrosophic MABAC and Pythagorean fuzzy TOPSIS),
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TABLE 20. The normalized decision matrix by MABAC method.

and (neutrosophic PROMETHEE II and Pythagorean fuzzy
VIKOR results are detailed.

First, the data from the previous study [52] are used to
apply our hybrid method. Then, the seven main criteria, ten
global criteria, and eight risks are used. Table 8 shows the
criteria and alternatives of the compared study. First, the neu-
trosophic set and the AHP method are applied to obtain the
weights of the main criteria. This shows that the hacking
and privacy factors (C1) is the highest importance and the
traffic factor C4 is the least important. And the reaming
importance are ordered as C1 > C2 > C3 > C5 >

C7 > C6 > C4. Fig. 6 shows the comparative analysis of
criteria weights between this study (proposed model) and the
previous study [52]. Fig. 6 shows the relationship between the
main criteria on the vertical axis and the values of the weights
on the horizontal axis. The compared study (Pythagorean
fuzzy AHP) finds that S1 has the importance of the height
and C7 has the worst importance of the remaining criteria
importance as C1 > C2 > C3 > C5 > C4 > C6 > C7.
Then find the sub-criteria and global criteria. By this model
we found that the C11 has the largest weight of global criteria,
and C32 has the least important in global criteria. But in
the compared study (Pythagorean fuzzy AHP) C22 has the
highest importance and S71 has the least weight of global
criteria. Fig. 7 shows the global weights of sub-criteria of
neutrosophic AHP and Pythagorean fuzzy AHP.

Applying the neutrosophic MABACmethod to this model,
the R2 (Cyber Attack Risk) has the highest risk, and
the R6 (Behavioral adaptation Risk) has the least risk.
When applying the PROMETHEE II method, find that
R2(Cyber Attack Risk) has the best alternative and R8 (Dis-
ruption/catastrophic Risk) has the least risk. But the com-
pared study (Pythagorean fuzzy TOPSIS) find the R2 (Cyber
Attack Risk) has the best alternative and the R8 (Dis-
ruption/catastrophic Risk) has the worst alternative, and

the Pythagorean fuzzy VICKOR method find that R2
(Cyber Attack Risk) has the height risk and R8 (Disrup-
tion/catastrophic Risk) has the least risk. Table 8 shows
the proposed and compared study MCDM methods ranking.
Fig. 8. Show the ranking risks under comparative methods.
We conclude that the suggested hybrid model is a useful
approach to deal with MCDM. The neutrosophic sets, AHP,
PROMETHEE II and MABAC, are the consistent methods
compared with other methods.

B. SECOND COMPARATIVE ANALYSIS
Another comparative analysis has been performed to com-
pare between Pythagorean fuzzy AHP and neutrosophic AHP
using the main and sub-criteria from [10]. In Table 25,
the main and sub-criteria are presented. The analysis was
made by sub-criteria. In Pythagorean fuzzy AHP sub-criteria
found in C1 (Hardware Requirements) that C15 (Incor-
rect specifications of hardware) has the highest weights
equal 0.5 and the least weight is C13 (Safety lifecycle steps
for hardware) with a value of 0.04. In C2 (Hardware Integra-
tion) sub-criteria found C21 (Functional testing under) is the
highest weight equal to 0.5 and C23 (Mechanical endurance
test) is the least weight with 0.04. In the C3 found that C35
is the highest weight and C32 is the least weight with 0.04.
In C4 found that c45 is the highest weight with 0.5 and C43 is
the least weight with 0.04.

For the neutrosophic AHP results, in C1, we found that
C15 has the highest weight 0.279 with and C13 has the least
weight with 0.119. In C2 found that C21 has the highest
weight with 0.279 and C23 has the least weight with 0.104.
In C3 (Supporting Processes) found that C33 (Qualification of
software components) has the highest weight with 0.279 and
C32 (Qualification of hardware components) has the least
weight with 0.104. In C4 (Others) found that C45 (Loss
of energy supply or disturbances) has the highest weight

VOLUME 9, 2021 107673



M. Abdel-Basset et al.: Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

TABLE 21. The weighted normalized decision matrix. For MABAC method.

TABLE 22. The distance from the border approximation area.

with 0.279 and C43 (Sufficiency of the resources to support
the functionality) has the least value with 0.104. Fig. 9 shows
the comparative analysis between Pythagorean AHP and neu-
trosophic AHP.

VII. SENSITIVITY ANALYSIS
The rank of risks is correlated with the weights of criteria.
So, this change should be assessed. In this study, we show
the sensitivity of how the rank of alternatives alteration due
to change weights of criteria. The weights of criteria will
be changed by 5% or 50% increased or decreased. When
the criterion weight increased, the remaining will decrease.
Table 26 lists the ten scenarios of altering the weights of
criteria. When weights increase or decrease the sum of all

weights must be equal to 1. In scenario 1, every weight
of criteria is treated as equally important. The following
nine other scenarios focus on legislation, unregulated indus-
try, financial aspects, increased exposure to radiation, hard-
ware, traffic, accidents, malfunctions, and remote control and
hacking.

Ranking alternatives with different scenarios with
MABAC and PROMETHEE II methods is shown in Table 27.
The ranking of alternatives is different from MABAC and
PROMETEE II methods and several scenarios. In scenario 1,
R2 is the best alternative and R4 is the worst alternative.
In scenario 2, R6 is the best alternative and R5 is the worst
alternative. In scenario 3, R2 is the best alternative and R5 is
the worst alternative. In scenario 4, R7 is the best alternative

107674 VOLUME 9, 2021



M. Abdel-Basset et al.: Security-by-Design Decision-Making Model for Risk Management in Autonomous Vehicles

TABLE 23. The normalized matrix of decision matrix by PROMETHEE II method.

TABLE 24. The aggregation of the preference function value for PROMETHEE II method.

TABLE 25. The main and sub-criteria of comparative study.

and R4 is the worst alternative. In scenario 5, R7 is the best
alternative and R1 is the worst alternative. In scenario 6,
R7 is the best alternative, and R1 is the worst alternative.
In scenario 7, R2 is the best alternative and R1 is the worst

alternative. In scenario 8, R2 is the best alternative, and R1 is
the worst alternative. In scenario 9, R2 is the best alternative,
and R5 is the worst alternative. In scenario 10, R7 is the best
alternative and R4 is the worst alternative.
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TABLE 26. Ten scenarios change of criteria weights.

TABLE 27. The ranking alternatives (risks) under ten scenario by MABAC, PROMETHEE II methods.

The alternatives are aggregated to obtain the best alterna-
tives because MABAC and PROMETHEE II have different
ranking of alternatives. The aggregation is applied using Z as
the number of alternatives, each alternative takes Z points for
being the first choice. Z-1 is the second choice [65]. The best
alternative has the highest point, whilst the worst alternative
has the least points and so on. Fig. 10 shows the sensitivity
analysis when the weights of criteria are changed. In Table 9,
the aggregation ranking for ten scenarios is given.

VIII. MANAGERIAL IMPLICATIONS
Interaction environment with driverless vehicles can cause
many risks so companies that are interested in producing
these vehicles can consider these risks. This work introduces
a hybrid methodology to rank these risks. As a result, a cyber-
attack is the highest risk, and disruption and catastrophic
events are the least important risk. Hackers can theft the
private data of passengers as well as the operating system of
vehicles, so the developers of driverless vehicles can make
rotten systems to prevent hackers to do these crimes.

If developers do not make these, the market of driver-
less vehicles is going to be negatively affected. Artificial
intelligence can introduce a solution to overcome

this hacking. Machine learning and deep learning are a
subclass of artificial intelligence that can make a system with
more security functions. The automated system can block
hacking crimes and block hackers. The risks of behavior
adaption, infrastructure electronics, environment adaption,
and mechanical risks are serious. Before releasing driverless
vehicles, companies should consider functional testing in the
manufacturing process. The decision-makers should define
the certifications and standards of driverless vehicles. This
paper helps decision-makers, companies, managers to define
the risks of driverless vehicles. This study provides driverless
vehicle risks ranking.

IX. CONCLUSION
This study aims to identify and rank various risks of self-
driving vehicles and consider the indeterminacy of informa-
tion, which is the gap in the previous studies. Therefore,
in this study, three different MCDM methods that include
AHP to obtain the weights of criteria and MABAC and
PROMETHEE II for ranking the self-driving vehicle risks,
have proposed with SVNSs. The sensitivity analysis sug-
gested the validating of outcomes. The comparative analysis
was introduced with Pythagorean fuzzy AHP, TOPSIS, and
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VICTOR to test the proposed model’s performance. Similar
results are obtained from the carrying out of threemethods for
ranking risks of self-driving vehicles. These approaches can
easily be applied to other issues. Analysis and ranking risks
of driverless cars to invalidate the impact of risks and make
profits of driverless vehicles in the industry are provided.

This study would allow decision-makers to consider
various types of risks, including privacy data, hacking, and
malfunctions software and hardware, with aggregated com-
parison judgment of experts and decision-makers. This study
can help developers, programmers, and manufacturers that
performing operations of self-driving vehicles. This study
shows that cyber-attack risk R2 is the best alternative (means
that it is high-risk ranking), and disruption/ catastrophic
risk R4 is the least alternative (means that it is the least
risk ranking). The ranking risks of self-driving vehicles can
help companies to assign marketing, safety management,
and research. The companies that make self-driving vehi-
cles consider these risk factors to produce vehicles better
and fewer risks—making this study provide a safer life for
passengers and walkers. This study overcame gaps in the
limited research, introduced analysis to all types of risks, and
considered indeterminacy information.
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