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ABSTRACT Numerous bird species have become extinct because of anthropogenic activities and climate
change. The destruction of habitats at a rapid pace is a significant threat to biodiversity worldwide. Thus,
monitoring the distribution of species and identifying the elements that make up the biodiversity of a region
are essential for designing conservation stratagems. However, identifying bird species from images is a
complicated and tedious task owing to interclass similarities and fine-grained features. To overcome this,
in this study, we developed a transfer learning-basedmethod using Inception-ResNet-v2 to detect and classify
bird species endemic to Taiwan and to distinguish them from other object domains. Furthermore, to validate
the reliability of the model, we adopted a technique that involves swapping misclassified data between
training and validation datasets. The swapped data are retrained until the most suitable result is obtained.
Additionally, fivefold cross-validation was performed to verify the predictive performance of the model. The
proposed model was tested using 760 images of birds belonging to 29 species that are endemic to Taiwan;
the images were captured from various environments with different perspectives and occlusions. Our model
achieved an accuracy of 98.39% in the classification of the bird species and 100% in the detection of birds
among different object categories. Moreover, the model achieved a precision, recall, and F1-score of 98.49%,
97.50%, and 97.90%, respectively, in classifying bird species endemic to Taiwan.

INDEX TERMS Endemic birds, inception-ResNet-v2, transfer learning, bird classification.

I. INTRODUCTION
The inherent heterogeneity of diverse species in a geographic
region is essential for ensuring the stability of an ecosys-
tem. However, the biodiversity of natural habitats has been
declining continuously over time [1]. The unnatural destruc-
tion of habitats [2] may occur due to natural or unnatural
threats [3]–[6], including changes in the food web, habitat
fragmentation, resource depletion, nutrient scarcity, climatic
shifts, alien species intrusion, all of which are adverse impacts
on natural biota of an ecosystem. Every species within a
habitat plays an important role in sustaining it. Along with
other native organisms, birds play a crucial role in balancing
an ecosystem. They are considered keystone species that
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help maintain sustainable population levels between all living
things in the overall web of life [7]. Even a slight decrease
in their number endangers the entire ecosystem [8]. Birds
occupy many levels of trophic webs; they are mid-level con-
sumers as well as top predators [9]. They bring plants back
to ecosystems through pollination or seed dispersal across
the sea to new land masses. Many birds are scavengers [10]
and they help in the quick disposal of carcasses and in the
recycling of nutrients in the ecosystem to maintain a healthy
habitat [11]. However, deviations in avian distribution [12]
are often the first sign of environmental disturbance, and
according to a survey by BirdLife International [13], many
bird populations are currently declining worldwide. One in
eight bird species is considered to be on the brink of extinc-
tion, with 222 species critically endangered with a serious
possibility of imminent extinction [14]. Thus, a quick and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 102975

https://orcid.org/0000-0003-0429-2007
https://orcid.org/0000-0002-4789-6700


Y.-P. Huang, H. Basanta: Recognition of Endemic Bird Species Using Deep Learning Models

effective approach to identify the elements that constitute the
biodiversity of a region and monitor their changes over time
is necessary for conservation [15].

In this study, we aimed to identify birds that are endemic
to Taiwan. Taiwan is located at the intersection of East
and Southeast Asia and at a central point along the East
Asia–Australasia Flyway (EAAF) [16] large number of avian
species that exhibit migratory and vagrant behavior traverse
the EAAF. Taiwan spans latitudes of 120◦ to 122◦27′ E and
22◦ to 25◦18′ N. The island consists of shallow coastal waters
and steep mountains with a maximum elevation of 3,952 m
(12,966 ft); the geography can be roughly categorized as a
flat western plain and a rugged mountain range down the
spine of the island. In addition, the climate of Taiwan varies
considerably; the climate varies from tropical in the south to
subtropical in the north, with alpine regions in the mountains.
The island experiences abundant rainfall, with an annual aver-
age precipitation of 2,510 mm that supports diverse species
and biodiversity hotspots of flora and fauna, including 61
mammal species, more than 600 avian species, 37 species
of amphibians, 220 species of freshwater fish, 92 species of
reptiles, 50,000 species of insects, and more than 400 species
of butterfly [17].

Recently, species richness and avian distributions in
Taiwan have increased, as observed by both amateurs and
professionals. According to the 6th edition of The Clements
Checklist of Birds of the World [18], approximately 560 bird
species have been identified in Taiwan, with 15 of them
endemic to Taiwan. Furthermore, the Chinese Wild Bird
Federation (CWBF) checklist, which is updated every three
years, indicated that more than 570 bird species have been
found throughout Taiwan (2010 CWBF), of which at least
17 species are endemic to Taiwan. In the 2014 CWBF avian
checklist report, 626 bird species were recounted, of which
25 were recognized as endemic species and 58 as endemic
subspecies. In 2017, the CWBF bird checklist included
653 bird species and recognized 27 endemic species and
56 endemic subspecies. In the latest checklist in 2020,
the CWBF recognized 674 bird species, of which 29 were
confirmed to be endemic species and 55 were confirmed to be
endemic subspecies. Globally, 20% of bird species migrate
annually, typically following EAAF migratory routes [19].
According to a recent survey conducted by the Raptor
ResearchGroup of Taiwan, several thousandChinese sparrow
hawks migrated over the Hengchun Peninsula in southern
Taiwan. In 2020, the survey recorded that 258,132 raptors
migrated, breaking the previous record of 257,700 in 2019.
Although global bird migration [20] is one of the most
common responses to seasonally varying climates, signifi-
cant changes in the population of invasive alien species may
affect natural habitats. Over time, this habitat alteration of
ecoregions may result in avifauna becoming endangered and
eventually extinct.

Thus, efforts to identify and conserve environments
with endemic species should be prioritized to maintain
genetic diversity. To improve modelling performance and the

knowledge acquired therefrom, in this study, we adopted a
transfer learning technique. Moreover, to maintain an effi-
cient ensemble model for each type of species, we adopted
the following procedures:

1. We investigated various backbone models of different
deep learning architectures, such as Inception-ResNet-
v2, InceptionV3, Xception, ResNet101, ResNet101,
andMobileNetV2, to achieve efficient feature selection
of birds. Then, the performance of all models was
evaluated by comparing their accuracies in identifying
and classifying bird species when using validation and
test data.

2. We chose Inception-ResNet-v2 as the deep learning
model because it outperforms other backbone models
to a large extent.

3. Furthermore, to enhance the performance and decrease
overfitting in the selected model, we proposed a mech-
anism to swap the training and validation misclassified
datasets. Then, we retrained the model until it yielded
the highest accuracy possible on the validation and test
datasets. Additionally, five-fold cross-validation was
employed to verify the predictive performance of the
model.

Thus, through themonitoring and identification of endemic
birds in their habitats and estimating the size of their popula-
tions, the proposed system can help conserve biodiversity.

The structure of this paper is organized as follows.
Section II describes data acquisition and preprocessing of
acquired dataset to overcome imbalanced and data overfit-
ting. Section III focuses on the deep learning models and
enhancement of fine grained feature extraction accuracy by
swapping the misclassified data between the training and
validation datasets. Section IV illustrates the experimental
setting and the hardware requirements. Section V endorses
the proof of concept and validation of the purposed method-
ology. Section VI emphasizes the significances of endemic
birds and its habitation. Finally, Section VII summarizes the
impact of the purposed model and presents directions for
future study.

II. DATA ACQUISITION AND AUGMENTATION
In this study, we upgraded the dataset used in our prior
work [21]. Datasets were collected from several online
resources. Although Internet images add diversity to the
dataset, public domain images may contain noise, spurious
pixels, artifacts, and surface roughness; moreover, they may
be blurry or distorted. To overcome such problems and limit
the deterioration in intensity on the images, the collected
images were retained with an average resolution between
1,024 × 768 to 3,008 × 2,000 pixels. Overall, we collected
3,892 images for 29 endemic bird species (Fig. 1).

In deep learning approaches, an algorithm is systematically
managed with a multilayered neural network in which a large
number of training samples are convolved within several
hidden layers between the input and output layers by learn-
ing the most complex features to increase its capabilities in
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FIGURE 1. Twenty-nine endemic bird species to Taiwan.

predicting or classifying sophisticated data. However, scarce
data and constrained resources may cause overfitting, and
significant data feature points can be easily missed, affect-
ing the classification accuracy. To counter overfitting and
manage the data imbalance, we adopted various types of
data augmentation techniques for the images of different bird
species based on image feature availability. Images of each
species were augmented 10 times, including the original bird
images, by using the augmentation techniques such as rota-
tion 45◦, Gaussian noise, horizontal/vertical flipping, contrast
enhancement, sharpening of images, zoom range [0.7,1.3]
and affine transformations.

III. METHODOLOGY
A. TRANSFER LEARNING OF ENDEMIC BIRDS
In recent years, the use of computer vision to overcome
the conventional learning paradigm that is designed to solve
specific tasks has gained momentum. Conventional learn-
ing lacks the inherent ability to transfer knowledge across
tasks [22]. Models must be rebuilt from scratch with massive
amounts of data to map the changes in the distribution of
relevant features. To deal with the scarcity of data and the
massive change in data in different homogeneous or heteroge-
neous target datasets [23], we adopted transfer learning [24].
Transfer learning is usually employed when the new task
dataset is smaller than the original dataset. In transfer learn-
ing, the algorithm allows for the use of knowledge gained
from previously learned tasks and applies it to solve new or
similar problems quickly and efficiently. It can determine the
subset of relevant complex dimensional feature representa-
tions even when only a few labeled datasets are available
for training. For instance, in the 2017 CWBF checklist of
the birds of Taiwan, 27 endemic bird species were identi-
fied, whereas in the 2020 CWBF checklist, 29 endemic bird
species were identified. In such a scenario, the knowledge

acquiredwhile learning the 27 endemic bird species should be
used to solve related tasks pertaining to the 29 endemic bird
species. Otherwise, considerable time would be spent every
time a new dataset of birds is used. Therefore, to implement
the entire process, we adopted a deep-learning-based model
(Inception-ResNet-v2) to train and learn the features of 27
endemic bird species (source domain). Then, the learned fea-
tures were transferred to a second target network to train the
newly added dataset on endemic bird species (target domain).
Thus, the problem was defined as follows: for a given source
domain DS and learning task LT and target domain DT
and learning task TL , the transfer learning technique helps
improve the learning of the target predictive function fT (·)
in DT using the knowledge acquired from DS and LT , where
DS 6= DT or LT 6= TL [25], [26]. Transfer learning method
enables to utilize knowledge from previously learned tasks
model A and generalize this knowledge such as features
and weights for model B. The transfer learning method for
endemic birds is shown in Fig. 2.

FIGURE 2. Endemic bird species classification using transfer learning
module.

B. INCEPTION-RESNET-V2 ARCHITECTURE
In this study, we used Inception-ResNet-v2 [27], which is
a hybrid convolutional neural network (CNN) architecture
of Inception [28] and a residual network connection [29].
These modules were incorporated with different configura-
tion parameters that make use of the Inception approach by
internally attached residual connections with the entire Incep-
tion part of the module by replacing the filter concatenation
stage of the Inception architecture. Fig. 3 presents a schematic
for fine tuning the Inception-ResNet-v2 architecture with dif-
ferent inception modules stacked with a convolutional layer,
activation layer, and pooling layer.

In deep learning, a deep network [30], [31] is consid-
ered better than a shallow network because it learns rele-
vant features layer-by-layer with more precision and achieves
high-level feature extraction (texture, shape, size, color), con-
necting a set of features to a label from a given set of input
categories. However, in practice, deep learning networks have
some problems. For instance, deep neural networks often
suffer from the problem of vanishing gradients, wherein a
deep multilayer feed-forward network is difficult to train and
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FIGURE 3. Fine tuning architecture of Inception-ResNet-v2 for
classification of endemic birds.

the parameters of the earlier layers in the network are difficult
to tune. Thus, the gradient information from the error func-
tion decreases exponentially as the error signals propagate
back to an earlier layer. Essentially, when the error signals
propagate back to earlier layers, they decrease considerably in
magnitude such that the network cannot be learned properly,
resulting in premature convergence to an incorrect solution.
This problem of degradation in a deep structure is overcome
with the use of residual layers in which the input of a CNN
layer bypasses one or more layers and adds to the outputs of
the stacked layers by learning the residual mappings. Each
unit can be expressed as:

yl = h (xl)+ F(xl,Wl) (1)

xl+1 = f (yl) (2)

where yl is the residual unit, and xl and xl+1 indicate the input
and the output vectors of the l th unit, respectively. The term
h is the identity mapping function, F represents the residual
function, Wl = Wl,S|1≤S≤N is the set of weights of the l th

residual unit, S indicates the number of layers in the residual
unit, and f is the ReLU activation function. The main logic
behind the ResNet is to learn the additive residual function f
with respect to h(xl). An identity mapping function h(xl) = xl
is used to allow the network to perform well. This is done
by adding a shortcut connection that allows the network to
train much deeper and easier by eliminating the degradation
issues. Thus, integrating the structure of residual connections
simplifies Inception considerably by connecting multilayers
through a shortcut. This also allows the model to speed up
training with deeper neural networks and thereby improve the
utilization of resources within the network, which eventually
helps prevent the problem of vanishing gradients.

The interior of the Inception-ResNet-v2 network model
includes three types of inception modules—Inception-
ResNet-A, Inception-ResNet-B, and Inception-ResNet-C
blocks—that use 35 × 35, 17 × 7, and 8 × 8 grid mod-
ules, respectively, to generate discriminatory features and
reduce the number of parameters. To obtain different feature
extraction patterns of the bird images, the input size of the
images is 299× 299 pixels with three different color channels
(red, green, and blue) for the stem layer. Then, the inception
module uses a block of parallel convolutional layers with a
multilevel feature extractor that extracts local and generic
features from the input images of the birds by computing
three different sizes of filters (1 × 1, 3 × 3, and 5 × 5) and
a max pooling layer within the same module of the network.

The inception module layers use a stride of 1 and the same
padding. The outputs of these filters are concatenated along
the channel dimension and sent to the next inception module.

Due to the limited numbers of newly found endemic
birds, instead of retraining the architectures from scratch
fine-tuning of the model is adopted. The final layer of
the network is frozen using the previous pretrained weight
of 27 endemic birds [21] and obtained the features before
classification. Lastly, we feed the concatenated feature vector
to the fully connected layer that uses a feature map matrix
and weights of inputs to predict the correct label of the
bird. Finally, an activation function, softmax, classifies the
29 endemic birds.

C. MULTISTAGE MODEL VALIDATION
The aim of this work was to incorporate a strong backbone
network architecture of transfer learning that can facilitate
the learning and transfer diverse domain-invariant features
from different datasets to a unified feature space to classify
endemic bird images of new datasets with high classification
accuracy. The deep learning method is systematically man-
aged with a multilayered neural network (NN) in which the
layers are densely interconnected. To select the best model
hyperparameter, a large dataset is required. The collected data
are split into two sets: a training set and test set. Typically,
the test set is a holdout dataset used to evaluate how well the
model has been trained, indicating the importance of the input
value. Then, from the training dataset, T% of the dataset is set
as the training set and the rest of the dataset (100− T)% is set
as the validation set, where T is a fixed number (say 70 or 80).
The model is then iteratively trained and validated on these
different sets. The training set is used to fit the parameters of
the classifier, whereas the validation set provides an unbiased
evaluation of the model fit on the training set while tuning
model hyperparameters, such as the network layer size, find-
ing the optimal number of hidden units, and regularizing the
model. Models with few hyperparameters are easy to validate
and tune, but if the model has many hyperparameters, a larger
validation dataset is required. In some cases, the evaluation
is biased when a validation dataset is not incorporated into
the model configuration because the model may perfectly fit
the training data with high accuracy but may fail to fit the
test or validation data. In such cases, k-fold cross-validation,
which is a resampling technique, is used to avoid overfitting;
the training set is generated with different combinations of k
groups (say 5 or 10, depending on the size of the dataset) as
the training and validation sets. Then, themodel is fit by using
(k− 1) folds and evaluated using the remaining k th fold. The
process is repeated until every k-fold is used as the test set.
However, this may produce varying results. Thus, to improve
the model and analyze the influence of various components
in the framework, we adopted multistage training with the
training and validation datasets (Fig. 4) to better predict test
dataset.

The following procedures are used in the approach devel-
oped in this study.
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FIGURE 4. Flowchart for model validation.

• Train the Inception-ResNet-v2 architecture on data aug-
mented from original images.

• Test the validation dataset and determine the misclassi-
fied images.

• Randomly interchange the same amount of misclassified
validation images with the training images and retrain
the model again.

• Repeat this process until the classifier adapts to the
specific target task.

• Fit the model to evaluate the test set.
In this way, the algorithm can tune itself and improve the

generalizability of spatial features to the previously unseen
domains present in the image.

IV. EXPERIMENTAL SETTINGS
To extract the relevant features of birds, we randomly split
the endemic bird data into 3,132 images for training and
760 images for testing. To allow the deep networks to con-
verge and improve the ability of the model to generalize
adeptly, we augmented the training dataset 10 times, resulting
in a total of 31,320 images. Then, 25,056 (80%) images were
used for training and 6,264 (20%) were used for validation.
The Inception-ResNet-v2 model was trained using the mini-
batch gradient descent algorithm with the batch size set to
32 and the learning rate maintained at 0.0001. The Adam
optimizer was used to fine-tune the model with the following
parameters:
• Exponential decay rate of first-moment estimation
of 0.9.

• Exponential decay rate of second-moment estimation
of 0.999, and a positive scalar value for epsilon of 1e-08.

Furthermore, to avoid overfitting, fivefold cross-validation
and early stopping were employed for efficient hyperparam-
eter optimization. The early stopping criterion was based on
the model performance when the model stops improving on

the holdout validation dataset. The presentedworkwas imple-
mented using the TensorFlow libraries on a GPU workstation
with an Intel Xeon 8 CPU, 32 GB of memory, and an Nvidia
GeForce 11 GB GRX 2080 Ti graphics card.

V. PROOF OF CONCEPT
In this experiment, 760 images, which were excluded from
the training and validation datasets, were used for testing.

A. ACCURACY COMPARISONS OF BENCHMARK
NETWORK MODELS
Several experiments were conducted to evaluate the accuracy
and practicability of the proposed method. For the quantita-
tive analysis of the models, we first compared state-of-the-art
deep learning backbone models, such as Inception-ResNet-
v2 [27], Inception-v3 [28], Xception [32], ResNet101 [29],
and MobileNetV2 [33]. Fig. 5 lists the classification accura-
cies achieved by the learning models.

Inception-ResNet-v2was found to consistently outperform
the other existing learning networks by attaining 100% train-
ing accuracy, 97.47% validation accuracy, and 97.11% test
accuracy.

FIGURE 5. Comparison performance of various AI models.

B. ACCURACY OF MULTISTAGE MODEL VALIDATION
To achieve robust and high performance in detecting subtle
differences between categories of birds, we adopted two mul-
tistage models for validation. One is the Inception-ResNet-
v2 without swapping model. It is a generic model where
the misclassified data between the training and validation
datasets of endemic birds are not interchanged. The other
is the Inception-ResNet-v2 swapping model in which the
misclassified data are swapped between the training and
validation datasets of endemic birds. In this model, bird
data is split into 80% for training and 20% for validation.
Thereafter, validation data are tested from the well-trained
model. If the validation test yielded more than 15 misclas-
sified images, then the number of misclassified bird images
are interchanged with the training dataset randomly. Then,
the model is retrained again until we get better results. Fur-
thermore, fivefold cross-validation is performed to evaluate
the stability of the model. A comparison of the performance
of the two models with the various datasets is presented
in Table 1.
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TABLE 1. Performance Comparison Between Models with and Without
Swapping of the Misclassified Data with the Training and Validation
Datasets.

TABLE 2. Performance Before and After Swapping the Misclassified Data
with the Training and Validation Datasets.

In multistage model validation particularly, the perfor-
mance of the Inception-ResNet-v2 with swapping model
was considerably higher than that of the model without
swapping, as indicated by the validation and test accura-
cies. For instance, the Inception-ResNet-v2 without swap-
ping model achieved a validation accuracy of 97.47% from
3,480 images (3,392 bird images were correctly classified
and 88 were misclassified) and a test accuracy of 97.11%
from 760 images (738 bird images were correctly clas-
sified and 22 were misclassified). The Inception-ResNet-
v2 with swapping model achieved a validation accuracy
of 99.63% from 3,480 images (3467 bird images were cor-
rectly classified and 13 were misclassified) and a test accu-
racy of 98.42% from 760 images (748 bird images were
correctly classified and 12 were misclassified). Addition-
ally, fivefold cross-validation was performed for both mod-
els. Table 2 presents the fivefold cross-validation results for
both models. The Inception-ResNet-v2 without swapping
model achieved an average accuracy of 97.06%, whereas
the Inception-ResNet-v2 with swapping model achieved an
average accuracy of 98.39%. This indicates that the back-
bone Inception-ResNet-v2 with swapping model provides a
clear benchmark for the classification and identification of
endemic birds.

C. PERFORMANCE EVALUATION
The performance of the trained models in identifying individ-
ual bird species was evaluated using three standard metrics:

precision, recall, and F1-score.

Precision =
TP

TP+ FP
(3)

Recall =
TP

TP+ FN
(4)

F1− score = 2 ∗
Recall ∗ Precision
Recall + Precision

(5)

• TP is the true positive, indicating the number of birds
correctly detected as endemic birds.

• TN is the true negative, indicating the number of birds
correctly detected as nonendemic birds.

• FP is the false positive, indicating the number of birds
incorrectly detected as endemic birds.

• FN is the false negative, indicating the number of ground
truth birds undetected by the predictive system.

Thus, precision quantifies the number of bird predictions
that actually belong to the 29 endemic birds, whereas recall
represents the probability of correctly classified birds of each
class in the dataset. In an ideal model, the precision and recall
rates are equal to 1. The F1-score is a quantitative metric
that represents the balance between precision and recall. The
performance of the model in classifying 29 endemic birds is
presented in Table 3. The model achieved an average preci-
sion, recall, and F1-score of 98.49%, 97.50%, and 97.90%,
respectively.

D. CONFUSION MATRIX
A confusion matrix was applied for quantitative eval-
uation to verify the prediction accuracy of the model.
Most of the misclassified images shared either similar
colors or sizes. For instance, Black-necklaced Scimitar-
babbler, Mikado Pheasant, Taiwan Hwamei, and Taiwan
Shortwing were misclassified to Taiwan Fulvetta, Tai-
wan Blue-magpie, Taiwan Shortwing, and Taiwan Hwamei,
respectively. But Taiwan Barwing was misclassified to other
two classes: Rufous-crowned Laughingthrush and Taiwan
Shortwing, while Taiwan Scimitar-babbler was misclassified
to Black-necklaced Scimitar-babbler and Taiwan Hwamei.
However, some images were misclassified due to dis-
tance measurement and occlusion of the environment. For
example, Steere’s Liocichla was misclassified to Collared
Bush-robin and White-eared Sibia was misclassified to Tai-
wan Whistling-thrush. Detailed misclassified distribution is
presented in Table 4. In the confusion matrix, each row of
the matrix denotes the instances in a predicted class and each
column denotes the instances in an actual class of the endemic
birds. Yellow highlighted in the table represented the number
of misclassified images and the rest indicated the correctly
classified images.

Subsequently, the bird images were tested using a mobile
app. Fig. 6 shows the interface for the detection of the
two newly added endemic birds, namely the Taiwan Thrush
(T. niveiceps) and Taiwan Shortwing (B. goodfellowi).
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TABLE 3. Performance Evaluation of 29 Endemic Birds.

FIGURE 6. Two newly added birds’ endemic to Taiwan.

VI. IMPACT AND SIGNIFICANCES OF ENDEMIC BIRDS
Taiwan is a small island of 36,000 km2, but it has a large
number of avian species, including migrants and vagrants.
More than 624 species have been recorded, including 29
endemic bird species and more than 55 endemic subspecies.
Taiwan’s coastal areas and outlying islands such as Penghu,
Kinmen, Matsu, and Orchid Island, are major corridors on
the EAAF, through which many birds migrate between their

breeding and nonbreeding seasons. They migrate north to
as far as Siberia during the summer season and south to
as far as Indonesia, Australia, and New Zealand during the
winter season. This migration of birds causes species habi-
tat hybridization and biodiversity loss. Thus, to ensure the
continued existence of endemic birds and alleviate a major
source of species destruction of species, habitat conservation
is essential and of primary importance for the conservation
of prolific biological resources. For instance, the Styan’s
Bulbul (Pycnonotus taivanus), which is also known as the
Formosan Black Head Bulbul or Taiwan Black Head Bulbul,
is an endemic species of bulbul in the Pycnonotidae family.
This species is found in eastern and southern Taiwan, and it
is listed as a species that is in danger of extinction. It is in
decline owing to habitat destruction and hybridization with
the closely related Chinese or Light-Vented Bulbul (P. sinen-
sis), a species of bird also in the Pycnonotidae family, which
is mainly found in central and southern China, northern Viet-
nam, and Taiwan. The Styan’s Bulbul habitat environment
and body plumage are similar to those of the Chinese Bulbul;
however, their head features differ. The Styan’s Bulbul has a
completely black crown with white feathers around its eyes.
The cheeks, ears, and throat are gray and white, and it has a
prominent orange-red spot at the corner of the lower mouth
and a thick black jawline extending rearward from the corners
of the mouth. The back of the Styan’s Bulbul is dark brown
in color with a bit of olive yellow on the wings; their upper
chest is grayish brown, and their abdomen is grayish white.
The tarsals and toes are black. The Chinese Bulbul has a large
white patch of hindcrown covering the nape and sides of its
black head. The cheeks are black, and only the back of the
eyes has a small white spot. Styan’s Bulbuls are spotted in
Taroko National Park, Kenting National Park, and Shoushan
National Natural Park. They mostly feed on seeds, fruits,
flowers, and insects. Fig. 7(a) shows the Styan’s Bulbul, and
Fig. 7(b) shows the Chinese Bulbul.

FIGURE 7. (a) Styan’s Bulbul (P. taivanus). (b) Chinese bulbul (P. sinensis).

According to the georeferenced locality records of
BirdLife International, Taiwan is mapped as an Endemic Bird
Area (EBA) because it contains avian habitats of restricted
range that must be conserved. Geographically, EBAs are
often distributed in islands or mountain ranges that are gen-
erally located in the tropics and subtropics. The distribu-
tion of the 29 endemic bird species in the national parks
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TABLE 4. Confusion Matrix of the Classification of 29 Endemic Bird Species.

(YangmingshanNational Park, Shei-pa National Park, Taroko
National Park, Yushan National Park, Kenting National Park,
and Shoushan National Natural Park) [34] of Taiwan are
shown in Fig. 8(a). Fig. 8(b) and 8(c) show the distribu-
tion of the two newly added endemic birds, Taiwan Thrush
(T. niveiceps) and Taiwan Shortwing (B. goodfellowi) of
Taiwan, respectively.

Most birds have quite special characteristics from the
perspective of ecosystem services. Additionally, they have
inspired humans for centuries by helping us understand evo-
lution through natural selection, providing ideas that have
helped facilitate air travel, and indicating the need to respond
quickly to preserve the health of the planet. The Taiwan
Barbet (Psilopogon nuchalis), which is also known as the
Formosan Barbet, is an endemic species of bird in the
Megalaimidae family. This unique bird is an endangered

and protected species of Taiwan. The Formosan Barbet
has a mostly emerald-green body and iridescent face with
five-color feathers. The five colors are exactly the same as
the colors of the five interlaced Olympic rings, which repre-
sent the five continents of the world (Europe, Asia, Africa,
America, and Oceania): blue, yellow, black, red, and green.
Locally, the Taiwan Barbet is also known as ‘‘Wuseniao.’’
The name ‘‘Wuse’’ refers to the five colors on their feathers.
The head is mostly blue, the forehead and throat are yellow,
the upper part of the ear and the thick mouth part are black
with many black tassels on their beak, the front of the eyes
and the front of the neck have a bit of red, and the entire body
is covered in bright green colorful feathers. The length of the
bird is 20–23 cm. They are mostly distributed in woodlands
and broadleaf forests, and their preferred habitats are hot and
humid conditions. This five-color bird is a primary cavity
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FIGURE 8. Endemic bird distribution of Taiwan (Record of the most recent
survey: Taroko National Park 11-23-2019). (a) 29 endemic bird species
distribution in the national parks. (b) Taiwan Thrush (Turdus niveiceps)
distribution in the national parks. (c) Taiwan Shortwing (Brachypteryx
goodfellowi) distribution in the national parks.

FIGURE 9. (a) Taiwan Barbet with five-color feathers. (b) Five colors of
Olympic game rings. (c) Nest cavity of Taiwan Barbet.

nester in dead trees; the nests are usually 5 cm in diameter and
20–25 cm in depth. They prefer trees with a large diameter
of dead wood to easily build their nests. Fig. 9(a), 9(b),
and 9(c) show the Taiwan Barbet with five-color feathers,
the five-color interlocking rings of the Olympic games, and
the nest cavity of the Taiwan Barbet, respectively.

The Taiwan Barbet is found in Yangmingshan National
Park, Taroko National Park, Shei-pa National Park, Yushan
National Park, KentingNational Park, and ShoushanNational
Natural Park. The Taiwan Barbet mostly feeds on fruits,

which constitute a large part of their diet. Thus, birds provide
regeneration and resilience to ecosystems to sustain their
biodiversity. Thus, it is essential to identify endemic birds
that are prone to invasion by ecologically similar species that
may eventually cause niche domination or the extirpation of
species already existing on the island.

VII. CONCLUSION
In this study, we developed a new transfer learning method
that has the inherent ability to transfer perceived knowledge
from endemic birds; this knowledgewas then used for solving
the problem of classifying two newly identified endemic
birds. To validate our proposed model, we compared its
performance with that of four different state-of-the-art deep
learning classification models with transfer learning. Further-
more, the designed model was reinforced with multistage
model validation by swapping misclassified data between the
training and validation datasets to achieve better results in
the detection and classification of birds. Our model achieved
an accuracy of 98.39% in the classification of 29 endemic
bird species and an accuracy of 100% in the detection of
birds among different object categories. Moreover, the model
achieved a precision, recall, and F1-score of 98.49%, 97.50%,
and 97.90%, respectively, in the classification of bird species
endemic to Taiwan. The developed model can help in the
conservation of species by identifying the distribution of
species and monitoring adverse environmental effects on bird
ecology and their habitat. Moreover, it can help provide a
model to forecast a pathway for migratory birds.

In the future, we aim to develop a web crawler system that
can automatically harvest and identify global endemic bird
species to determine threatened and rare species richness.
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