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ABSTRACT This paper introduces an autonomous parking trajectory planning method in an unstructured
environment with narrow passages. The proposed hierarchical trajectory planner consists of a graph search
layer and a numerical optimal control layer. The contribution mainly lies in the graph search layer, wherein
a multistage hybrid A∗ algorithm is proposed to handle narrow passages formed by obstacles in the cluttered
environment. In themultistage hybrid A∗ algorithm, a 2-dimA∗ search is conducted to find a global route that
connects the starting and goal points. Along the derived global route, subtle segments that traverse narrow
passages are extracted. Thereafter, the hybrid A∗ algorithm is used to plan kinematically feasible subpaths
that connect the boundary points of each subtle segment. The hybrid A∗ algorithm is also used to find linking
paths that connect adjacent subpaths. Combining all the subpaths and linking paths in a sequence yields a
coarse path, which is converted into a coarse trajectory by attaching a time-optimal velocity profile to it. The
coarse trajectory is fed into the numerical optimization layer as the initial guess. Simulation results indicate
that the hierarchical trajectory planner runs much faster than prevalent ones in dealing with unstructured
environments with narrow passages.

INDEX TERMS Autonomous parking, hybrid A∗ algorithm, optimal control, trajectory planning.

I. INTRODUCTION
Autonomous driving techniques have been widely developed
in recent years due to the potential to relieve traffic jams,
reduce air pollution, and prevent traffic accidents caused by
human errors [1]. Autonomous parking in an unstructured
environment remains a challenge because the perception,
planning, and control modules of a vehicle may not be
as efficient as they are on a structured highway [2]. This
work focuses on the autonomous parking trajectory planning
scheme in an unstructured scenario.

Prevalent trajectory planners suitable for parking in an
unstructured environment may be classified into sampling-
and optimization-based categories [3]. Sampling-basedmeth-
ods can be further classified by sampling the input or
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state space. Typical samplers in the input space include the
dynamic window algorithm [4] and the hybrid A∗ algo-
rithm [5], while typical samplers in the state space include
the state lattice planner [6] and rapidly exploring random
trees (RRT) [7], [8]. A sampling-based method, in most of the
cases, runs fast to derive a resolution-feasible path/trajectory.
However, it may fail when the environment is maze-like or
contains narrow passages, wherein the incremental sample
and search would be stuck. In addition, the resultant path or
trajectory is only resolution-feasible, which means it may be
infeasible w.r.t. the interior vehicle kinematic constraints or
the exterior collision-avoidance constraints.

Optimization-based methods, on the contrary, are promis-
ing to provide precise solutions free from the issue of res-
olution [9]. But such methods only find local optima, thus
they need an identified neighborhood in the solution space
wherein a good local optimum exists.

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102801

https://orcid.org/0000-0002-6193-403X
https://orcid.org/0000-0002-8966-8992
https://orcid.org/0000-0002-4789-6700


W. Sheng et al.: Autonomous Parking Trajectory Planning With Tiny Passages

A sampling-based method and an optimization-based
method work better when they are combined [3], [10]–[13].
A sampling-based method provides a resolution-feasible
coarse path/trajectory, which serves as the initial guess in
solving an optimization problem via a local optimizer. How-
ever, such a hierarchical method still runs slowly because
the concerned problem contains large-scale nonconvex and
nondifferentiable collision-avoidance constraints [14]. As we
will show in the simulations, directly combining a typical
sampling-based method and an optimization-based method
costs excessive CPU time. To conclude, the sampling and
numerical optimization layers in the current hierarchical
planning framework are imperfect.

In this paper, we propose a trajectory planner that
adopts the hierarchical planning framework, wherein the
sampling-based layer is developed based on the conventional
hybrid A∗ algorithm, and the optimization-based layer is
conducted with an improved safe travel corridor (STC)-based
optimization approach. The core contribution lies in the pro-
posal of a multistage hybrid A∗ algorithm and an improved
STC model, which are particularly suitable for autonomous
parking scenarios with narrow passages. The multistage
hybridA∗ algorithm identifies narrow passages from the envi-
ronment first and searches paths through them individually
before connecting them all together to form a global trajec-
tory. The improved STC method then regards it as the initial
guess and solves an optimal control problem (OCP), in which
a set of within-STC constraints replaces the commonly used
full-scale collision-avoidance constraints. The benchmark
cases presented in this paper demonstrate that the combi-
nation of the multistage hybrid A∗ algorithm and improved
STC-based optimization provides a remarkable advantage on
cost efficiency over conventional optimization-based coun-
terparts and has potential in dealing with on-site autonomous
planning cases.

A. RELATED WORK
Sampling-based planners, especially those with RRT, have
been investigated intensively to deal with narrow passages in
unstructured environments but have shown limitations there.
Dong et al. [15] proposed a skeleton-biased locally seeded
RRT, which generates random seeds around a global route
so that narrow passages can be tackled easily. Works based
on RRT and bridge test [16] have also identified narrow
passages on a probabilistic roadmap. Wang et al. [17] used
a two-stage approach to address narrow passages by first
identifying them and then applying two varieties of RRTs to
search for local and global paths. Shu et al. [18] proposed
a locally guided RRT that can rapidly find routes in the
clustered environments. A learning-based RRT approach [19]
that uses a reinforcement learning method to enhance local
exploration capability has also been proposed to tackle path
planning in a narrow environment. Such RRT-based planners,
although run fast, are not deterministic, thus causing trouble
to keep the planning module stable. Expect from the RRT
series, a fast marching method (FMM) has been proposed

with a support vector machine (SVM) to plan paths through
narrow passages [20]. However, using SVM to keep a good
distance from the obstacles requires remarkable computation
sources and thus is unsuitable in a dynamic environment.

Regarding the optimization-based planners, a common
limitation is that they cannot rapidly handle intractably
scaled collision-avoidance constraints. Sequential convex
programming (SCP)-based methods [21] have been applied
to linearize nonconvex collision-avoidance constraints.
Zhang et al. [10] introduced costate variables to make
collision-avoidance constraints nearly linear. Nonetheless,
the scale of collision-avoidance constraints is still intractable.
Inspired by the concept of safe flight corridor in unmanned
aerial vehicle path planning [22], Li et al. [13] paved the
aforementioned STC to separate an ego vehicle from the
surrounding obstacles with the homotopy class selected by
a sampling-based planner. Although STC makes the prob-
lem dimensionally irrelevant to the environment complexity,
it cannot cover all the cases with narrow passages because
the STC method has to leave out semilunar buffers around
the ego vehicle.

B. ORGANIZATION
The remainder of this paper is organized as follows. Section II
provides the details of the proposed multistage hybrid A∗

algorithm, followed by an introduction of the improved STC
model in Section III. In Section IV, simulation results of
hundreds of benchmarks are presented to demonstrate the
efficiency and robustness of the proposed trajectory plan-
ner. Finally, conclusions and future works are indicated in
Section V.

II. MULTISTAGE HYBRID A∗ ALGORITHM
Before the proposed multistage hybrid A∗ algorithm is
described, the trajectory planning problem concerned in this
paper is briefly stated. Given a region of interest�, an obsta-
cle space �obs, and the start and end states of a vehicle,
the proposed trajectory planner tackles a problem defined as
follows: finding a kinematic feasible vehicle trajectory along
with its controls that connects the start and end states within
the free space �free = �\�obs.

Prior to the introduction of the multistage hybrid A∗ algo-
rithm in Section II.B, the conventional hybrid A∗ algorithm
is briefly presented in Section II.A as a preliminary.

A. CONVENTIONAL HYBRID A∗ ALGORITHM
The conventional hybrid A∗ algorithm extends the well-
knownA∗ algorithm for nonholonomic autonomous vehicles.
It samples the region of interest � (Fig. 1) and the ego
vehicle’s orientation angle into a graph of grids, in which each
grid nodeNi is labeled (xi, yi, θi), i ∈ [1, N ]. Here xi, yi and
θi denote the position and orientation angle of the vehicle at
node i, respectively. N denotes the total number of nodes in
the graph. Thus each node can represent some vehicle states
ranging in an interval. Through searching in the discretized
space, the hybrid A∗ algorithm aims to find a trajectory that
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FIGURE 1. Discretized map in the hybrid A∗ algorithm.

FIGURE 2. Extending a number of child nodes from a parent node
(xnow , ynow , qnow ) based on the vehicle kinematic principle and
forward simulation.

connects the given starting point and destination with the
vehicle dynamics considered.

The cost of a node is the sum of cost-so-far and the
heuristic function named cost-to-go function. The cost-to-go
function is obtained based on a grid cost map computed
using the commonA∗ [5]. The aforementioned priority queue
is initialized with the start node. In each search iteration,
the node with the lowest cost is selected to expand several
child nodes, which will be added to the priority queue for
future selection. For each of the nodes selected from the
queue, the Reeds–Shepp (RS) curve [23] might be generated
to connect the node with the destination (there should be a
rule to judge whether to activate the RS curve generation
procedure or not for the current node). If the identified RS
curve is collision-free, the hybrid A∗ algorithm returns with
a complete path, which consists of the link from the start node
towards the current node as well as the RS curve. A trajectory
is determined by attaching a velocity along the complete path.
Conversely, if the RS curve involves collisions, the search
iteration continues. The child nodes are obtained via forward
simulation (Fig. 2). The child nodes are then added to the
priority queue the parent-child path segment is collision-free.
When a child node already exists in the queue, the hybrid A∗

algorithm updates its cost if the cost computed in this iteration
is smaller. Aside from finding a valid RS curve, the algorithm
also exits if a child node is found to be the destination node.
The final trajectory is then resembled by tracing back from
the final node to the start node.

Ideally, if the heuristic function is selected wisely,
the hybrid A∗ algorithm can efficiently navigate through the

sampling space and reach the destination without exploring
excessive nodes. However in dealing with an environment
with narrow passages, the heuristic function can hardly find
the very few feasible nodes in the narrow passage quickly
before wasting much time to extend the invalid nodes. Our
multistage hybrid A∗ algorithm is proposed to deal with this
problem.

B. MULTISTAGE HYBRID A∗ ALGORITHM
The proposed multistage hybrid A∗ algorithm follows the
strategy of divide and conquer. With a pair of starting and
ending configurations assigned, the multistage hybrid A∗

algorithm first generates a path connecting them using the
common A∗ method [24]. This path may go through some
narrow passages. Next, the derived A∗ path is divided into
segments. This division procedure is used to identify which
interval of the derived A∗ path lies in a narrow passage.
Such intervals would be marked as subtle segments (SSs).
Thereafter, the conventional hybrid A∗ search is conducted
to find kinematically feasible passing subpaths (PSPs) con-
necting the local starting and ending points of each SS,
followed by using the hybrid A∗ algorithm again to find
linking subpaths (LSPs) connecting those PSPs. After all the
subpaths are obtained, the proposed planner combines them
all together and attaches a minimal-time velocity profile to
form a complete coarse trajectory, which would serve as the
initial guess in numerical optimal control.

The aforementioned procedures are summarized into the
following three steps:
Step 1: identifying all narrow passages within the region

of interest with the common A∗ algorithm and obtaining SSs
that traverse these passages
Step 2: using the hybrid A∗ algorithm to search for kine-

matically feasible PSPs through those passages in accordance
with the SSs obtained in step 1, then using the hybrid A∗

algorithm again to obtain LSPs that connect adjacent PSPs
Step 3: combining all the PSPs and LSPs, and attaching a

time-optimal velocity profile to obtain a trajectory connecting
the start and destination nodes.

These three steps are described in detail as follows:

1) STEP 1
The identification of the narrow passages is expected to
perform in a light-weighted way. To this end, the 2-dim A∗

algorithm is first used to obtain a path c2d from the start to
end node (Fig. 3a). This process does not require additional
efforts because the path is already found when A∗ is used to
obtain a heuristic cost grid map. It simply needs to record
when A∗ reaches the start node and retrieve the path through
its parent node all the way back to the destination node.

When c2d is available, SSs should be identified as the
next step, which is achieved by running a loop over all the
grids on c2d . Whether or not a grid i, namely N 2d

i (xi, yi),
lies in a narrow passage is judged by computing four points
around: D1(xi + d, yi), D2(xi − d, yi), D3(xi, yi + d),
and D4(xi, yi − d), where d is a user-defined parameter.
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FIGURE 3. Schematics on the three steps in the multistage hybrid A∗

algorithm: (a) Generating a 2-dim A∗ path to connect the start and
destination nodes. (b) Obtaining SSs through narrow passages.
(c) Defining a local search region (light green box) and start and end
nodes. (d) Computing PSPs within the local search region via hybrid A∗

search. (e) Computing LSPs also via hybrid A∗ search. (f) Combining all
subpaths to obtain a complete coarse trajectory.

If D1 and D2 (or D3 and D4) are both in the obstacles, then
the grid N 2d

i is taken as in a narrow passage, and the Boolean
value is_narrow(N 2d

i ) of this grid is set to true. A consecutive
section of nodes with is_narrow(N 2d

i ) = true is recorded.
If the length of such a section is larger than a threshold Thres,
then this section is determined to be a valid SS going through
a narrow passage and denoted as cx2dk if it is the kth SS
(Fig. 3b).

Upon exiting the loop, a set denoted as CX of such SSs is
obtained. Each of the SSs in CX is further extended by Thres
nodes from their two boundaries. Step 1 is summarized in
Alg. 1.

2) STEPS 2 AND 3
Although a set of SSs has been obtained in step 1, they
are not kinematically feasible, and the hybrid A∗ searcher is
adopted to refine these coarse paths. During the refinement,
only the local start and end grids of each SS are fixedwhile the
intermediate grids are flexible to make the SS better satisfy
the kinematic constraints. Given that the A∗ is performed over
the 2-dim Cartesian space, defining the start node for the
hybrid A∗ algorithm requires setting the vehicle orientation
angle manually, and multiple trials may be needed to find a
good direction to begin the narrow passage traverse (Fig. 3c).
Let the position of the start of cx2dk be (xsk , y

s
k ), the start grid

for the hybrid A∗ algorithm is defined as (xsk , y
s
k , θ

ini
k +ndθ ).

Here, θ inik is an arbitrary initial trial angle, dθ is the unit
step size (n = 0, . . . , Ntrial), where Ntrial denotes the total

Algorithm 1 Finding SSs Going Through Narrow Passages
Input: 2-dim discretized map, starting point and destination
Output: path set containing SSs in narrow passages

1. Initialize empty node set cxtmp, empty path set CX
2. Adopt the 2-dim A∗ algorithm to obtain c2d

3. if finding c2d fails; return false
4. for each node N 2d

i in c2d , do
5. Compute D1, D2, D3, and D4; set is_narrow(N 2d

i )
6. if is_narrow(N 2d

i ) is true, then
7. Push N 2d

i into cxtmp

8. else
9. if length(cxtmp) > Thres, then
10. Push cxtmp into CX
11. end if
12. cxtmp = ∅
13. end if
14. end for
15. for each path cx2dk in CX , do
16. Extending cx2dk by Thres nodes from local start and end nodes
17. if overlap with cx2dk−1, then
18. Combine cx2dk and cx2dk−1
19. end if
20. end for

number of trials predefined by the user. Given that the end
grid of cx2dk also has only position information (denoted as
(xek , y

e
k )), the hybridA

∗ algorithm simply needs to find a node
with a matching position to exit.

With local start and end grids properly defined, the hybrid
A∗ algorithm is used again to search for kinematically fea-
sible PSPs, thereby linking those narrow passages. These
PSPs, denoted as cxk (k = 1, . . . , K ), are used to replace
the corresponding SSs in CX . The local search space in each
hybrid A∗ search can be slightly larger than the passage so
that the search process is ensured to finish fast even if multiple
orientation angles of the start grid are tried (Fig. 3d). Given
that these PSPs are separated from one another and usually
do not connect with the global start and destination nodes,
the hybrid A∗ algorithm is used again to find LSPs, denoted
as lxm, m = 0, . . . , K , to connect them and stored in a set
LX . Together, PSPs and LSPs constitute a complete path from
the global start to the destination (Fig. 3e).

In step 3, all nodes in the subpaths are combined to form
a coarse path, which becomes a trajectory with an additional
time-optimal velocity profile attached (Fig. 3f). The complete
multistage hybrid A∗ algorithm is summarized in Alg. 2.
Using the hybrid A∗ algorithm for PSPs and LSPs is gen-

erally fast and reliable because the search space is confined
to a small area in each run. For the PSPs, the search space
is small, and the local starting point is close to the entry of
the narrow passage, leading to an easy search of the correct
node into the narrow passage. In addition, since the LSPs
always locate in wide-open spaces, a valid RS curve can
be found with ease. On the contrary, validating whether an
RS curve is collision-free during every search iteration in
the hybrid A∗ algorithm is ineffective and time-consuming.
To improve efficiency, RS curve validation is activated only
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Algorithm 2 Multistage Hybrid A∗ Algorithm
Input: 2-dim discretized map, starting point, and destination
Output: coarse trajectory connecting the starting point and
destination

1. Call algorithm 1 to obtain CX , if fail, return false;
2. Continue using A∗ to obtain a heuristic cost map
3. for each subpath cx2dk in CX , do
4. Choose θ inik and dθ
5. for n = 0 to Ntrial , do
6. Try hybrid A∗ to connect (xsk , y

s
k , θ

ini
k +ndθ ) and (x

e
k , y

e
k )

7. if success, then
8. Obtain PSP cxk and CX [k] = cxk
9. break
10. end if
11. end for
12. if all trials fail, return false
13. end for
14. Initialize LSP set LX with size K + 1
15. Try hybrid A∗ to connect global start and start node of cx1
16. if fail, return false; else, push path to LX
17. for k = 2 to K , do
18. Use hybrid A∗ to connect start of cxk and end of cxk−1
19. if fail, return false; else, push path to LX
20. end for
21. Try hybrid A∗ to connect end node of cxK−1 and global
destination
22. if fail, return false; else, push path to LX
23. Combine all subpaths in CX and LX to obtain global path
24. Attach dynamics profile to global path to obtain coarse trajectory

when the curve length is no smaller than the current holo-
nomic heuristic cost.

If no narrow passage ever exists, the multistage hybrid A∗

algorithm reduces to the conventional hybrid A∗ algorithm.
Hence, it does not consume additional time in dealing with
mild cases. In summary, through divide and conquer, our pro-
posal decomposes the originally complex searching scheme
into several simple ones. Solving those simple problems
sequentially is considerably easier and faster.

III. IMPROVED STC-BASED TRAJECTORY OPTIMIZATION
An optimization-based trajectory planning method solves
an OCP consisting of a cost function and many con-
straints. Given that the general nonconvex and nondifferen-
tiable collision-avoidance constraints are difficult to handle,
Li et al. [13] used STCs to separate the ego vehicle from all
of the surrounding obstacles, thereby replacing the nominal
collision-avoidance constraints with within-STC constraints.
This work follows the basic optimization framework of [13]
to refine the coarse trajectory derived in the preceding section.

The cost function f in the concerned OCP is designated to
improve the smoothness of the trajectory and to reduce the
traverse time.

The single-track bicycle model is enough to describe the
low-speed vehicle kinematics:

d
dt


x(t)
y(t)
v(t)
φ(t)
θ (t)

 =


v(t) cos θ (t)
v(t) sin θ (t)

a(t)
ω(t)

v(t)tanφ(t)
/
Lw

 , t ∈ [0, T ], (1)

where x(t) and y(t) are the positions of mid-point of the
vehicle’s rear wheels at time t . v(t), a(t), φ(t), ω(t), and θ (t)
are the vehicle’s velocity, acceleration profile, steering angle,
angular velocity, and orientation angle at t , respectively. Lw
refers to the wheelbase, and T denotes the completion time
of the entire parking process. The boundaries of the vehicle’s
state/control profiles are

|a(t)| ≤ amax
|v(t)| ≤ vmax
|ω(t)| ≤ �max
|φ(t)| ≤ 8max

, t ∈ [0, T ], (2)

where amax, vmax, �max, and 8max are the maximum limits
of acceleration, velocity, angular velocity, and steering angle,
respectively. The boundary conditions of the initial and ter-
minal states of the vehicle are defined as

x(0)
y(0)
θ (0)
v(0)
φ(0)
a(0)
ω(0)


=



x0
y0
θ0
0
0
0
0


and



x(T )
y(T )
θ (T )
v(T )
φ(T )
a(T )
ω(T )


=



xT
yT
θT
0
0
0
0


, (3)

where x0, y0, θ0, xT , yT , and θT are the initial and terminal
configurations of the vehicle, respectively. Here, the vehicle
is assumed to be completely stopped before and after the
parking process.

The within-STC constraints are established by the follow-
ing steps. First, two discs are deployed to cover the vehicle
body. By dilating the obstacles by the radius of each disc and
shrinking the vehicle discs to their centers, we convert the
original problem into a new form [13]. Next, the trajectories
of the two disc centers are determined according to the coarse
trajectory derived in the preceding section. Lastly, STCs are
generated by gradually enlarging a regularly placed box at
each sampling point along either of the two trajectories until
all four sides of each box reach obstacles or a threshold length
Lmax. STCs are generated in accordance with the dilated
map, such that requiring only the two discs’ center to be
within STCs is adequate to guarantee that the ego vehicle
keeps clear of the surrounding obstacles. The details of the
STC generation process can be found in [13]. Given that
the within-STC constraints are box constraints and extremely
friendly to general nonlinear programming (NLP) engines,
the trajectory optimization problem is easy to solve and com-
pletely independent from the complexity of the surrounding
environment [13].

Despite the bright side, the STC generation approach may
be computationally expensive in some specific environments,
thus it deserves further improvement.

To enlarge the rectangle surrounding a sample point grad-
ually, a step size dl must be identified. The choice of this step
size is critical because it can neither be extremely large nor
extremely small. If it is set too large, STCs become overcau-
tious, and the resultant trajectory suffers from optimality loss
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FIGURE 4. Generating STC with dilated obstacles. The red point is a
sample point on the trajectory of one disc’s center. The green box is the
initial STC square whose circumcircle reaches the nearest dilated
obstacle. In the expansion process, each side of STC is extended by dl
until it reaches a dilated obstacle.

or even a solution failure. Conversely, if dl is set too small,
the computational cost would be unaffordable. Empirically,
dl has to be small, otherwise the OCP solution success rate
would be affected by being overcautious, which renders trou-
bles. Given that dl is small, we would make efforts to reduce
the runtime.

The idea to reduce the STC identification runtime is about
starting the process from a rectangle whose circumcircle
reaches the nearest obstacle instead of starting from scratch
(Fig. 4). Identifying the nearest obstacle is computationally
cheap because it does not necessarily require calculating the
exact distance between all surrounding obstacles and the sam-
ple point [25]. After the nearest obstacle is specified, the exact
distance between it and the sample point can be calculated,
and the initial STC square is built by setting the distance as
half of the diagonal length. The initial STC square is then
gradually enlarged until all four sides reach obstacles or the
length exceeds Lmax. This improvement, although being sim-
ple, offers a remarkable advantage over the original method
because acquiring the initial square is faster than enlarging
a rectangle from a mass point. The enlargement procedure
after determining the initial square oftentimes completes very
soon because the initial rectangle is not far from the obstacles.
Moreover, when the nearest obstacle is already outside the
largest box defined by Lmax, the original enlarging process,
which is computationally expensive, can be avoided.

Let us denote the jth sample points on the trajectories of
the front and rear disc centers as Pf (j) and Pr (j), respectively,
and the spaces enclosed by the corresponding STCs as Sf (j)
and Sr (j). The within-STC constraints are written as

Pf (j) ∈ Sf (j),

Pr (j) ∈ Sr (j), (4)

where j = 1, . . . , Ns, andNs is the total number of sampling
points on the disc center’s trajectory. The OCP can now be

TABLE 1. Simulation parameters.

formulated as

minimize cost function f

s. t. kinematic constraints (1), (2);

boundary conditions (3);

within-STC conditions (4). (5)

The optimization problem (5) can be discretized in time,
such that all of the state and control profiles are presented
by a finite number of to-be-optimized grids. The converted
optimization problem is a typical NLP problem to be solved
by a standard NLP engine, such as IPOPT [26]. The NLP
initial guess is provided by the coarse trajectory generated
in the preceding section.

IV. SIMULATION RESULTS
The proposed trajectory planner is implemented using C++,
and all simulations are performed on an i7-10700F CPU run-
ning at 2.90 GHz with 16.0 GB RAM. Parametric settings are
listed in Table 1. All of the simulation results obtained using
our proposed planner (referred to as the MSH-STC planner)
are compared with the ones obtained from two other com-
petitive planners: one uses the conventional hybrid A∗ algo-
rithm and aforementioned STC-based optimization (referred
to as the H-STC planner), and the other is the TDR-OBCA
planner [27] from Baidu Apollo [28]. TDR-OBCA is chosen
as a competitor because it is used in the industry-recognized
Baidu Apollo autonomous driving platform and has a similar
planning process to our proposed planner but TDR-OBCA
still employs full-scale collision-avoidance constraints in
optimization. Thus it would be interesting to see our efforts
to make the collision-avoidance constraints tractably scaled.
Each single CPU time reported is the mean value measured
from 10 repeated runs of the same simulation.

A. VALET PARKING SCENARIO
The proposed planner is first used in a simple and
obstacle-free valet parking scenario. In this scenario, the vehi-
cle is parked in a structured lot from a nearby road, where the
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FIGURE 5. Valet parking trajectories obtained using (a) the proposed
MSH-STC planner; and (b) H-STC and TDR-OBCA planner. The solid blue
and orange dots represent the start and destination nodes, respectively.

TABLE 2. CPU Time of different planners.

start node (x0, y0, θ0) and destination node (xT , yT , θT ) are
at (−8, 4, 0) and (1.86,−3.86, 1.58), respectively. The paths,
velocity, acceleration profile, and steering angle of the vehicle
obtained using each planner are shown in Figs. 5 and 6. The
simulation results indicate that all of the three planners gener-
ate almost identical trajectories that are smooth and collision-
free. Thus our proposed planner can generate trajectories that
meet industry standards and can be used in practice. CPU
time measurements in this scenario are listed in Table 2.
It is clear that our proposed planner does not consume much
time when used in a simple scenario, and it is much faster
than TDR-OBCA that uses full collision-avoidance con-
straints even in a simple scenario. In addition, the total CPU
time measured for the proposed planner is not marginally
less than 100 ms, indicating that it can be reliably used in
a real-time autonomous driving planning module for valet
parking Pscenarios.

FIGURE 6. Random scenario 1: Trajectories obtained using (a) the
proposed MSH-STC planner, and (b) H-STC and TDR-OBCA planners.

B. SCENARIOS WITH NARROW PASSAGES
To demonstrate the efficiency of the proposed planner,
the simulation results for three random scenarios with narrow
passages are presented. All scenarios are within a 50m ×
50m area that mimics a ground mining site, where some
unstructured debris is randomly placed.

1) RANDOM SCENARIO 1
In the first scenario, the start (x0, y0, θ0) and destination
nodes (xT , yT , θT ) are at (15.85, 14.51, 2.50) and (−14.47,
16.97, 1.19), respectively. The results of trajectories from the
three planners are shown in Fig. 7. As many as 23 obstacles
are presented in this scenario, seemingly forming two narrow
passages. The results show that the final trajectory from
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FIGURE 7. Resultant vehicle state profiles reflecting the satisfaction of
vehicle kinematic constraints. The solutions are obtained using MSH-STC,
H-STC, and TDR-OBCA in a valet parking scenario.

MSH-STC is well through those narrow passages, kept clear
of obstacles, and reasonably smooth, although it needs to
divide the region of interest for initial coarse planning.

2) RANDOM SCENARIO 2
The start and destination nodes for the second scenario are
located at (x0, y0, θ0) = (−10.51, − 4.34, 2.78) and
(xT , yT , θT ) = (16.74, 3.12, 3.03), respectively. Trajecto-
ries are illustrated in Fig. 8. Although this scenario is simpler
than the first one with only 16 obstacles, the narrow passage
requires the vehicle to traverse carefully because it deceler-
ates before the entry in all three trajectories (arrows are dense
before the passage entry). Again, the results show that the
MSH-STC planner can generate intuitively understandable
trajectories.

3) RANDOM SCENARIO 3
The third scenario contains 22 randomly deployed obsta-
cles. (x0, y0, θ0) and (xT , yT , θT ) are set to (16.25, 11.08,
0.81) and (−2.54, −10.62, −2.54), respectively. Trajectories
from the three planners are shown in Fig. 9. In this case,
the ego vehicle’s traversed distance is less than those in the
previous scenarios, but it encounters a narrow passage just
in the way between the start point and the destination. The
passage is nearly perpendicular to the vehicle’s initial heading
angle, mounting a challenge to the conventional method.
The challenge comes from the early activation of RS curve
validation because the holonomic heuristic cost is smaller
than the length of the RS curve from the beginning of the
search iteration. Thus, as summarized in Table 2, although
the vehicle is not far from the entry, the conventional hybrid

FIGURE 8. Random scenario 2: Trajectories obtained using (a) the
proposed MSH-STC planner, and (b) H-STC and TDR-OBCA planners.

A∗ algorithm still requires much time because it needs to
validate a long RS curve during each iteration. By contrast,
the proposed planner is more than 20× faster in generating a
coarse trajectory due to a decomposed search space.

Table 2 reports the CPU time consumed to plan the tra-
jectory in each scenario using each planner. Our proposed
MSH-STC planner is at least 20 times faster than H-STC
when generating a coarse trajectory in the three scenarios,
demonstrating the superiority of the proposed planner under
the presence of narrow passages. This improvement in CPU
time in the first two random scenarios comes from a smaller
number of nodes searched using the multistage hybrid A∗

algorithm compared with those using the conventional hybrid
A∗ algorithm (Table 2). Regarding the third random scenario,
despite the difference in searched nodes is minimal, the time
of the conventional hybrid A∗ algorithm is still remarkably
longer than that of the proposed algorithm due to the valida-
tion of RS curves during search iterations.

Moreover, the time required by the STC-based optimizer is
drastically less than that of TDR-OBCA (at least 173× faster).
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FIGURE 9. Random scenario 3: Trajectories obtained using (a) the
proposed MSH-STC planner, and (b) H-STC and TDR-OBCA planners.

This result demonstrates a remarkable advantage of using
STCs as collision-avoidance constraints over the full-scale
models.

C. BENCHMARK OF 500 RANDOM CASES
500 random unstructured scenarios are simulated for fully
testing the performance of the proposed planner. All these
scenarios are within a 50m×50m region of interest, in which
the number, shape, and location of obstacles are randomly
decided. Specifically, the obstacles are modeled as random
polygons with several sides selected from 3 to 8, and the num-
ber of obstacles in one case is randomly chosen from 6 to 26.
When generating the benchmark, viable paths between the
starting point and destination are not guaranteed, such that
planning failure is possible. Table 3 summarizes the statis-
tics of this benchmark. The proposed MSH-STC planner
presents better performance than the other two planners in
all aspects. Compared with that of H-STC, the 99% CPU
time of MSH-STC is approximately 20% less, showing that
it is more capable of solving difficult cases. For the most

TABLE 3. Benchmark CPU time.

challenging cases, the proposed planner can save even more,
given that the max CPU time is 75% less than that of
H-STC. MSH-STC and H-STC are approximately 100 times
faster than TDR-OBCA. Hence, the STC-based optimiza-
tion method is much more efficient than using full-scale
collision-avoidance constraints while keeping a good opti-
mization success rate.

V. CONCLUSION AND FUTURE WORK
A trajectory planner combining the multistage hybrid A∗

algorithm and an improved STC-based optimization method
is proposed for autonomous driving planning in a com-
plex and unstructured environment. The proposed planner is
specially designed for environments with narrow passages.
The planner first uses the multistage hybrid A∗ algorithm
to generate a coarse trajectory. The multistage hybrid A∗

algorithm divides the path obtained using A∗ between the
start and destination nodes and identifies those SSs that
locate in narrow passages. The planner next uses the con-
ventional hybrid A∗ algorithm to find kinematically feasible
PSPs and LSPs and combines them to obtain a global coarse
trajectory as the initial guess for optimization. The improved
STC-based optimization method uses STCs to replace con-
ventional full-scale collision-avoidance constraints with sim-
ple and optimization-friendly box constraints so that the
optimization problem can be solved much more efficiently.
It also uses a new strategy for generating STCs to achieve
better performance. Simulation results leverage the advantage
of our proposal over predominant methods in dealing with
complicated cases with narrow passages.

Although the proposed planner shows improvements over
some other planners, it still solves a relatively hard NLP
problem to find an optimal trajectory, which runs not as fast
as on-road trajectory planning. Further reducing the runtime
would be our future work.
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