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ABSTRACT As a vital part of autonomous navigation of mobile robot, path planning is a hot research
direction which aims at searching a shortest collision-free path from the starting position to the goal position
in a complex environment. In this paper, a method for global dynamic path planning is designed based on
improved self-adaptive harmony search algorithm (ISAHS) and Morphin algorithm. Firstly, to improve the
quality of new solution vector, a neighbors and optimal learning strategy is introduced. Secondly, two key
parameters are adjusted adaptively and a probability disturbance strategy is designed for renewing harmony
memory, and then an improved self-adaptive harmony search algorithm is proposed to obtain an initial
optimal path in the static environment. Finally, the Morphin algorithm is introduced to avoid the moving
obstacles in real time. Simulation results indicate that the proposed method performs well in planning an
initial static optimal path and it can avoid all preset moving obstacles effectively.

INDEX TERMS Dynamic path planning, improved self-adaptive harmony search algorithm, morphin
algorithm, mobile robot.

I. INTRODUCTION
Mobile robot is one of the most intelligent devices which can
replace humans to do repetitive and dangerous jobs [1], [2].
Path planning, an important part of autonomous navigation,
is aimed at searching a shortest collision-free path from the
starting position to the goal position in a complex environ-
ment. There are four kinds of path planning, i.e., global
path planning, local path planning, static path planning and
dynamic path planning [3], [4].

In the past few decades, scholars have studied path plan-
ning deeply and proposed a series of classical path planning
methods, such as artificial potential field method (APF) [5],
grid method [6], simulated annealing algorithm (SA) [7],
A∗ algorithm [8], rapidly extended random tree algorithm
(RRT) [9], Morphin algorithm [10], etc. APF believes that
robot will move according to a resultant force formed by
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the attraction of goal position and the repulsion of obstacles.
APF’s principle is simple, but it is not easy to escape the local
trap in an environment with concave edge obstacles. [11],
Chen et al. solved the APF’s problem mentioned above
by changing the calculation method of repulsion force and
adding virtual target points. SA simulates solid’s cooling
process, and introduces probability disturbance strategy to
jump out of local trap to obtain a global optimum. [7],
Xiao et al. used a simulated annealing algorithm to find
the near-optimized paths, which can achieve balanced task
assignment for UAV formations. [12], Zhuge et al. have
overcome the inflexible trajectory of traditional Morphin
algorithm and obtain a smooth path by constructing a multi-
layer Morphin search tree. In recent years, some new intel-
ligence optimization algorithms have performed excellently
in solving path planning problem such as genetic algorithm
(GA) [13], [14], particle swarm optimization algorithm
(PSO) [15], differential evolutionary algorithm (DE) [16]
and firework algorithm (FWA) [17]. [18], Li and Chou
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designed a self-adaptive learning particle swarm optimization
algorithm (SLPSO) which selects the most appropriate search
strategy adaptively in different stages and limits particle
velocity and position according to the boundary violation
strategy. DE algorithm is very similar to GA algorithm,
which includes heredity, crossover and mutation. [19],
Fan and Zhang planed an optimal collision-free path by
amending the infeasible solution generated byDE’s crossover
operation.

Harmony search algorithm (HS) is an intelligent opti-
mization algorithm, which is proposed by Geem et al. [27].
HS algorithm based on memory consideration, pitch adjust-
ing and stochastic selection operation to explore new and
better solution in the search process. Since the proposed
of HS algorithm, many improvements and applications of
HS algorithm have been presented in many engineering
fields. HS algorithm attracts much attention because of
its unique optimizing means and extensive application
prospects [28], [29]. HS algorithm performs better than the
other swarm intelligent optimization algorithms in many
fields, but it also suffers from some drawbacks potentially
and its optimization efficiency is restricted. For example,
the basic HS can be easily trapped and lead to a local optimum
solution. It is quite sensitive to the value of a few key control
parameters like other meta-heuristic algorithms. In order to
overcome this weakness, some variants of HS are proposed
and applied to many optimization problems [20]. To enhance
the global search capability, the best harmony solution has
been employed in the HS algorithm pitch adjustment step.
Inspired by swarm intelligent, a novel global harmony search
algorithm (NGHS) based on position updating and genetic
mutation was proposed by Zou et al. [24]. NGHS algorithm
has high optimization efficiency and strong convergence
performance. It is used to solve task assignment problem [31],
0–1 knapsack problem [32] and reliability problem [33].
Ouyang et al. offer a strategy for the adjustment of BW and
design a modified harmony search algorithm (MHS) [30].
In 2017, an improved HS algorithm called LHS have
been developed to improve solution precision and enhance
the ability of escaping local optima [34]. Ouyang et al.
proposed an amended harmony search algorithm with per-
turbation strategy for large-scale system reliability problems
in 2018 [35]. In recent years, HS has been gradually applied
to robot path planning due to its simple concept, fewer
parameters, and easier implement. [21], Combined with
the Pythagorean velocity curve PH, a modified harmony
search algorithm (MHS) with crossover mutation strategy is
designed by Wu and Yi to solve UAV path planning problem
in the urban and mountainous environment. [22], Kundu
and Parhi introduced a dynamically adaptive harmony search
algorithm (DAHS) which has improved the search capability
and random generalization ability by adjusting important
parameters adaptively and designing a new search scheme.
Finally, they planned a collision-free path for underwater
robot in a three-dimensional scene. [23], an improved
evolutionary algorithm based on GA and HS is designed

to solve the path planning problem of multi-UAV through
different evolutionary factors.

Harmony search algorithm has unique search mechanism,
simple principle and strong expansibility, and a better
optimization result often can be obtained after improvement.
Therefore, in this paper, the harmony search algorithm is
introduced to solve the static path planning problem. More-
over, compared with APF method, the Morphin algorithm
does not have the disadvantage of falling into local traps
because it selects the most appropriate path among multiple
predicted arc paths, so this article will use it to avoid the
moving obstacles in real time.

The main contributions of this paper are as follows:
(i) a global dynamic path planning method based on

improved self-adaptive harmony search algorithm (ISAHS)
and Morphin algorithm under dynamic environment is
proposed. Firstly, the path length and the path collision degree
are considered as two optimization objectives, and then an
evaluation function is built.

(ii) an improved self-adaptive harmony search algorithm
was designed to get an initial optimal path in the static envi-
ronment by introducing the neighbors and optimal learning
strategy, self-adaptive strategy and probability disturbance
updating strategy.

(iii) a global dynamic path planning method based on the
initial static optimal path and Morphin algorithm is proposed
to avoid the moving obstacles in real time. Our simulation
results reveal that the proposed algorithms perform better.

The remainder of the paper is organized as follows.
The path planning problem and related algorithms are
explained in Section 2. Section 3 introduces an improved
self-adaptive harmony search algorithm (ISAHS) in detail.
Many simulation experiments to investigate the effectiveness
of the proposed algorithms are presented in Section 4.
Section 5 concludes this paper.

II. PATH PLANNING PROBLEM AND RELATED
AGORITHMS
This section introduces a mathematical model and a corre-
sponding evaluation function for path planning problem, and
then explains the implementation process of harmony search
algorithm and the basic idea of Morphin algorithm.

A. PATH PLANNING PROBLEM
1) MATHEMATICAL MODEL
A reasonable mathematical model is helpful to plan a shortest
collision-free path. This paper establishes a mathematical
model for path planning based on the existing method
presented in [18].

Fig. 1 is a static environment for mobile robot which
includes four obstacles (O), starting position (S) and goal
position (G). The progress of establishing mathematical
model is divided into three steps. Firstly, a relative coordinate
system x-y is built when the line between the starting position
and the goal position is considered as a horizontal axis.
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FIGURE 1. The static environment for mobile robot.

Secondly, divide the line into D+1 equal part with D points
and then draw dotted lines perpendicular to x axis. Finally,
the points on the dotted lines are considered as key points
and a path will be expressed by the coordinates of key points
on y axis as

Path = [yS , y1, y2, · · · , yk , · · · , yD, yG] (1)

Sometimes, the path in x-y coordinate system needs to be
transformed to X-Y coordinate system. The transformation
relationship is defined as[

X
Y

]
=

[
cosθ −sinθ
sinθ cosθ

] [
x
y

]
+

[
Xs
Ys

]
(2)

where, XS and YS are the coordinates of starting point in
X-Y coordinate system; θ is a vector of angular differences
between X and x axis.

2) EVALUATION FUNCTION
The path evaluation criteria include low energy consumption,
no collision, smooth, etc., among which no collision is
the minimum requirement for path planning. In this paper,
low energy consumption and no collision are taken as two
optimization objectives.

The first target is low energy consumption, which can be
measured by the path length. Naturally, the path length is
hoped to be as small as possible. Assuming that the starting
position is p0 and the goal position is pD+1, the path length
(L) is calculated as

L (Path) =
D∑
i=0

‖pi+1 − pi‖ (3)

where, ‖pi+1 − pi‖ is the distance from point pi to pi+1; D is
the number of key points.

The second target is no collision, which can be measured
by the path collision risk degree. The path collision risk
degree (C) is defined as

C (Path) =
D∑
i=0

H∑
j=1

S
(
li,Oj

)
· ‖pD+1 − p0‖ (4)

S
(
li,Oj

)
=

{
1, collision
0, no collision

(5)

where, H is the number of obstacles; S
(
li,Oj

)
will value at

1 to add a penalty if the ith segment of path crashes with the
jth obstacle.
In fact, it is difficult to meet the above two targets

simultaneously. For example, a shorter path may increase the
collision risk degree, and a fewer collision risk degree may
lead to a longer path. This paper combines these two goals as

f (Path) = v1 · L (Path)+ v2 · C (Path) (6)

where, f is the evaluation function for path; v1 and v2 are
weight factors, which are set to 0.9 and 0.1 respectively in
Part IV.B

B. HARMONY SEARCH ALGORITHM
Harmony search algorithm is an optimization algorithm imi-
tating the music improvising process, which was explained in
detail in [27]. In this paper, a brief overview of HS algorithm
is as follows:
Step 1 Initialize related parameters.
The parameters include variable dimension (D), vari-

able range
[
yL , yU

]
, harmony memory size (HMS), har-

mony memory considering rate (HMCR), pitch adjustment
rate (PAR), pitch adjusting bandwidth (BW), maximum
iterations (T ).
Step 2 Initialize harmony memory.
The harmony memory (HM) is composed of many solution

vectors with D dimensions which are generated from the
variable range

[
yL , yU

]
randomly. HM is defined as

HM =


y11 y12 · · · y1D f

(
y1
)

y21 y22 · · · y2D f
(
y2
)

...
...

. . .
...

...

yHMS1 yHMS2 · · · yHMSD f
(
yHMS

)
 (7)

Step 3 Improvise a new solution vector for HS.
Improvising a new solution vector is the most important

step to realize harmony search algorithm, which is usually
related to HMCR, PAR, and BW. The detailed pseudo-
code for improvising a new solution vector is given in
Algorithm 1 below.
Step 4 Renew harmony memory.
The worst solution vector in harmony memory will be

replaced by the new solution vector whose quality is better.
Step 5 End search or not.
Continue to execute step 3 and 4when the current iterations

are less than the maximum iterations.

C. MORPHIN ALGORITHM
Morphin algorithm is a local dynamic obstacle avoidance
algorithm, which is often applied in dynamic path planning.
The main idea of Morphin algorithm is creating a set of
predicted arc paths according to the different steering angles
of mobile robot, and then the most suitable path will be
chosen. Morphin algorithm mainly includes two aspects,
which are the generation of predicted arc paths and the
selection of predicted arc paths.
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Algorithm 1 Harmony Search Algorithm
Input: the problem to be solved
Output: the best solution vector of the problem to be
solved
Step 1: initialize related parameters, including HMCR,

PAR, BW etc.;
Step 2: initialize harmony memory HM;
Step 3: improvise a new solution vector;
for k = 1 to T do
for i = 1 to D do
if rand (1) < HMCR do
ynewi = yai ; where a ∈ 1, 2, · · · ,HMS
if rand (1) < PAR do
ynewi = yai ± rand (1) · BW ;

end
else
ynewi = yL + rand (1) ·

(
yU − yL

)
;

end
end
renew HM;

end
Step 4: return the best solution in HM.

FIGURE 2. The predicted arc paths.

The generation of predicted arc paths depends on the
motion equation of mobile robot. The predicted arc paths
are essentially number of arc paths with different steering
angles, as shown in Fig. 2(a). In the simulation experiment,
the predicted arc paths are often linearized as shown
in Fig. 2(b).

The selection of predicted arc paths involves a new
evaluation function [38], which is defined as

f ′ (arc) =

{
∞ collision
γ1 ·(1/G)+γ2 ·1d + γ3 · β nocollision

(8)

where, f ′ is the evaluation function of predicted arc paths;
G is the minimum distance from the predicted arc path
to obstacles; 1d is the distance between the end point of
predicted arc path and the goal point; β is the mobile robot’s
steering angle; γ1, γ2, and γ3 are the weight factors, which
are 0.98, 0.02, and 0 in Part IV.C.

III. IMPROVED SELF-ADAPTIVE HARMONY SEARCH
ALGORITHM
In this section, to obtain an initial optimal path in the static
environment, an improved self-adaptive harmony search

algorithm (ISAHS) is designed. Moreover, the Morphin
algorithm is introduced to avoid the moving obstacles in real
time and then the global dynamic path planning steps are
given.

A. ISAHS AGORITHM
In this paper, an improved self-adaptive harmony search
algorithm (ISAHS) is designed to obtain an initial optimal
path in the static environment. Compared with traditional
harmony search algorithm, ISAHS has been improved in
three parts.

1) NEIGHBORS AND OPTIMAL LEARNING STRATEGY
The new solution vector of HS algorithm has three parts,
i.e., harmony memory consideration, pitch adjustment and
random mutation, which are controlled by HMCR, PAR
and BW. Among them, the pitch adjustment part is to
search a solution vector near the harmony memory, which
belongs to the local independent adjustment. The random
mutation part is to search a solution vector in the variable
range

[
yL , yU

]
, which belongs to the global independent

adjustment. To enhance the learning ability of ISAHS, this
paper introduces a neighbors learning and optimal learning
strategy which will improve the quality of improvising new
solution vector. The pseudo-code is as follow:

for i = 1 to D do
if rand (1) < HMCR do
ynewi = yworsti + c1 · rand (1) ·

(
ybesti − yworsti

)
;

if rand (1) < PAR do
ynewi = yworsti + c2 · rand (1) ·

(
yai − y

worst
i

)
;

end
else
ynewi = yL + rand (1) ·

(
yU − yL

)
;

end
end

where, a is a random number from 1, 2, · · · ,HMS; yworsti
represents the worst solution vector in HM; ybesti represents
the best solution vector inHM; c1 and c2 are optimal learning
factor and neighbors learning factor respectively, which are
recommended to value at range [1, 2].

The new solution vector of ISAHS algorithm also has
three parts, i.e., optimal learning, neighbors learning and
random mutation. When a new solution vector is mainly
learning from the optimal solution, it is conducive to the fast
convergence. When a new solution vector is mainly learning
from neighbors, it is beneficial to avoid falling into the local
extremes early in the iteration. When a new solution vector is
mainly derived from the random mutation, it is beneficial to
enrich the variety of harmony memory and avoid getting into
the local minimum.

2) SELF-ADAPTIVE STRATEGY
To reduce the difficulty of setting parameters and improve
ISAHS’s performance, a self-adaptive strategy of setting
HMCR and PAR is designed in this part.
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FIGURE 3. Variation of hr and PAR.

First, this paper introduced a new concept called harmony
memory richness (hr), which is related to the relative
closeness of evaluation function of all solution vectors inHM.
The harmony memory richness (hr) is defined as

hr (k) =


ln{1+ [f avg (k)− fmin(k)]}

ln[1+ (f avg0 − fmin0)]
, hr < 1

1, hr ≥ 1
(9)

where, k is the current iteration number; hr (k) is the richness
of the k th harmony memory; favg (k) and fmin (k) are the
average value and the minimum value of all solution vectors
in the k th harmony memory respectively; favg0 and fmin0 are
the average value and the minimum value in the first harmony
memory respectively.

With the iteration going on, the evaluation function values
of all solution vectors in HM will gradually approach, which
will lead to the average value closing to the minimum value.
Therefore, the harmony memory richness (hr) will gradually
tend to zero, which implies that hr is declining. Fig. 3(a) is
a variation diagram of harmony memory richness in solving
Sphere problem.

Second, a self-adaptive scheme of HMCR based on
harmony memory richness is designed as

HMCR (k)=HMCRmax − hr (k)·(HMCRmax−HMCRmin)

(10)

where, HMCRmax and HMCRmin are maximum and
minimum considering rate respectively, which are usually
taken at range [0.9, 1] according to [27]. At the beginning
of iteration, the new solution vector is mainly composed
of random mutation due to the smaller HMCR, which is
beneficial to the richness of harmony memory and global
search ability. In the later period of iteration, the new solution
vector ismainly from optimal learning and neighbors learning
due to the higher HMCR, which is conducive to the fast
convergence.

Finally, this paper designs a real-time variation scheme for
PAR. To avoid premature convergence caused by learning too
much from the optima, a larger PAR should be taken in early
iteration. In the middle and late iteration, the optimal learning
ability of ISAHS should be strengthened by controlling PAR
decline to reduce searching time and improve searching

accuracy. Therefore, the PAR in this paper is defined as

PAR (k) =


PARmax , k < l
MI (k) , l ≤ k ≤ u
PARmin, k > u

(11)

MI (k) =
(k − l)
(u− l)

· (PARmax − PARmin) (12)

where, PARmax and PARmin are the maximum and minimum
pitch adjustment rate respectively, which are valued at range
[0, 1]; l is a boundary number distinguishing between the
middle iteration and the early iteration, which is set as
T /3 in this paper. u is also a boundary number distinguishing
between the middle iteration and the late iteration, which is
2T /3 in this paper.

The variation diagram of PAR is given in Fig. 3(b).

3) PROBABILITY DISTURBANCE UPDATING STRATEGY
To avoid the rapid convergence to local optimum, this paper
accepts a new solution with a certain probability based on the
simulated annealing algorithm (SA). In SA, a new solution
is accepted as a current solution when the new solution is
superior to the past solution, which is conducive to rapid
convergence. A new solution is accepted as a current solution
according to a certain probability when the new solution is
poorer than the old solution, which is conducive to exclude
the local extremum. Therefore, this paper updates harmony
memory as follow:
Step 1 replace the worst solution vector inHM directly with

a new harmony vector whose quality is better;
Step 2 replace the worst solution vector in HM with a

new harmony vector according to a certain probability (p) if
the new solution vector is worse. The calculation formula of
probability (p) is as

p (k) =

{
1, f (ynew) < f

(
yworst

)
pmax · λk , f (ynew) ≥ f

(
yworst

) (13)

where, pmax is the maximum probability of accepting the new
solution vector with worse quality, which is set as 1 in this
paper; λ is an attenuation coefficient less than 1, which is
given as 0.99 in this paper. In the early stages of iteration,
a larger p is beneficial to exclude the local extremum, when a
smaller p is conducive to the fast convergence and fine search
at the end of iteration.

B. GLOBAL DYNAMIC PATH PLANNING STEPS
In this part, a global dynamic path planning method is
designed based on the proposed ISAHS algorithm and
Morphin algorithm. First, we search an initial optimal path
in the static environment according to ISAHS and then the
Morphin algorithm is used to avoid the moving obstacles in
real time. The specific implementation steps are as follows:
Step 1 Search an initial optimal path in the static

environment.
Firstly, build a mathematical model for path planning

problem according to Section 2 above and then plan an
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FIGURE 4. Diagram of local dynamic path planning.

initial optimal path under the static environment based on the
proposed ISAHS algorithm.
Step 2 Suppose that themobile robot will run on the initial

optimal path and then introduce a rolling window.
The rolling window will follow the movement of mobile

robot and roll forward. The radius of rolling window is related
to the sensor’s sensing distance, which is required to be
greater than the minimum collision distance (dc).
Step 3 Judge whether there are dynamic obstacles in the

rolling window.
Record the position [xob (t) , yob (t)], speed vob (t) and

direction θob (t) of dynamic obstacles and mark the mobile
robot as early-warning state if there are dynamic obstacles
in the rolling window. Otherwise, judge whether the mobile
robot has reached the goal position. If so, end path planning;
If not, return to Step 2.
Step 4 Judge whether the local obstacle avoidance is

required.
Mark the mobile robot as obstacle-avoidance state when

the early-warning state robot is predicted to crash with the
dynamic obstacles. Otherwise, judge whether the mobile
robot has reached the goal position. If so, end path planning;
If not, return to Step 2. The mobile robot will be predicted
to crash with dynamic obstacles if the distance between
themselves is less than the minimum collision distance
(dc) according to an assumption that the mobile robot and
dynamic obstacles will continue to move forward at a
constant speed and direction.
Step 5 Local dynamic path planning in the rollingwindow

based on Morphin algorithm.
In this step, the Morphin algorithm given in Section 2 is

used for local dynamic obstacle avoidance. The predicted
arc path obtained by Morphin algorithm will consider as an
imaginary path where the mobile robot will move. The local
dynamic path planning diagram is given in Fig. 4.
Step 6 End search or not.
If the mobile robot does not reach the goal position, return

to Step 2. Conversely, end the program.

IV. SIMULATION RESULTS AND ANALYSIS
To verify the performance of ISAHS algorithm and the
effectiveness of global dynamic path planning method,
a series of simulation experiments have been down in this
part. The simulation software is MATLAB R2016a, and

the computer is configured with CPU 2.20Ghz and RAM
4.00GB. In addition, all problems to be solved in this paper
are the minimum optimization problems

A. BENCHMARK FUCTION TEST
To evaluate the performance of ISAHS algorithm, there
are 10 standard functions (Sphere, Rosenbrock, Rastrigin,
Griewank, Ackley, Rotated hyper, Zakharov, Schwefel’s
problem 2.22, Schwefel’s problem 2.21 and Schwefel’s
problem 1.2), which will be used to compare ISAHS,
NGHS [24], HS, PSO, DE(rand/1/bin), RMDE [25], and
SRDE [26].

The variable range of Ackley function is [−32, 32], and
the variable range of other 9 functions is [−100, 100]. The
variable dimension (D) of all standard functions is equal
to 10. The population size (M ) of all tested algorithms is
set as 60. In each iteration, HS algorithms only update an
old solution (serial search), while PSO and DE algorithms
update the whole population (parallel search). Therefore,
the maximum iterations (T ) of PSO and DE algorithms are
set as 1500, when the maximum iterations of HS algorithms
are 9× 104(1500× 60).
Other key parameters are set as follows: the parameters of

ISAHS: HMCRmax = 0.99, HMCRmin = 0.9, PARmax = 1,
PARmin = 0.3, c1 = 1.5, c2 = 1.8; the parameter of NGHS:
pm = 0.05; the parameters of HS: HMCR = 0.9, PAR = 0.3,
BW = 0.01; the parameters of PSO: c1 = c2 = 2, w = 0.6,
vmax = 1, vmin = −1; the parameters of DE: F = 0.5,
CR = 0.9; the parameters of RMDE are shown in [25]; the
parameters of SRDE are shown in [26].

Table 1 shows that: 1) Among HS, NGHS and ISAHS,
except for the ‘best’ of f2, the proposed ISAHS algorithm is
obviously better than other two algorithms in optimization
accuracy, average value and stability, which indicates that
ISAHS has been greatly optimized compared with the
classical harmony search algorithm. 2) Compared with PSO
and DE algorithms, it can be seen that the proposed ISAHS
algorithm has better optimization accuracy, average value and
stability than other algorithms in f1, f3 ∼ f6, and f8 standard
test functions. However, among the four test functions f2,
f7, f9, and f10, the optimization results of DE algorithms are
better, but the ‘Mean’ and ‘Std’ of ISAHS are very close to
DE algorithms in f2 and f9 functions.
Fig. 5 is the convergence characteristics of 7 algorithms

above. To ensure that they can be compared in the same
coordinate system, this paper selects an evaluation value
from each generation of PSO and DE algorithms, while HS
algorithms select an evaluation value every 60 generations.
From Fig. 5, the following conclusions can be drawn:
1) The convergence characteristics of ISAHS are significantly
better than other 6 algorithms except for f2, f7, and f10.
2) By observing f1, f3 and f6, it is obvious that the biggest
characteristic of ISAHS is its slow convergence speed at the
beginning and high convergence speed at the end, which is
helpful to avoid falling into local extremum and ensure an
overall fast convergence speed.
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TABLE 1. Optimization results.

TABLE 2. Optimization results of solving static path planning problem based on ISAHS, NGHS, HS, PSO, DE, and SRDE.

B. PATH PLANNING SIMULATION EXPERIMENT IN STATIC
ENVIRONMENT
This part mainly compares the static path planning results
of ISAHS, NGHS, HS, PSO, DE and SRDE. Firstly,
three different static environments for mobile robot are set,

as shown in Fig. 6. The blue objects in environment 1 are
mainly concave obstacles; the blue objects in environment
2 are mainly polygonal and circular obstacles; the blue
objects in environment 3 are mainly circular obstacles. In the
three environments, the starting position (S) is [30, 30] when
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FIGURE 5. Convergence characteristics of each algorithm.

the goal position (G) is [160, 160]. In addition, the variable
range is [−100, 100], the variable dimension (D) is 20,
the maximum iterations (T ) of HS algorithms are changed to
9× 103, the maximum iterations of PSO and DE algorithms
are changed to 150, and the parameters of other algorithms
are consistent with Section A.
To evaluate the search accuracy, stability and average con-

sumption time for solving path planning problem, the above
6 algorithms have been run independently for 30 times in
the three static environments respectively. Table 2 are the

TABLE 3. Optimization results of solving static path planning problem
based on ISAHS, WOA, and IWOA.

optimization results, where ‘Best’, ‘Mean’, ‘Std’, ‘Time’
and ‘Success’ respectively represent the best value, mean
value, standard deviation, average consumption time and
the successful times of each algorithm in 30 independent
simulation experiments. The definition of ‘success’ is that
the path obtained by above algorithms is not crashed with
obstacles.

Table 2 shows that: 1) The ‘Best’ and ‘Mean’ of ISAHS in
three environments are superior to the other five algorithms,
which means that the search accuracy of ISAHS is higher
in solving static path planning problem. 2) The ‘Std’ and
‘Success’ of ISAHS are significantly superior to those of
NGHS, PSO and DE algorithms, which means that the
proposed ISAHS algorithm has higher stability.

Fig. 6 are static path planning results and convergence
characteristics. The left figure is the best path in 30
independent path planning simulation experiments, and the
right figure is the corresponding convergence characteristics
of each algorithm. Combined with the ‘Mean’ in table 2,
it can be seen that all algorithms can find a collision free path,
but the ISAHS is the best. In addition, although NGHS has
fast convergence speed, its final search accuracy is poor due
to premature convergence. On the contrary, the convergence
speed of ISAHS is relatively slow in the early stage to avoid
falling into the local extremum, while the convergence speed
is relatively fast in the late stage to improve the search
accuracy. Therefore, ISAHS is better and more stable in
solving static path planning problem.

Compared with classical optimization algorithms as PSO,
DE and SRDE, whale optimization algorithm (WOA) pro-
posed by Mirjalili and Lewis in 2016, has fewer parameters,
faster convergence speed and excellent performance in
many optimization problems [36]. Therefore, this paper
also compares the static path planning results between
the proposed algorithm ISAHS and the latest optimization
algorithms WOA and IWOA proposed in [37].
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FIGURE 6. Static path planning based on ISAHS, NGHS, HS, PSO, DE, and
SRDE.

From table 3, it is obvious that the proposed algorithm
ISAHS performs better in ‘Best’, ‘Mean’, ‘Std’ and ‘Success’
compared with the latest optimization algorithms WOA and
IWOA. Fig. 7 also shows that the proposed algorithm ISAHS
has lower convergence speed compared with WOA and
IWOA, but its final search accuracy is better.

To evaluate the impact of the change of dimension (D)
and population size (M ) on path planning, Fig. 8 shows
the changes of the mean value and standard deviation of
the evaluation function of each algorithm in Environment 1.
When D = 10 or M = 30, the maximum iterations of HS
algorithms are 6000, and the maximum iterations of PSO
algorithm and DE algorithms are 100; when D = 20 or
M = 60, the maximum iterations of HS algorithms are
9000, and the maximum iterations of PSO algorithm and DE
algorithms are 150; when D = 30 or M = 90, the maximum
iterations of HS algorithms are 12000, and the maximum
iterations of PSO algorithm and DE algorithms are 200.

From Fig. 8(a) and Fig. 8 (b), with the increase of
dimension D, the mean value and standard deviation of
ISAHS algorithm are still smaller than other 5 algorithms,
which indicates that the proposed ISAHS algorithm is more
suitable for solving high-dimensional optimization problem.
In Fig. 8(c) and Fig. 8(d), it’s obvious that the proposed
ISAHS algorithm still performs better than other 5 algorithms
with the increase of population sizeM . In addition, the mean
value and standard deviation will be worse if the population

FIGURE 7. Static path planning based on ISAHS, WOA and IWOA.

FIGURE 8. The changes of ‘Mean’ and ‘Std’ with the increase of
dimension D or population size M.

sized M is small, so we should make the value of M larger
relatively.

C. SIMULATION EXPERIMENT FOR GLOBAL DYNAMIC
PATH PLANNING
To verify the effectiveness of global dynamic path planning
method proposed above, this part will do further simulation
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FIGURE 9. Dynamic environment.

TABLE 4. Motion parameters.

FIGURE 10. Global dynamic path planning.

experiment based on Section B. Fig. 9 shows the dynamic
environment for mobile robot, which mainly adds two
obstacles that move back and forth along a straight line
(dashed blue line) on the basis of environment 2 (Fig. 7).
We assume that the mobile robot will travel at a constant
speed on the initial optimal path. The local dynamic path
planning will be carried out if it is predicted that the moving
robot will collide with dynamic obstacles. The motion
parameters of dynamic obstacles and mobile robot are shown
in table 4.

TABLE 5. Minimum distance between mobile robot and dynamic
obstacles.

Fig. 10 is the result of global dynamic path planning. From
(a) to (d), the positions of themobile robot before the collision
with the dynamic obstacle A, after avoiding collision with the
dynamic obstacle A, before the collision with the dynamic
obstacle B, and after avoiding collision with the dynamic
obstacle B are respectively presented. The black dotted line
is the initial optimal path, and the red solid line is the actual
moving trajectory of mobile robot after obstacle avoidance.
In addition, Table 5 shows the minimum contact distance
between the mobile robot and dynamic obstacles when the
mobile robot is moving on the initial optimal path and the
modified path respectively. According to Fig. 10 and table 5,
it can be seen that the designed global dynamic path planning
method can avoid all preset moving obstacles.

V. CONCLUSION AND FUTURE WORK
A global dynamic path planning method based on improved
self-adaptive harmony search algorithm (ISAHS) and Mor-
phin algorithm is proposed in this paper. Compared with
PSO, WOA algorithms, DE algorithms or other improved
HS algorithms, the designed ISAHS algorithm apparently
has higher stability and search accuracy, better convergence
characteristics and can obtain a better initial optimal path in
the static environment. In addition, combined with Morphin
algorithm, the proposed global dynamic path planning
method can avoid the dynamic obstacles in real time.

This study is an initial exploration of HS algorithm for
dynamic path planning. Further research on the improvement
of population-based meta-heuristic algorithms can be pur-
sued in a few aspects. Note that mobile robot dynamic path
planning is a hot research problem, how to overcome different
dynamic obstacle still value to study. One interesting research
direction might be to embed other new strategies into the
HS search structure. It would also be interesting to construct
some significant hybrid algorithms.
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