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ABSTRACT A steady rise has been observed in the percentage of elderly people who want and are still able to
contribute to society. Therefore, early retirement or exit from the labour market, due to health-related issues,
poses a significant problem. Nowadays, thanks to technological advances and various data from different
populations, the risk factors investigation and health issues screening are moving towards automation. In
the context of this work, a worker-centric, IoT enabled unobtrusive users health, well-being and functional
ability monitoring framework, empowered with Al tools, is proposed. Diabetes is a high-prevalence chronic
condition with harmful consequences for the quality of life and high mortality rate for people worldwide,
in both developed and developing countries. Hence, its severe impact on humans’ life, e.g., personal, social,
working, can be considerably reduced if early detection is possible, but most research works in this field fail
to provide a more personalized approach both in the modeling and prediction process. In this direction, our
designed system concerns diabetes risk prediction in which specific components of the Knowledge Discovery
in Database (KDD) process are applied, evaluated and incorporated. Specifically, dataset creation, features
selection and classification, using different Supervised Machine Learning (ML) models are considered. The
ensemble WeightedVotingLRRFs ML model is proposed to improve the prediction of diabetes, scoring an
Area Under the ROC Curve (AUC) of 0.884. Concerning the weighted voting, the optimal weights are
estimated by their corresponding Sensitivity and AUC of the ML model based on a bi-objective genetic
algorithm. Also, a comparative study is presented among the Finnish Diabetes Risk Score (FINDRISC)
and Leicester risk score systems and several ML models, using inductive and transductive learning. The
experiments were conducted using data extracted from the English Longitudinal Study of Ageing (ELSA)
database.

INDEX TERMS T2DM, long-term health risk prediction, machine learning, ensemble learning.

I. INTRODUCTION

Diabetes, also known as diabetes mellitus (DM), is a chronic
disorder characterized by high blood glucose levels, due to
the inability of the pancreas to generate a sufficient quantity
of insulin (Diabetes Mellitus Type-1 (T1DM)) or the failure
of cells and tissues to utilize it (Diabetes Mellitus Type-2
(T2DM)) [1]. Apart from TIDM and T2DM, another type
is Gestational diabetes, which affects women and develops
during pregnancy. Since the prevalence of T2DM in ageing
population (i.e., elderly people) is rising [2], [3], the analysis
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in the following sections focuses on such age group which
constitutes the participants in SmartWork. Some character-
istic signs and symptoms of high glucose include itching,
frequent fatigue, unexplained weight loss, excessive urina-
tion, dry mouth and increased hunger [4]. The prevention
and/or early diagnosis of diabetes is of high importance in
order to avoid or mitigate the serious lifetime complica-
tions including cardiovascular ailment, stroke, kidney failure,
ulcers in the foot, and eye complications etc [5], [6]. In
conventional healthcare, the patient demographic data, case
history, diagnostics and medication are manually managed
and maintained, which may lead to human errors and affect
patients suffering from chronic diseases. It is known that,
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diabetes patients need to check their glucose level regularly
or even continuously to make sure that their lifestyle (i.e.,
diet and physical activity) is the appropriate one to keep
glucose levels under control. There are many such medical
devices that facilitate the measuring of glucose levels from
the patients themselves.

Yet, the recent technological advances in networking,
namely mobile communications (e.g., 5G and beyond net-
working), Cloud Computing, Internet-of-Things (IoT), Arti-
ficial Intelligence (AI) and Machine Learning have increased
the number of internet-connected smart devices, such as
wearable sensors, and revolutionized the way the medical
industry operates. In fact, they paved the way to robust, fast
and smart systems, known as Internet of Medical Things
(IoMT), able to handle massive users data rapidly. [oMT with
smart sensors, smart devices and smart communication pro-
tocols facilitated the development of various smart systems
in the field of healthcare [7]-[9]. Such systems have become
essential as they are expected to eliminate human interven-
tion, thus significantly reducing human errors and assisting
medical experts in diagnosing the diseases easily, remotely
and accurately, by combining various data collected from the
monitoring devices over a sensor network with a decision sup-
port system. In [10], authors conducted an extended literature
review in different domains, such as clinical decision support
systems, wireless body area networks, cloud computing and
big data analytics, in which they identified a positive impact
in mobile healthcare for diabetes mellitus. Recently, in [11],
a smart healthcare framework for ambient assisted living
using IoMT and big data analytics techniques was suggested.

In the special case of diabetes, smart devices measure the
glucose level of the patients and make it available in real-time
to the doctors through mobile or web applications. Authors in
[12] suggest a personalized recommendation system to sup-
port diabetes management by the American Indians patients
themselves. Some other remote monitoring systems for dia-
betic patients are mentioned in [13]. T2DM and other chronic
diseases monitoring can be enhanced with the implementa-
tion of appropriate machine learning algorithms. Machine
learning and data mining methods constitute key approach in
T2DM research for extracting knowledge. The severe social
impact of T2DM renders it one of the main priorities in med-
ical research, which unavoidably generates huge amounts of
data. Hence, predictive analytics, machine learning and data
mining approaches in T2DM are of major concern when it
comes to diagnosis, management and other related clinical
aspects.

Machine learning approaches can be categorized as super-
vised, semi-supervised and unsupervised learning. In the con-
text of this work, our focus is on supervised machine learning
methods with the aim to predict the risk of T2DM. Supervised
ML algorithms, and especially classification algorithms, use
a two-stage methodology for the pattern recognition task. The
first stage is dedicated to the development/construction of the
model using existing labeled training datasets, while the sec-
ond stage involves the prediction for new or unseen input
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datasets. During the training phase, the annotated dataset, for
which both the inputs (features) and the outputs (classes) are
known, is partitioned into two sets (training and test), with the
model being trained on the training set and tested on the test
set, and the performance of the model being evaluated based
on the correct predictions made.

Predictive analytics [14], [15] is the process of learning
from historical data in order to make predictions about future
events. It is widely applicable to almost every domain, and
enhanced by the increasing availability of large volumes of
data. Statistical data analysis methods were the go-to choice
in predictive analytics, but when it comes to pattern recog-
nition in large data sets (e.g. dense time series), they are
consistently outperformed by ML algorithms, both in terms
of accuracy and scalability.

The individual risk of developing non-contiguous chronic
conditions is linked to controllable lifestyle behaviour. The
quantification of said risk is an important goal of prediction
analysis in healthcare [16], since, not only is it linked to
both the long-term wellbeing of the individual, but is also
beneficial to social care systems. Recent research [17], [18]
has demonstrated that it is possible to use ML tools to predict
individual risk of hospitalization by only using data related
to socioeconomic features (age group, gender and race) and
behavioural data, without requiring clinical risk factors [19].
An extremely large number of ML algorithms and variations
exist, and there is no unique or widely applicable solution
for a specific domain or problem. As such, each particular
problem and prediction task requires performance evaluation
of multiple algorithms in order to identify the best performing
one [20].

Given that T2DM is a multifactorial chronic condition,
it requires adjustments in multiple aspects of a person’s daily
life in order to prevent it. For instance, alterations in dietary
habits and physical activity might be deemed necessary,
depending on their personal data. A person’s motivation is
important for the engagement and success of a digital health
personal intervention. It is highly unlikely that people, who
are used to a sedentary lifestyle, will suddenly adhere to
guidelines regarding physical activity and dietary restrictions,
even if the digital health intervention systems dictates it.
Also, people, who do not need or want to change real-life
behaviour, will not use any application as intended. There-
fore, the motivation of the individual to be healthy, during
and outside working hours, is very relevant for SmartWork
System implementation. Previous studies performed in the
context of the SmartWork project were focused on assessing
individual/group motivation to be healthy (e.g. in the physi-
cal activity domain) and various factors impacting on office
worker’s performance (e.g. sleep quality) [21], which are out
of the scope of the current work.

Motivated by the aforementioned challenges, the main
contributions of this work are summarized as follows:

o We describe the data-driven Al component of the Smart-

Work system, comprised of Personalized Predictive
Models and Decision Support Tools. These sub-systems
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implement long-term predictive models and data mining
techniques to provide probabilistic prediction of specific
risk indicators aiming at supporting decision making
and intervention for T2DM, among other chronic con-
ditions. A detailed description of the functional ability
modeling components and rules manager is elaborated
in Section 3.

« Although a multitude of potential prediction tasks for
several chronic diseases have been elaborated in the
system, the analysis here only concerns the long-term
T2DM risk prediction. For this case, various ML algo-
rithms are investigated for the selection of the best
performing model to be integrated in the SmartWork
system. In the scope of training the SmartWork predic-
tion models about T2DM (and other chronic diseases),
a subset of the ELSA longitudinal dataset is employed
to train the supervised algorithms for the assessment
of T2DM long-term risks. It is worth to mention that,
the generated dataset may contribute to the prognosis of
T2DM as we choose to monitor the features’ values of
users who, in reference waves, have not been diagnosed
with diabetes. Note that, the diabetic or non-diabetic
class label is indicated by the follow-up assessment after
2-years, as it is explained in Section 3.1.2.

o A comparative analysis of the trained models is per-
formed in relation to different performance metrics such
as AUC, Sensitivity (or Recall) and Specificity, to name
a few. Remark that, the sensitivity of the model is quite
important when comparing classification models, as in
T2DM case indicates the percentage of correctly identi-
fied instances of diabetic class.

The remaining of this paper is structured as follows.
In Section II, we overview previous related studies.
In Section 111, we introduce the proposed system architecture.
In Section IV, the design of the T2DM risk assessment system
is described in detail. In Section V, the system performance
is evaluated. Finally, concluding remarks and plans for our
future work are provided in Sections VI and VIIL.

Il. RELATED WORK

As regards the T2DM risk prediction, there are several repre-
sentative works about the application of ML techniques and
moreover suggestions of derived risk scoring systems that
can be adopted on the early prognosis of diabetes. Further-
more, a number of intelligent systems have been developed
that enable the remote (continuous) monitoring for diabetic
patients, risk prediction and personalized health services,
based on the data collected from smart body sensors which
are given as input to ML models.

A. RISK SCORING AND MACHINE LEARNING IN T2DM
Up to date, an extensive research has been conducted from
the scientific community for diabetes detection. To this

end, several non-invasive risk score systems have been
proposed, such as FINDRISC, Latin America FINDRISC
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(LA-FINDRISC) [22], Australian Type 2 Diabetes Risk
Assessment Tool (AUSDRISK) [23], Risk Test from
American Diabetes Association (ADA) [24], Leicester Prac-
tice Risk Score [25], Test2Prevent , which proved to be an
effective screening tool to assess the risk of undiagnosed
T2DM, especially in cases where confirmation tests data are
not available. However, a significant constraint is that most
of them were developed for particular populations and their
performance was not satisfactory when applied to other ones.
Assuming that fasting plasma glucose (FPG) or hemoglobin
AI1C (hbAlc) testing or an oral glucose tolerance test (OGTT)
data is available, the diagnostic accuracy of the aforemen-
tioned risk score systems can be verified [26]. Liu et al. in [18]
showed that the risk scoring systems can be combined with
other ML models, constructing ensemble learners, to improve
prediction performance.

Machine learning methods have gained popularity in the
research community for automating the risk prediction pro-
cess of T2DM, more accurately and with reduced medical
cost. Artificial neural networks (ANNs), Logistic Regression
(LR), Naive Bayes (NB), k-Nearest Neighbours (k-NN), Ran-
dom Forests (RFs), Decision Trees (DT), and Support Vector
Machines (SVMs), [27], [28] are the most popular algorithms
which can be utilized. Naz and Ahuja, in their work [29],
explore several of these models on the PIMA Indians dia-
betes database, proposing a deep neural network (DNN) able
to achieve an accuracy of 98.07%. The classifiers can be
used either individually or as base classifiers for ensemble
(namely, stacking, voting, bagging etc.) algorithms [30], [31].
Ensemble learning aims to reduce bias and variance, and thus,
enhance the prediction performance.

The aforementioned models have been used in several
decision support systems for medical applications demon-
strating satisfactory predictive performance. The researchers,
in order to automate in an intelligent and effective way the
process of diabetes monitoring, resorted to solutions combin-
ing Information and Communication Technology (ICT) with
biomedicine. Such solutions are presented in the following
paragraphs.

B. SMART SYSTEMS IN DIABETES HEALTHCARE

In [32], an intelligent system consisting of smart devices and
sensors, and smartphones for monitoring diabetic patients,
by means of machine learning algorithms, is elaborated.
The smart system collects data from body sensors and
makes diabetes diagnosis using several classification mod-
els from supervised machine learning. As the experimental
results show, the suggested algorithm, namely the sequential
minimal optimization (SMO), behaves better in terms of
classification accuracy, sensitivity and precision than other
well-known algorithms, i.e., Naive Bayes, J48 [33], ZeroR,
OneR, Logistic, Random Forests). Another intelligent system
is suggested in [34] for the remote monitoring of diabetic
patients health through smartphones and other smart portable

Ohttps /Iwww.idf.org/type-2-diabetes-risk-assessment/
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devices. They designed a small portable device capable of
measuring the blood glucose level for diabetics and body
temperature which could be connected with a smartphone
through a secure wireless mechanism.

Also, in [35] a smart health monitoring architecture is rec-
ommended for diabetic patients to monitor symptoms/signs
regarding blood sugar level, heart pulse, food intake, sleep
time and exercise. A sensors network is feeding continuously
the input of the system with data which are then utilized as
input to a neural network. The health risk levels range from
low, medium and high to extreme, depending on patient’s pro-
file and health historical data. Moreover, if a patient’s health
status is at high or extreme risk, an automatic notification
(such as, phone call and/or SMS) is being sent to his/her rela-
tive with information about his/her location. Besides, in case
of very high risk, the system communicates with the nearest
to patient hospital.

The scientific work in [36] suggests several new wearable
devices, such as smart neck band, smart wrist band and a pair
of smart socks - to continuously monitor the health status of
diabetic patients. The sensors of these devices report patient’s
food intake, heart rate, skin moisture, ambient temperature,
walking patterns and weight gain/loss. With the help of con-
trollers, these devices transmit sensors data via Bluetooth to
the Mobile App. Machine Learning is employed to predict the
variations in patient health status and alert them.

Moreover, there are many proposals for remote health
monitoring of older persons [37]-[39]. Understanding and
improving age-friendly living and working environments is
an enormous challenge that today’s societies have only just
begun to approach. As the number of older people who are
active members of society and want to live independently
continues to rise, the importance of this research area con-
stantly increases. The overall objective of the SmartWork
system [40] is to support office workers remain professionally
active as they grow old, in a holistic way, by designing, imple-
menting and validating the system in real-world settings.

Ill. THE SMARTWORK

In the core development of the system, a worker-centric
Al module [41] supports the sustainability of work skills,
combining unpretentious and ubiquitous sensing and flexible
worker-status aware job support. In addition, the careful and
systematic monitoring of personal health, lifestyle, cogni-
tive and emotional state of the worker makes it possible to
determine the likelihood of functional and cognitive decline.
By combining all aspects of the older workers’ profile, a deci-
sion support system will enable triggering personalized inter-
ventions in order to maintain the work ability of the user.
More specifically, the automatic creation and maintenance
of the personalized virtual user model considers adaptation
levels that consist of two layers: initialization of the user
profiles based on generic group modelling derived through
the observation of common patterns and characteristics of
populations (e.g. gender, age group chronic conditions), and
personalized models based on the monitored characteristics
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of a specific user (e.g. stress, emotions, activity, nutrition
etc.). Based on the synchronous and asynchronous analysis of
the data collected by the Smartwork sensing system, the ini-
tial user profiles are evolving to personalized user models.

It should be pointed out, here, that the problem of interest
in this work is to emphasize on Long-Term Health Risk
Assessment related to diabetes that statistically affects people
older than fifty, which may suffer from hypertension, high
cholesterol or heart disease as well.

A. SYSTEM ARCHITECTURE

Considering that the whole system is dynamically capturing
the evolving state of the worker and the context of work
and working environment (e.g. work task resources require-
ments), the office worker profile aspects are constantly moni-
tored and analyzed using various services and agents. In more
detail, the Al software tools package consists of a set of mod-
ules (Figure 1) dedicated to initialize the first user profiles,
match them to lifestyle and behavioral patterns, continuously
monitor, self-adapt and trigger interventions relevant for the
work and health self-management of the office worker. In
the following paragraphs, we will briefly elaborate on the
different modules whose results are fed on to the module
that performs Long-Term Health Risk Assessment in order
to derive a predictive score reflecting the overall risk of the
individual to experience the T2D chronic disease, which may
result in early exit from the market labor.

The User Profile Initialization process takes place at the
user’s first contact with the SmartWork system, and it con-
cerns collection of data regarding socio-demographic charac-
teristics and lifestyle attitudes of the user, such as age, gender,
marital status, education level, physical activity frequency,
drinking and smoking status, etc. The user’s history of diag-
nosed chronic conditions, including diabetes, asthma, high
blood pressure, cholesterol and cardiovascular diseases is also
assessed. Once the profile is completed, based on this initial
data provided by the user, the prediction models are used to
initialize the Long-term Cognitive Capacity Assessment and
the Long-Term Health Risks Assessment modules.

Another important module is the Rules Manager Service
(RMS), which is the software package implementing the dif-
ferent sub-modules needed in order to systematically monitor
and activate the triggering of the SmartWork interventions in
respect to the primitive or derived virtual user model data. The
SmartWork continuously monitors a wide range of variables
regarding the users’ lifestyle, functional, cognitive and work
ability status, which represent input for the RMS, either in the
form of original raw data or as processed information gener-
ated by the SmartWork pre-processing algorithms, statistical
analysis tools and ML-based prediction models. Although a
series of physiological parameters are monitored, which are
related to user’s health status, it is important to mention that
the SmartWork does not aim to provide any diagnostics, treat-
ment or cure, but rather aims to provide the user with advice,
guidance and suggestions that can lead behavioural changes
aiming to improve his/her overall health and work ability in
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FIGURE 1. Al tools software modules and interconnections.

alignment with the principles of professionally active and
healthy ageing. The basic sub-modules of the RMS are the
Rules Manager Daemon, the Run-Time Expression Evalu-
ator and the Rules Manager Control Interface. The Rules
Manager Daemon (RMD) is the main micro-service around
which the RMS is designed. In practice, the RMD acts as an
integrated server that orchestrates the real-time monitoring
and evaluation of the user model variables against specific
rules in order to identify the accomplishment of conditions
that may trigger associated interventions. At the core of the
RMD micro-service algorithm, the run-time Expression Eval-
uator performs logical and arithmetic operations dynamically
based on the virtual user profile variables, thus evaluating the
accomplishment of triggering conditions in the defined rules,
and providing the RMS with a higher level of abstraction
and the ability to evaluate complex expressions based on the
available input variables.

The Rules Manager Control Interface (RMCI) is a web
application designed to provide a convenient solution for
the generation and management of intervention triggering
rule sets which are then passed to RMD micro-service to
populate the Rules Table. It is a multi-user environment, able
to administer different user privilege levels that can have
specific access on each virtual user profile dynamic rule set
settings. The RMS has a client-server architecture and the
RMCIT was built as a stand-alone client application which
can be used by the end users through a web browser or as
a desktop application.
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The next sections provide the necessary background
knowledge for the remainder of the paper. In following, useful
definitions and notations will be recorded under the problem
definition and formulation, with the most characteristic being
the dataset preparation and Machine Learning components
under the investigating issue.

IV. LONG-TERM DIABETES RISK ASSESSMENT

A. PROBLEM DEFINITION

Chronic diseases are diseases that cannot be cured but can be
controlled and thus they require continuous monitoring and
acute care to avoid critical conditions. Diabetes is a chronic
disease that occurs when the pancreas is no longer able to
produce insulin, or when the body cannot make good use of
the insulin it produces. Insulin is a hormone that lets glucose
from the consumed food pass from the blood stream into the
cells to produce energy. Not being able to produce insulin or
use it effectively leads to raised glucose levels in the blood,
also known as hyperglycemia. Over the long-term, high glu-
cose levels are associated with damage to the body and failure
of various organs and tissues. Although there is more than
one type of diabetes (e.g. type 1 diabetes, type 2 diabetes,
gestational diabetes), prevalence of type 2 diabetes amongst
the older people is particularly high overall and in comparison
with prevalence of other types of diabetes [42]. T2DM usually
affects adults, but it can begin at any time in people life.
The main risk factors [43]-[45] that are correlated to the
occurrence of T2DM include:
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o Age: is one of the most important risk factors for dia-
betes, as older people have a higher risk to get type
2 diabetes.

o Obesity/ High Body Mass Index (BMI): increased BMI,
and consequently obesity, is a top risk factor for type
2 diabetes.

o Impaired glucose tolerance, also known as prediabetes,
is a milder form of type 2 diabetes, which is usually
diagnosed with a simple blood test, and represents a high
risk for the individual to develop T2DM.

« Ethnicity/Race: prevalence of diabetes is overall higher
in the case of Hispanic/Latino Americans, African
Americans, Native Americans, Asian-Americans,
Pacific Islanders, and Alaska natives.

o Gender: male/female

« Gestational diabetes: this short-term condition that may
occur during pregnancy, raises a women’s chances of
getting type 2 diabetes later in life.

« Polycystic ovary syndrome (PCOS): women with poly-
cystic ovary syndrome have a higher risk to develop
T2DM.

o Family history: if a parent/sibling has diabetes, then risk
of getting type 2 diabetes is increased.

« Physical Activity: sedentary persons are at higher risk of
developing T2DM.

o Smoking: smoking is associated with a higher risk of
T2DM.

« High Blood Pressure (HBP): it is a high-risk factor for
developing T2DM.

o Alcohol: although moderate drinking is associated with
a lower risk of, excessive alcohol intake is associated
with an increased risk of type 2 diabetes.

Many studies aimed at long-term risk prediction for
diabetes, including also different regression models for
predicting glucose regulation for those already diagnosed
with prediabetes or type 2 diabetes. However, the main
goal of long-term diabetes risk prediction tools is to
develop and validate a diabetes risk assessment score for
healthy/undiagnosed participants based on main risk fac-
tors, including socio/demographic data, lifestyle, and simple
anthropometric measures.

In SmartWork, a long-term risk prediction model for
T2DM based on ML approaches is implemented, which
takes into account a large number of risk factors which are
usually employed by the screening tools used in medical
practice, but also some factors which have shown high cor-
relation based on our study with the ELSA dataset as shown
in Tables 1 and 9. In order to test our model, we selected the
FINDRISC [46], Leicester [25] Diabetes Risk Scores to apply
it in parallel to the training and test dataset. The Leicester
Practice Risk Score was developed by researchers within
the Diabetes Research Centre at the University of Leicester
and the score identifies people who may be at high risk
of developing diabetes in the future (e.g. next 10 years) or
currently having undiagnosed T2DM or prediabetes, taking
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into account the following risk factors: age, gender, BMI,
ethnicity, family history of diabetes and diagnosis of high
blood pressure or anti-hypertensive drugs use. In order to
compare the results of the FINDRISC and Leicester risk
classification to the ML prediction models, we fit Logistic
Regression models to our data and estimate the probability an
instance to be classified as “Diabetics” or “Yes” and “Non
Diabetics™ or “No”.

The English Longitudinal Study of Ageing [47], which is
a rich resource of information on the dynamics of health,
social wellbeing and economic circumstances in the English
population aged 50 and older, has currently reached wave
9 of longitudinal data collection (e.g. covering a period
of 18 years) and it is designed to be used for the investigation
of a broad set of topics relevant to understanding the ageing
process. The database contains both objective and subjective
data related to health, disability, and healthy life expectancy,
with specific data being assessed by a nurse every four years.
In the scope of training the Smartwork prediction models,
the waves at which nurse collected data are available are of
particular interest, as these include physical examination and
performance data and blood tests (e.g. height and weight,
waist and hip circumference, blood pressure, lung function,
total and DHL-cholesterol, etc.). Note that, these waves are
considered reference waves in Smartwork.

B. METHODS

We assume a training set 7R of size M, a test set TS of size
N and a categorical variable ¢ which captures the class label
of an instance i in ELSA Database. Under the investigating
problem, it has two possible states, e.g., ¢ = “Diabetic” or
“1” or ¢ = “NonDiabetic” or “0”. The features vector of
an instance i is denoted as f; = (fi1, fi2, - . ., fiF).-

Our aim is to achieve high sensitivity and Area Under
Curve through the supervised machine learning, meaning that
the Diabetic class can be predicted correctly. The proposed
methodology for T2DM prediction consists of the following
steps which are explained in detail below.

1) DATA PREPROCESSING

The raw data quality may be degraded either due to miss-
ing values and/or noisy and inconsistent data, so the final
results-predictions quality may be low as well. Therefore,
is necessary, processing, including redundant values reduc-
tion, feature selection and discretization of data to make it
more appropriate for data mining and analysis.

In the proposed framework, missing or null values were
dropped, rather than imputed by the mean values of the
attributes as in [48], only for the specific features that are
used for the fitting of FINDRISC [46] and Leicester [25] risk
inspired models (see Section V), since it is impossible for
the logistic regression to reasonably deal with missing values.
However, in case of ML all of the rest of the selected features
were considered as is, given that the missing values can be
handled by them.
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Also, data is not always in appropriate form to be fed into a
machine learning algorithm, e.g. plain text feature values may
cause problems during the learning process, or data may be
represented in different scales. Hence, feature transformation
from one format to another is necessary. Some relevant tech-
niques include the standardization or Z-score normalization
which re-scales the attributes for achieving standard normal
distribution with zero mean and unit variance. Also, in this
research work, several categorical and ordinal features are
considered, further details concerning the ordering of the
categories and the discretized values for each one are shown
in Table 9. Also, another reason for applying features trans-
formation is to reduce the dimension of the features to boost
the training stage or improve the accuracy of a specific ML
model.

2) FEATURE SELECTION
It is common knowledge that, the accuracy of the classifiers
improves with the increase of the attributes dimension until
the optimal number of features is reached. Adding more
features on the same sized training dataset can often lead to
classifier performance degradation, which is known as the
curse of dimensionality. Ultimately, this indicates that the
number of samples an ML model needs to achieve a given
level of accuracy should grow exponentially with respect to
the number of input features (i.e., dimensionality) to avoid
overfitting (inability to generalize). Feature selection con-
stitutes a core component in building accurate and reliable
prediction models in machine learning, as it can highly impact
the training of the selected model and thus, its performance.
Feature selection is defined as the process of identifying
the most relevant features in a dataset. This way the most
significant or relevant ones are considered, namely, these
ones which contribute much to the target variable, with the
aim to improve or boost the model accuracy. Such methods
can be classified as Filter, Wrapper and Embedded [49].
The Filter category includes information gain, chi-square
test, fisher score, correlation coefficient and variance thresh-
old. Among the traditional state-of-art filter methods, Pearson
coefficient was selected. Its values vary between —1 (higher
negative correlation) and 1 (higher positive correlation) that
indicate the linear dependency between two features. Hence,
if coefficient value is closer to 0 implies weaker correlation,
while zero coefficient value implies no correlation. Pearson
coefficient [50], denoted as p,, is defined as:

oo = 2t in —Jn)fin —Fo)
\/Z?il(fim _];m)2 Z(fm _fn)2

where fin, finfim fin denote features m, n and mean values of
them on dataset, respectively.

The feature selection depends on user defined threshold
value about p.. For example, in diabetes case, haemoglobin
help clinicians to estimate the average blood sugar levels over
a period of weeks or months thus, p, is expected to be close
to 1, implying that it is highly correlated with blood glucose.

ey
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From the Wrapper feature selection methods, a simple and
often used is the forward/backward stepwise selection [51].
The former refers to a search that begins with an empty set
of features and which are added one by one, while the latter
works conversely, i.e., it begins with all features which are
removed gradually, one by one. From the Wrapper methods,
stepwise backward with Naive Bayes, Logistic Regression
and Decision Tree ML models were investigated. Although it
is more accurate than the Filter methods, it is computationally
expensive, since it applies an iterative greedy search process.

Moreover, the Embedded methods include regularization
based techniques with L1 regularization or LASSO (Least
Absolute Shrinkage and Selection Operator) and L2 regular-
ization or Ridge be the most representative. These methods
have built-in penalization functions to reduce overfitting con-
trary to Ordinary Least Squares (OLS), which would overfit
the data [52]. From the Embedded methods, in the experi-
ments, LASSO method will be applied, due to its simplicity
(lower complexity) and better interpretability than Ridge.
Consider that, the aim of feature selection is not only to
improve the accuracy, but also to increase the interpretability
and reduce the complexity and training time of the ML model.

The LASSO or penalized least squares regression with
L1-penalty function has the form of

F

M n
Loss = Z(yi —ap— Z aifi)? + A Z |ail 2
=1

j= i=1 i=1

where y is the output (target) variable for the prediction,
f,f, ..., fr are the features that decides the value of y,
ag is the bias, aj, as, ..., ar are the weights attached to
fi,fo, - .. fF, respectively and A is the regularization param-
eter that controls the significance of the regularization term.

The initial features, considered for the training of the
ML-based models, included over 100 variables collected
from those at the reference waves of ELSA dataset. Also,
a group of variables related to the FINDRISC [53] and Leices-
ter questionnaires were included such as, variables repre-
senting gender, age, race, physical activity (at least 30 min
during the day), fruit and vegetable consumption as well
as keeping a track of medical history including the history
of antihypertensive drug treatment, history of high blood
glucose levels. To evaluate the performance of ML models,
feature importance was established using some of the feature
selection techniques discussed in Section IV-B2. Moreover,
Tables 1 and 9 describe the variables considered in the various
feature selection methods.

The features in relation to LASSO, Correlation and Greedy
Stepwise with Backward Selection under three different clas-
sifiers are listed below:

o LASSO: wstval, chol, fglu, sys, hbAlc, workl65, dias,

workat, cfood1m, liv10, drinkde, 1dl, cfoodi, itot

o Correlation: hbalc, everHighGlu, wstval, bmi, bmicat,

fglu, weight, estwt, shlt, trig, sys, grossa, hdl, mobilb,
HBP, sys, drinkde, hemda, lgmusa, adla, hlthlm, adlwa,
Ibrfe, finea, physActive, raeduc, AgeGroup, 1dl, chol,
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Feature Name

Feature Description

Feature Name

Feature Description

wstval
chol

fglu
sys

hbAlc
workl65
dias
workat
cfoodlm
livl0
drinkde
1d1
cfoodi

itot
everHighGlu

bmicat

weight
estwt

shlt

trig
grossa

hdl
mobilb

HBP
hemda

Igmusa

adla
relhite
eatVegFru

lunge
memrye

Valid Mean Waist (cm)

Blood total cholesterol level
(mmol/l)

Glucose level (mmol/l)

Blood pressure systolic reading
(mmHg)

Glycated haemoglobin level(%)

Self-reported probability of having
a work limiting health problem be-
fore age 65

Blood pressure diastolic reading
(mmHg)

Self-reported probability of work-
ing full-time after a specific age

Amount spent weekly on food con-
sumption outside house
Self-reported probability of living to
a specific age

Days/week drinks

LDL level (mmol/l)

Amount spent weekly on food con-
sumption inside house

Total family income

Ever have high glucose

BMI category

Weight in (Kg)

Nurse measured weight (Kg)-final
estimated

Self-report of health

Triglycerides level (mmol/l)

Gross motor index: walking 100
yards, walking across a room,
climbing one flight of stairs, getting
in or out of bed, and bathing activi-
ties

HDL level (mmol/l)

Mobility index: walking 100 yards,
walking across a room, climbing
one flight of stairs, and climbing
several flights of stairs activities
Ever had high blood pressure
Taking high blood pressure medica-
tion

Large muscle index: sitting for 2
hrs, getting up from a chair, stoop-
ing, kneeling or crouching, and
pushing or pulling large objects ac-
tivities

ADLs: bathe, dress, eat, getting
in/out of bed, walking across a room
Reliability of standing height ac-
cording to nurse

Tablespoons ate yesterday
Ever had lung disease
Ever had memory problems

hlthlm
adlwa

Ibrfe
finea

physActive
raeducl
AgeGroup
jphysa
jpress

hipe

cesd

mstat
arthre

work
fentf

iadlza

Gender
hchole

rentf

psyche
smoken

hearte
stroke

smokev
cancre

parkine

asthma
catretf

work?2
demene

Health problem limits work
ADLs (bathe, dress, and eat)

Labor force status

Fine motor index: picking up a 5p
coin, eating, and dressing activities
Is physically active

Education level

Belonging age group

Level of physical effort at current
job

Work stress - under pressure due to
workload

Ever had hip fracture

Mental health: the respondent’s
feelings much of the time over the
week prior to the interview

Marital Status
Ever had arthritis

Currently working for pay

Social activity - weekly contact with
friends

IADLSs: using the phone, managing
money, taking medications, shop-
ping for groceries, preparing hot
meals

Belonging gender

Ever had high cholesterol

Social activity - weekly contact with
relatives

Ever had psychological problem
Smokes now

Ever had heart problems
Ever had stroke

Smoke ever
Ever had cancer

Ever had Parkinson disease

Ever had asthma disease
Ever had cataracts

Works at second job
Ever had dementia
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drink, jphysa, jpress, hipe, livl0, cesd, mstat, arthre,
cfoodolm, work, dias, fcntf, iadlza, Gender, hchole,
rentf, psyche, smoken, hearte, stroke, smokev, can-
cre, parkine, asthma, relhite, catrctf, eatVegFru, work2,
lunge, demene, memrye

o Greedy Stepwise With Logistic Regression (GSW-LR):
cesd, HBP, AgeGroup, hchole, parkine, hipe, bmicat,
weight, physActive, drinkde, smoken, itot, cfoodi, work,
wstval, chol, trig, dias,sys, fglu, hbalc, everHighGlu

o Greedy Stepwise With Naive Bayes (GSW-NB): Race,
raeducl, mstat, HBP, AgeGroup, bmicat, physActive,
drinkde, smoken, fentf, work, jphysa, wstval, chol, 1dl,
trig, sys, fglu, hbalc, hemda, everHighGlu

o Greedy Stepwise With Decision Trees (GSW-DT): mstat,
hlthlm, adla, adlwa, Igmusa, finea, cesd, HBP, can-
cre, lunge, hearte, stroke, psyche, arthre, asthma,
hchole, catrctf, bmi, bmicat, physActive, drink, drinkde,
smokev, smoken, cfoodi, cfoodolm, rcntf, fentf, work,
work?2, jpress, workl65, estwt, wstval, hdl, 1dl, sys, dias,
fglu, hbalc, hemda, everHighGlu

All selected ML models were trained with the same fea-
tures (i.e., risk factors) derived from the GSW-NB feature
selection method, excluding the irrelevant by the literature
features fentf and work. As the feature selection process is
a highly empirical one, GSW-NB was selected as it shares
the most common variables with the rest selection methods,
which are also in line with the literature. In addition to
these, we also included the variables shit, hithlm, mobilb,
lgmusa, grossa, finea, hearte, psyche, itot, cfoodolm, estwt,
hdl, dias, eatVegFru and Gender as these capture risk factors
or signs that are actually considered in diabetes detection by
the literature. The resulting feature set was constructed by
the above 34 features plus the ELSA derived class feature
rYdiabe which indicates if a subject is actually diabetic.

3) MACHINE LEARNING MODELS

Let recall that, in the context of this work, we investigate the
problem of T2DM prediction on ELSA database with various
machine learning models. As a first approach, the problem
is managed using single classifiers as independent entities.
Then, ensemble learning based on majority voting, either
weighted or not, and stacking is employed. All of them are
compared in order to evaluate the appropriate one for diabetes
prediction.

Some well-known classification methods, considered in
this work, are Naive Bayes, Decision Trees [33], Random
Forests [54] and Logistic Regression [17], [55]. Finally two of
them, with similar success according to AUC and Sensitivity
metrics, are utilized as base-learners and their outputs are
combined to define the final prediction score, adopting differ-
ent ensemble learning approaches, namely majority voting,
weighted voting and stacking. Here, it should be noted that,
the key difference between voting and stacking lies in the
final aggregation. Although in voting, appropriate weights are
utilized to combine the classifiers predictions, in stacking the
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aggregation is performed by using a meta classifier. In fol-
lowing, useful information about the adopted models will be
described.

a: SINGLE LEARNING
1) Naive Bayes: It is a simple but powerful algorithm for
classification, since it is based on conditional probabil-
ity. Itis an appropriate solution for unbalanced data and
missing values. It uses Bayes theorem to calculate the
posterior probability [56] as:

P()P(f]c))
Py

where ¢ = 0, 1, P(c|f) is the Posterior Probability, P(c)
is the class Prior Probability, P(f|c) is the Likelihood
and P(f) is the Predictor Prior Probability.

2) Decision Trees: They build classification model in the
form of tree structure by breaking dataset into smaller
subsets and simultaneously developing the associated
decision tree. The decision tree is a top-down structure
with one root node, and it splits the branches which
have parent—child relationship. The tree includes a root
node, some leaf nodes that represent any classes and
internal nodes representing test condition.

3) Random Forests: It constitutes a classification method
that creates many decision trees on different instances
to perform prediction and regression. Each decision
tree in RFs will export its own classification result and
vote, and then the final output of the RFs will be the
one that most trees agree. Moreover, it has a significant
role in ensemble machine learning and is commonly
applied in various research areas, such as bio-medicine.
The final output is computed as

P(c|f) = 3

S LS
C=23 G, @)
r=1

|

where C stands for the final tree prediction; R is the
total number of trees, r represents the index of the
current decision tree and f is the training instance.

4) Logistic Regression: It is a classification algorithm,
used for categorical variables in nature and especially
when the output of the data is binary. The diabetes
model has one binary output variable, in which p =
P(Y = 1) denotes the probability an instance to belong
in “Diabetics™ class, so 1 — p = P(Y = 0) stands
for the probability an instance to belong in “Non Dia-
betics” class. The linear relationship between log-odds
with base b and model parameters g; is as follows:

logi( )=PBo+ Bifi +...+ Bpfr &)

I-p

b: ENSEMBLE LEARNING
1) Majority Voting: Assuming a set of K ensemble models
the output of the ensemble, in simple majority voting
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(Figure 2), can be outlined with the following equation:

K
maxZPk,c,
k=1

where ¢ = 0, 1. The classification, based on majority
voting, can be approached as either hard or soft vot-
ing. The former (hard voting) sums the predictions for
each class label and predicts the class label with the
most votes. The latter (soft voting) sums the predicted
probabilities for each class label and predicts the class
label with the largest probability. Here, soft voting is
adopted. Nonetheless, since the base classifiers in an
ensemble may not perform equally well, it would be
more efficient to weight each classifier soft vote. As it
will be seen next, weighted majority voting is compared
with majority voting in terms T2DM long-term risk
prediction.

Weighted Majority Voting: Given wi,wo,, ..., Wk,
where wy > Oand wy < 1fori = 1,2,...,K
that represent the weight with which the corresponding
classification model contributes to the final output,
the final prediction class for each test instance is done
based on the highest weighted soft votes.

K
maXZkak,C,
k=1

6)

@)

where ¢ = 0, 1 denotes the label of the corresponding
class. The main issue in weighting schemes is how
to appropriately determine the optimal weights of the
classifiers, which can strongly influence the perfor-
mance of the ensemble. In this study, the genetic algo-
rithm NSGA-II for multi-objective optimization [57] is

considered in order to determine the optimal weights
and construct a prediction model with high both AUC
and Sensitivity.

3) Stacking: It is an ensemble learning technique that
employs multiple classification ML models and com-
bines them in a meta-classifier. The base models
are trained based on a complete training set, then,
the meta-model is trained on the outputs of the base
models as features. In the base level, different learn-
ing algorithms can be applied and, therefore, stacking
ensembles are often heterogeneous. Such an approach
is considered in this work. Specifically, the stacking
ensemble will consist of Random Forests and Logistic
Regression as base classifiers, whose predictions are
combined by Random Forests as a meta-classifier.

V. EXPERIMENTATION

A. TRAINING AND TEST DATASET

The training and test dataset for the T2DM risk prediction
models is a subset of the ELSA database, which consists of
reference waves 2, 4 and 6 as baseline and the respective
waves 3, 5, and 7 for the 2-years follow-up assessment.
Although the number of participants in ELSA waves selected
as reference one (namely waves 2, 4, and 6) is very large,
initially we drop out participants that already have diagnosed
diabetes at reference waves and participants that did not take
the interview at both, the reference and the corresponding
follow-up wave. In Tables 2,3, the distributions of selected
participants that satisfied the above criteria, per age group are
presented.

As shown in Table 2, the distributions of selected partici-
pants, however, correspond to an unbalanced dataset, as they
do not relate to prevalence of diabetes for these age groups,
as they have been reported at country level and at European
level. The proportion of older people who have diabetes
increases with age: 9% of people aged 45 to 54 have diabetes,
but for over 75s the percentage increases to aproximately
24%. Taking into account these findings, we balanced the
dataset using random undersampling [33] in order to reach
a 9%, 12%, 15%, 18%, 21% and respectively 24% of partic-
ipants with diabetes at the 2-years follow-up for the selected
age groups.

The demographics and some health-related characteristics
of the participants per age group and gender in the balanced
dataset are summarized in Table 4. In addition, independent
group t-tests were run wherever applicable, comparing the
mean scores between the different groups. Of the 2009 par-
ticipants, 53.4% were women of whom 13.8% identified as
diabetic in the follow-up, the same indicator in males was
18.6%. Note that, 14.3% of participants had high education
and just 11.8% had physical effort at work. Focusing on
those who were diagnosed with diabetes in a follow-up wave,
29.2% are employed, 11.2% had physical effort at work,
79.8% stated that they were physically active and 64.0% were
diagnosed with high blood glucose at least once. Moreover,
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TABLE 2. Distribution per age group of newly diagnosed diabetes at 2-years follow-up in the original dataset.

T2DM 50 — 54 55 — 59 60 — 64 65 — 69 70 — 74 75+ Total
Ref Wave 2 No 473 1,181 916 852 659 894 4,975
F-up 3 Yes 3 17 23 16 19 14 92
Ref wave 4 No 695 1,236 1,362 953 879 931 6,056
F-upwave5 | Yes 9 23 27 23 17 21 120
Ref wave 6 No 389 927 1,209 1,107 806 1,140 5,578
F-up wave 7 | Yes 6 13 34 19 14 24 110
All waves No 1,557 3,344 3,487 2,912 2,344 2,965 16,609

Yes 18 53 84 58 50 59 322

TABLE 3. Distribution per age group of newly diagnosed diabetes at 2-years follow-up in the balanced dataset.

T2DM 50 — 54 55 — 59 60 — 64 65 — 69 70 — 74 75+ Total
Ref Wave 2 No 33 142 153 89 90 58 565
F-up 3 Yes 3 17 23 16 19 14 92
Ref wave 4 No 100 192 180 128 81 88 769
F-upwave5 | Yes 9 23 27 23 17 21 120
Ref wave 6 No 67 108 227 106 67 100 675
F-up wave 7 | Yes 6 13 34 19 14 24 110
All waves No 200 442 560 323 238 246 2,009

Yes 18 53 84 58 50 59 322

concerning diabetics and irrespective of gender, they had
average BMI of 31.7 kg/m?* and waist size of 106.46 cm.
P-values showed that the difference between men and women
was statistically significant at the level of 0.93 for age and
0.69 for BMI. Also, the statistical significance in terms
of variables cholesterol, drinker and waist was at level of
zero, 0.0022 and 0.001 for food consumption outside home
and income variables, respectively. In comparison with non-
diabetics, diabetics had higher overall means for age, BMI,
waist and income characteristics, and the differences were
significant at the O level for variables age, BMI, food outside
home, cholesterol, drinker and waist except income.

B. T2DM MODELING AND RESULTS

The different single and ensemble classification models that
were presented on the previous sections were compared in a
series of exhaustive experiments in order to identify the most
effective models regarding the classification of T2DM on the
constructed dataset of 2009 instances as depicted in Table 3.
Moreover, the comparisons included the four benchmark
models, the logistic regression models based on the corre-
sponding works of Leicester and FINDRISC score systems
and two neural network models utilizing the architectures
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discussed in [29]. Furthermore, an optimized voting ensem-
ble (Weighted VotingLRRFs) was also considered in the com-
parisons and is discussed on the last paragraphs of the section.

The experimentation methodology can be summarized by
the following steps:

« Data preprocessing as elaborated in Section I'V-B.

« Divide the constructed dataset based on ELSA database
using the standard technique of stratified train-test split
procedure with /0-times random repeat, thus preserving
the class proportions of the original dataset and ensuring
that the sub-datasets are representative (random sam-
ples) by the use of different seeds in the repeating pro-
cess. The 70% and 30% of the data are chosen as training
dataset and testing dataset each time.

o Application of the selected ML models, single and
ensemble by either voting or stacking methods. These
models use the selected features as independent vari-
ables and the diabetes risk status as output variable.

o Performance measures estimation.

As regards the software tools that were employed for the
implementation of the compared models, the Java Weka [58]
library and the Python Statsmodels [59] were considered,
as they are both open-source, making it possible to integrate
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TABLE 4. Overview of demographic and health-related features.

Features Total Male Female P-value Non-Diabetic Diabetic (follow- | P-value
(follow-up wave) up wave)

Age (years) 64.04082 64.02241 64.0569 0.9236 63.60166 66.3416 0
+.1793756 +.2571762 +.2500601 +.1937851 +.4502968

Gender (N) 2009 937 1072 - 763(M) 924(F) 174(M) 148(F) -

BMI (%) 28.43476 28.48427 28.39149 0.6878 27.80501 31.7341 0
+.1151526 +.1486709 +.172347 +.1173959 +.312884

Food Outside | 53.90977 59.65021 48.87676 0.001 55.8782 43.60625 0

House +1.638046 +2.700247 +1.949294 +1.822772 +3.592217

(money/week)

Cholesterol 5.806188 5.55391 6.026304 0 5.859203 5.496186 0

(%“l) +.0299581 +.0437444 +.0396412 +.0316898 +.0854177

Ever had high | 512 252 260 - 306 206 -

blood glucose

N)

Drinking 2.62197 3.055006 2.239806 0 2.785408 1.756494 0

(days/week) +.0566743 +.083562 +.0751508 +.0619196 +.1301927

Education 287 166 121 - 262 25 -

Level High (N)

Waist (cm) 97.01553 102.5559 92.1729 0 95.21257 106.4615 0
+.3045124 +.3928172 +.4012403 +.3141611 +.7563727

Married (N) 1473 715 659 - 1161 213 -

Physical Effort | 238 160 78 - 202 36 -

at Work (N)

Employed (N) | 775 420 355 - 681 94 -

Income 27141.72 29449.91 25129.23 0.0022 26827.44 28793.44 0.3075

(Couple Level) | +705.8337 +1127.65 1+878.4182 +522.9635 +3458.923

Physically 1790 811 979 - 1533 257 -

Active (N)

the implemented models in the deployable solution in the
context of the SmartWork project.

A number of measures are recorded for evaluating the
performance of ML models. The most commonly used in
literature [60]—[62] which will be considered as well in our
analysis, are the following:

Sensitivity (True Positive Rate) corresponds to the pro-
portion of participants that have T2DM (e.g., positive data
instances) that are correctly considered as positive, with
respect to all positive participants.

. TP
Sensitivity = ——— 3
TP + FN

Specificity (True Negative Rate) corresponds to the pro-
portion of participants that don’t have T2DM (e.g.,negative
data instances) that are correctly considered as negative, with
respect to all negative participants.

N

Positive Predictive Value (+PV) corresponds to the propor-
tion of participants that have T2DM (e.g., true data instances)
that are correctly considered as positive, with respect to all
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positively predicted participants.

TP

~ TP+ FP
Negative Predictive Value (—PV) corresponds to the pro-

portion of participants that don’t have T2DM (e.g., negative

data instances) that are correctly considered as negative, with

respect to all negatively predicted participants.

1IN

- TN +FN

Positive Likelihood Ratio (+LR) is defined as the ratio of

the true positive rate (sensitivity) to the false positive rate
(1-specificity).

+PV (10)

—PV (1)

Sensitivity
1 — Specificity
Negative Likelihood Ratio (—LR) is defined as the ratio of

the false negative rate (1-sensitivity) to the true negative rate
(specificity).

+LR = (12)

1 — Sensitivity
Specificity

“LR = (13)
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FIGURE 3. AUC-ROC behavior: inductive learning.

Likelihood ratios measure the certainty of the test about
a positive and negative diagnosis, correspondingly. Indicate
that, in previous equations TP:True Positive, TN:True Nega-
tive, FP:False Positive and FN:False Negative.

Another useful metric is Area Under Curve, which takes
values in the range [0, 1]. The higher its value, the better is the
ML model performance in distinguishing positive (Diabetics)
from negative (Non Diabetics) class instances. In best (ideal)
case where AUC equals 1, the ML model can perfectly dis-
tinguish all positive (Diabetic) from negative (Non Diabetic)
class instances. In worst case where AUC equals 0, the clas-
sifier will predict all negatives as positives and vice versa.
Also, the Younden Index was considered in combination
with Receiver Operating Characteristic (ROC) analysis. This
metric summarises the performance of a diagnostic test, it is
defined for all points of a ROC curve, and its maximum value
may be used for the selection of the optimum cut-off point.

J = Sensitivity + Specificity — 1, J €[0,1]. (14)

The quantitative analysis of the two selected risk score
systems showed that the best performing, according to AUC
metric, is FindLogist with AUC equals 0.821 which proves
that it performs better than LeicLogist with AUC 0.788 by
3.3% in the constructed dataset. Although the sensitivity and
specificity of the selected risk score systems were not con-
siderable better than others (Table 5), if combined with other
existing ones, may improve the performance of the ensemble
methods.

Moreover, the use of single classifiers and ensemble meth-
ods, such as voting and stacking, could overcome the lim-
itations of risk score systems in order to build a single or
combined reliable T2DM risk assessment system. Figure 3
and Table 5 summarize the performance metrics values for
the diabetes prediction according to the adopted ML models
described in Section IV-B3. Also, in the same figure and table,
respectively, for the same metrics, the results of FindLogist
and LeicLogist models have been recorded. Note again that,
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these systems apply Logistic Regression with specific fea-
tures less than those considered in the ML models.

To further investigate the performance of the ML mod-
els, we compare the Youden indices and AUCs. The results
unveiled that the selected voting methods performed not only
the best but also considerably better than all the ML models
and the two selected score systems. Among the different com-
bination methods, the superiority of the two voting methods
against stacking was revealed. Voting typically works well if
the base classifiers perform the same task and have compara-
ble success, although stacking works well for different types
of first-level classifiers. A comparison of sensitivities and
specificities for different ML models can be found in Table 5,
while the exact hyperparameters of the models can be seen
in 6.

The significance of the classifiers’ AUCs was tested using
the Wald test statistic [63]. In detail, the discrimination ability
of each classifier is tested compared to a classifier with ran-
dom chance discrimination ability (TPR = FPRi.e. AUC =
0.5). The utilized null hypothesis states that AUC = 0.5 and
the alternative hypothesis that AUC # 0.5. The calculated
p-values for all the models were equal to 0 (<0.05), thus
clearly indicating that the calculated AUCs are significant
using a level a = 0.05, with the lower AUC recorded being
equal to 0.727.

Additionally, the receiver operating characteristic (ROC)
curves for the ML models and the score systems are sum-
marized in Figure 3. Focusing on the combination meth-
ods, we again conclude that the voting algorithms with the
selected single models produced again the best performance
(prediction result) against stacking method. Here, it should
be pointed out that, the ROC curves produced by the voting
algorithms are similar and are also positioned above the rest
model curves.

As the results witness, Random Forests classifier is the best
performing among the rest single classifiers with Logistic
Regression’s performance being closer, than the rest models.
This lies in the fact that the Random Forests can learn a
non-linear decision boundary and thus can achieve higher
scores in all metrics. In other words, Logistic Regression
poorly segments the Diabetes and No Diabetes classes while
the Random Forests model learns a more flexible decision
boundary for the discrimination of instances of the two
classes [64].

Among the three different ensembling approaches,
the weighted voting scheme boosts the performance of dia-
betes prediction. The optimal weights are calculated by
running the NSGA-II algorithm on the constructed dataset.
The optimization procedure aims to maximize both AUC and
Sensitivity. The relevant Pareto Front behavior is depicted
in Table 7. Note that the sensitivities reported in the first
column of Table 7 were significantly lower than the final
reported in the inductive results table due to the fact that
the Youden criterion was not utilized during the optimization
process, and the default cut-off point of 0.5 probability
was set. All the weight sets were applied in the inductive
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TABLE 5. Performance comparison of different prediction models (inductive results).

AUC Sensitivity Specificity +PV -PV +LR -LR Cut- J P-
off value

LeicLogist | 0.788 0.784 0.688 0.325 0.943 2.509 0.315 0.151 0471 0
(0.738,0.838) | (0.688,0.861) | (0.645,0.728) | (0.284,0.451) | (0.91,0.953) (2.125,2.963) | (0.215,0.462)

FindLogist | 0.821 0.742 0.747 0.360 0.938 2.934 0.345 0.176 | 0.489| 0
(0.780,0.863) | (0.643,0.826) | (0.707,0.784) | (0.315,0.481) | (0.905,0.949) | (2.426,3.549) | (0.245,0.485)

Naive 0.766 0.845 0.591 0.284 0.952 2.066 0.262 0.003 | 0.436( 0

Bayes (0.719,0.814) | (0.758,0.911) | (0.547,0.634) | (0.249,0.425) | (0.919,0.960) | (1.806,2.365)| (0.163,0.419)

Decision 0.797 0.876 0.640 0.318 0.964 2.436 0.193 0.071 0.517| 0

Trees (0.747,0.847) | (0.794,0.934) | (0.597,0.682) | (0.280,0.484) | (0.936,0.970) | (2.122,2.797)| (0.113,0.329)

Logistic 0.863 0.794 0.787 0.416 0.952 3.719 0.262 0.175 | 0.580| O

Regression | (0.830,0.896) | (0.700,0.869) | (0.748,0.821)| (0.365,0.552) | (0.923,0.961) | (3.058,4.523) | (0.177,0.388)

Random 0.880 0.845 0.785 0.429 0.964 3.924 0.197 0.180 | 0.629| 0

Forests (0.844,0.916) | (0.758,0.911) | (0.746,0.820) | (0.378,0.584) | (0.938,0.971) | (3.256,4.730) | (0.123,0.315)

ANN 0.776 0.711 0.808 0.416 0.936 3.711 0.357 0.001 0.519| 0
(0.725,0.827) | (0.610,0.799) | (0.771,0.842) | (0.363,0.534) | (0.903,0.949) | (2.980,4.620) | (0.261,0.489)

DNN 0.847 0.897 0.700 0.364 0.973 2.986 0.147 0.111 0.596| 0
(0.811,0.882) | (0.819,0.949) | (0.658,0.739) | (0.321,0.553) | (0.948,0.977) | (2.572,3.466) | (0.082,0.266)

Stacking: 0.833 0.773 0.792 0.417 0.948 3.726 0.286 0.190 | 0.566( 0

LR,RFs (0.789,0.877) | (0.677,0.852) | (0.755,0.827) | (0.365,0.547) | (0.918,0.958) | (3.046,4.558) | (0.198,0.414)

Voting: 0.881 0.794 0.840 0.487 0.955 4.959 0.245 0.242 | 0.634| 0

LR,RFs (0.849,0.913) | (0.700,0.869) | (0.805,0.871) | (0.428,0.621) | (0.928,0.965) | (3.964,6.203) | (0.166,0.363)

Weighted 0.884 0.856 0.798 0.449 0.967 4.245 0.181 0.193 | 0.654| 0

Voting: (0.850,0.918) | (0.770,0.919) | (0.761,0.833) | (0.395,0.608) | (0.942,0.973) | (3.504,5.142) | (0.111,0.294)

LR,RFs

experimentation setup of WeightedVotinglL.RRFs using the
Youden optimal cut-off criterion (displayed in the last two
columns of Table 7) and the weight set of [0.2733, 0.7266]
was found to yield the best performance results in terms
of AUC and Sensitivity, thus its performance was recorded
in Table 5.

A more focused graphic analysis of the different evalua-
tion metrics for Weighted VotingL RRFs is found in Figure 4,
where its ROC curve, Sensitivity-Specificity and Distribution
graphs are presented. In the first graph, the specific Youden
optimal cut-off point is located on the ROC curve. In the sec-
ond graph, the sensitivity and specificity curves are depicted
showing the tradeoff for the different selections of cut-off
points. The next two graphs, give a good overview of how
well the Youden optimal cut-off point of 0.193 separates the
two classes.

In addition to the inductive experiments, transductive
learning [65] experiments were also employed. The aim of
this learning approach is to exploit patterns that are hidden
in the test samples by utilizing them as unlabeled data in
the training phase, thus taking advantage of the information
embedded in the test set by augmenting the training set [66],
[67]. During the transductive experimentation, the partition-
ing of the dataset was kept the same as in the inductive
experimentation, while the unlabeled set was used under a
common self-training wrapper algorithm using the different
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FIGURE 4. Analysis of the ROC curve, optimal cut-off and distribution
graphs for the WeightedVotingLRRFs model.

prediction models that were compared in the inductive exper-
iments. The performance results are summarized in Table 8
and Figure 5, while the exact parameters utilized in the
self-training scheme can be found in Table 6. Similarly with
the work of Triguero et al. [68], the transductive self-training
wrapper uses as base classifiers the compared models which
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TABLE 6. Models hyperparameters.

Algorithm Parameters

Naive Bayes Kernel Estimator = None

Decision Trees | Tree pruning = True

Confidence factor used for pruning = 0.25
Min. number of instances per leaf = 2
Min. description length correction = True

Size of each bag = 100%
Maximum tree depth = Unlimited
Number of iterations = 100

Random
Forests

ANN Input layer units = 66

Hidden layer units = 8 (x2)

Hidden and output layers type = Sigmoid
Hidden layers momentum = 0.2
Optimizer = SGD

Learning rate = 0.1

Epochs = 500

DNN Input layer units = 66

Hidden layer units = 50 (x2)
Hidden layers type = Rectifier
Hidden layers dropout = 10%
Hidden layers L1 = 0.00001
Hidden layers L2 =0

Output layer type = Softmax
Optimizer = SGD

Learning rate = 0.1

Epochs = 500

Stacking models = LR, RFs
Meta-classifier = RFs
Number of execution slots = 1

Voting models = LR, RFs
Combination rule = Avg. of Probabilities
Number of execution slots = 1

Voting models = LR, RFs

Weights = 0.2733, 0.7266

Combination rule = Avg. of Probabilities
Number of execution slots = 1

Stacking

Voting

Weighted
Voting

Transductive
Self-training
Wrapper

Selection metric = Prediction probabilities
Confidence threshold = 0.90
Maximum iterations = 10

TABLE 7. Weighted voting with NSGA-II algorithm.

Sensitivity | AUC Weight LR | Weight RFs | Youden Cut-off
Sensitivity

0.2989 0.88381 0.2733 0.7266 0.856 0.193

0.3402 0.88344 0.1276 0.8723 0.825 0.214

0.3298 0.88364 0.1325 0.8674 0.835 0.197

0.3195 0.88375 0.1373 0.8626 0.845 0.188

0.3195 0.88375 0.1387 0.8612 0.845 0.188

are initially trained using the labeled set and are then used to
predict the labels of the unlabeled set in order to repeatedly
increase the labeled set, while in each iteration the base
model is being retrained. A confidence probability threshold
of 0.90 for the predicted labels is set to ensure that less
confident predictions are not integrated in the retraining of
the base model, and moreover the maximum iterations of
the self-training scheme are limited to 10. By comparing the
transductive AUCs against their inductive equivalents, it is
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concluded that the logistic models, while do not significantly
decrease their performance, they gain no benefit from the
exploitation of the unlabeled data. The same stands true for
the single classifiers i.e. NB, DT and ANN. In contrast,
the more complex models such as the RFs, DNN and the
rest ensembles marginally improve their classification per-
formance. Specifically, the proposed Weighted VotingLRRFs
model scores an AUCransductive = 0.888 which is the highest
that was recorded, suggesting that strict selection of unlabeled
data (due to voting) can lead to possible performance increase
of the model.

VI. DISCUSSION

In this research, several strengths and limitations are high-
lighted. In terms of the former, to our knowledge, it is
the first to assess various ML models and provide partici-
pants with personalized long-term risk prediction of T2DM
occurrence and appropriate guidance regarding lifestyle inter-
ventions. Also, the research findings were derived from a
cross-sectional study on a representative English cohort (e.g.,
elderly office workers) with follow-up data; thus, we may
identify causal and temporal associations between elderly
lifestyle and T2DM.

Another positive aspect of this work is that, during the
balanced dataset creation, we drew instances of the initially
“Non-Diabetics” class from the reference waves, whose
class label was finally defined in the follow-up waves. This
approach may give us a view of features behaviour for par-
ticipants diagnosed with T2DM in the follow-up examina-
tion, contributing to T2DM prognosis. Moreover, our study
revealed the importance of different risk factors in T2DM
prediction for elder persons. The results of feature selection
techniques coincided with the corresponding literature about
T2DM risk factors. The selected features for the ML models
training and testing are among the symptoms/factors that
doctors consider for quantifying long-term risk prediction or
identifying its occurrence.
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TABLE 8. Performance comparison of different prediction models (transductive self-training results).

AUC Sensitivity Specificity +PV -PV +LR -LR Cut- J P-
off value

LeicLogist | 0.788 0.784 0.692 0.328 0.943 2.541 0.313 0.145 | 0475 0
(0.739,0.838) | (0.688,0.861) | (0.649,0.732) | (0.287,0.454) | (0.910,0.953) | (2.150,3.004) | (0.213,0.459)

FindLogist | 0.821 0.753 0.743 0.360 0.940 2.929 0.333 0.167 | 0495| 0
(0.780,0.863) | (0.655,0.835) | (0.703,0.781) | (0.315,0.482) | (0.907,0.951) | (2.43,3.532) | (0.234,0.473)

Naive 0.727 0.825 0.561 0.265 0.944 1.880 0.312 0.001 0.386| 0

Bayes (0.675,0.779) | (0.734,0.894) | (0.517,0.605) | (0.232,0.394) | (0.907,0.952) | (1.643,2.151)| (0.201,0.484)

Decision 0.788 0.856 0.644 0.316 0.959 2.405 0.224 0.059 | 0499| 0

Trees (0.734,0.843) | (0.770,0.919) | (0.601,0.686) | (0.277,0.468) | (0.929,0.966) | (2.085,2.775)| (0.137,0.365)

Logistic 0.863 0.794 0.787 0.416 0.952 3.719 0.262 0.173 | 0.580| O

Regression | (0.830,0.896) | (0.700,0.869) | (0.748,0.821)| (0.365,0.552) | (0.923,0.961) | (3.058,4.523) | (0.177,0.388)

Random 0.886 0.866 0.796 0.449 0.969 4.254 0.168 0.175 | 0.662| 0

Forests (0.850,0.922) | (0.782,0.927) | (0.759,0.831) | (0.396,0.615) | (0.945,0.975) | (3.521,5.141)| (0.101,0.280)

ANN 0.763 0.701 0.800 0.402 0.933 3.512 0.374 0.001 0.501| 0
(0.712,0.815) | (0.600,0.790) | (0.763,0.834) | (0.351,0.519) | (0.899,0.946) | (2.825,4.366) | (0.275,0.508)

DNN 0.852 0.887 0.719 0.377 0.971 3.159 0.158 0.089 | 0.606| 0
(0.818,0.887) | (0.806,0.942) | (0.678,0.758) | (0.332,0.557) | (0.946,0.976) | (2.701,3.695) | (0.090,0.276)

Stacking: 0.857 0.763 0.844 0.484 0.949 4.886 0.281 0.220 | 0.607| O

LR,RFs (0.817,0.898) | (0.666,0.843) | (0.809,0.874) | (0.424,0.611) | (0.920,0.960) | (3.879,6.156) | (0.196,0.402)

Voting: 0.885 0.876 0.773 0.425 0.970 3.856 0.160 0.162 | 0.649| 0

LR,RFs (0.853,0.916) | (0.794,0.934) | (0.734,0.809) | (0.375,0.598) | (0.947,0.976) | (3.230,4.603) | (0.094,0.272)

Weighted 0.888 0.825 0.846 0.506 0.962 5.350 0.207 0.212 | 0.670| O

Voting: (0.856,0.920) | (0.734,0.894) | (0.811,0.876) | (0.446,0.649) | (0.937,0.970) | (4.278,6.692) | (0.134,0.320)

LR,RFs

Featurewise, all models were trained using the selected
35 features as described in section IV-B2 except the
LeicLogist and FindLogist models. Those two models were
fitted using the constructed dataset based on the feature sets
according to the original Leicester and FINDRISC score sys-
tems, excluding the feature that considers the family history
of diabetes as it was not available in the ELSA database. Both
logistic models where significant at a level of 0.05 and their
analysis (supplementary Figures S1 and S2) confirmed that
almost all the features from the original research works were
still significant on the constructed dataset. Unlike existing
researches [69], [70], for the training of the ML models, fam-
ily history of diabetes and women with gestational diabetes
were excluded from the features set. This may be a limitation
of this study since these factors are among the important
ones for T2DM risk prediction. Nevertheless, they were not
available in the current dataset.

Moreover, contrary to previous works of [48], [71], [72],
which use the Pima Indian Diabetes Dataset (PIDD) as bench-
mark dataset for their experiments, in this study the ELSA
dataset is utilized, consisting of elder office workers’ data.
Furthermore, Perveen et al. [33] examined the Canadian Pri-
mary Care Sentinel Surveillance Network (CPCSSN), while
Dalakleidi et al. [72] evaluated the suggested models on
Hippokration dataset, which was granted from the General
Hippokrateion Hospital of Athens.
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As far as classification is concerned, k-NN, Decision Trees,
Random Forests, Naive Bayes [73], ANN and DNN [74] are
the most frequently applied for long-term risk prediction of
T2DM. The ANN and DNN topologies presented in [29]
were kept identical in order to draw useful comparison results
regarding the performance of neural networks on the con-
structed dataset, with the exception of the insertion of dropout
[75] in the DNN topology to reduce overfitting. The results
were promising for the DNN model in both the experimen-
tation setups, but were still lacking an approximate 3.7% in
terms of AUC;pductive due to significant underperformance in
terms of specificity. Considering the performance results of
the LeicLogist and FindLogist, the compared metrics suggest
similar predictive ability with the rest single classifiers (i.e.
NB, DT, ANN). Although, LeicLogist and FindLogist are
based on logistic regression, they present far lower AUCs than
the LR model trained using the 35 features, thus strengthening
the argument that a more personalized approach on the T2DM
modeling and prediction can be significantly better.

More to the point, in contrast with [48], Adaptive Boost-
ing (AdaBoost) and Extreme Gradient Boosting (XGBoost)
are left for future experimentation on the constructed dataset.
Also, in [48], the weighted ensembling of different ML mod-
els is proposed where AUC is maximized during hyperpa-
rameter tuning using the grid search technique. However,
in our analysis, a bi-objective genetic algorithm is applied;
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TABLE 9. Features information.

Features Description ELSA Values Dataset Values
BMI Categories 1.underweight less than 18.5 1-6

2.normal weight from 18.5 to 25

3.pre-obesity from 25 to 29

4.obesity class 1 from 30 to 35

5.obesity class 2 from 35 to 40

6.0besity class 3 greater than 40
Self-report of health 1.Excellent 1-5,NaN

2.Very good

3.Good

4 Fair

5.Poor
Gross monitor index 0-none, 5-all 0,5,NaN
Mobility index 0-none, 4-all 0,4,NaN
Fine motor index 0-none, 3-all 0,3, NaN
Large muscle index 0-none, 4-all 0,4,NaN
ADLs 0-none, 5-all 0,5,NaN
HLTHLM 0:No, 1:Yes 0,1,NaN
ADLs 0-none, 3-all 0,3,NaN
Education level 1.less than secondary 1-3,NaN

2.upper secondary and vocat

3.tertiary
Level of physical effort at current job 1.Sedentary occupation 1-2,NaN

2.Standing occupation

3.Physical work

4.Heavy manual work
Work stress-under pressure due to | l.strongly agree 1-4,NaN
workload 2.agree

3.disagree

4.strongly disagree
Ever had hip fracture 0:No, 1:Yes 0,1,NaN
Mental health-the respondent’s feelings | 0:Negative, 8:Positive 0,8,NaN
much of the time over the week prior to
the interview
Marital Status 1.married 1-6,NaN

2.partnered

3.separated

4.divorced

5.widowed

6.never married
Currently working for pay 0:No, 1:Yes 0,1,NaN
Social activity-weekly contact with | 0:No, 1:Yes 0,1,NaN
friends/relatives
IADLs: using the phone, managing | O-none, 5-all 0,5,NaN
money, taking medications, shopping
for groceries, preparing hot meals
Ever had high cholesterol 0:No, 1:Yes 0,1,NaN
Ever had psychological problem 0:No, 1:Yes 0,1,NaN
Ever had heart problems 0:No, 1:Yes 0,1,NaN
Ever had asthma/cataracts/lung 0:No, 1:Yes 0,1,NaN
disease/dementia/memory problems
Ever had hip fracture/stroke/arthritis 0:No, 1:Yes 0,1,NaN
/cancer/Parkinson
Smoke ever or now 0:No, 1:Yes 0,1,NaN

the optimal weights are estimated to maximize AUC and
Sensitivity of the ML based models simultaneously, under
the weigthed voting ensemble. To identify the best perform-
ing model, different performance metrics such as sensitivity,
specificity and the receiver operating curves were analysed.
The proposed WeightedVotingLRRFs model provides a
mechanism of more confident prediction probabilities due
to the ensembling of its base models. It is known that an
ensemble, such as the proposed, can produce steadily better
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predictive results than its counterparts under the condition
that its base classifiers are accurate and diverse [76]. Both
conditions hold true for the proposed model, while the exper-
imentation results validate the assumption of increased pre-
dictive ability for the Weighted VotingLRRFs.

To our knowledge, it is the first paper to assess T2DM risk
prediction on English cohort (namely, elder office workers
and T2DM) from ELSA database. There is a lack of studies
to fairly compare it with the previous research, in terms of
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ML models performance. Previous works in the same dataset
mainly focus on diabetes risk factors analysis. Specifically,
in [77], the authors found that T2DM diagnosis in older adults
did not motivate them changing their health behaviour, other
than smoking. Moreover, Hacket et al. in [78] demonstrated
associations between sleep problems and daily cortisol levels
in response to stress in a part of people with T2DM from
ELSA. Moreover, the study in [79], aimed to build a predic-
tive model using RFs, Deep learning and Linear models to
accurately estimate health status based on sociodemographic
characteristics, in aging populations using data from the
ELSA database.

At this point, a limitation of this study is that the experi-
ments have been conducted with a fixed size dataset consisted
of a limited number of subjects amount to 2009, as shown
in Table 3. It is worth noting that the performance of a ML
model improves as the number of training samples increases,
as was also observed by the transductive experimentation
on the current dataset. To tackle this limitation, we aim to
conduct similar research from a big data viewpoint focusing
on more and different ML models, evaluating the impact of
data volume on their performance in terms of T2DM risk
prediction.

VIl. CONCLUSION

In this study, we applied different ensemble algorithms to a
dataset constructed based on the ELSA database, combining
different families of ML models to predict the risk of T2DM,
taking into account lifestyle variables of elder office workers.
Moreover, an IoT enabled framework [80] was developed
that integrates the long-term T2DM risk prediction model.
It aims to provide personalized interventions according to the
user’s needs. Our empirical study showed that all investigated
ML algorithms could produce satisfactory prediction results
that are at significantly better than the existing simple score
systems. In particular, the voting method could significantly
increase the predictability in relation to any conventional risk
score system.

It is worth to note that, we chose a multi-objective opti-
mization based technique since it is more robust compared to
the single objective one and constructs more efficiently the
classifier ensemble (WeightedVotingLRRFs), as it optimizes
more than one classification quality measures i.e. AUC and
Sensitivity simultaneously, resulting in the highest compared
AUCinductive = 0.884.

To sum up, according to our experimental analysis and
results, ensemble methods constitute a useful tool for pre-
dicting type 2 diabetes. Overall performance attained by the
investigated techniques shows the effectiveness and superior-
ity of the multi-objective optimization based, weighted voting
ensemble method in relation to single classifiers and risk
score systems, while the better learning ability of Weighted-
VotingLRRFs against its rivals was observed using inductive
and transductive learning setups. Hence, embedding it in the
recommended system, lifestyle or medication interventions
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can be implemented to participants at high risk in order to
prevent and/or delay diabetes occurrence.

As future work, at first, it would be beneficial to
apply different techniques for handling of missing val-
ues such as imputation using IRSSI [81] and experi-
ment with more feature selection techniques. Moreover,
it would be interesting to evaluate the impact of dimension-
ality reduction with techniques such as principal compo-
nent analysis [82] in T2DM prediction performance under
the ELSA-based constructed dataset. In addition, the com-
parison of state of the art techniques such as XGBoost,
AdaBoost or high layer DNNs would probably provide bet-
ter insights regarding the predictive limitations of the con-
structed dataset. Finally, the exploitation of semi-supervised
and unsupserivsed methodologies in the training process
could also be proven beneficial, as was also suggested by the
AUC improvements observed during the transductive exper-
imentation. The previous argument is strengthened by taking
into account that there are plenty of unlabeled instances in
ELSA that could be incorporated in the constructed dataset.
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