
Received July 3, 2021, accepted July 13, 2021, date of publication July 20, 2021, date of current version July 27, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3098614

Demixed Sparse Principal Component Analysis
Through Hybrid Structural Regularizers
YAN ZHANG AND HAOQING XU
School of Computer Science and Engineering, Southeast University, Nanjing 211189, China
School of Artificial Intelligence, Southeast University, Nanjing 211189, China

Corresponding author: Yan Zhang (zhangyan_seu@outlook.com)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018AAA0100500, in part
by the Fundamental Research Funds for the Central Universities, in part by the Jiangsu Provincial Key Laboratory of Network and
Information Security under Grant BM2003201, and in part by the Key Laboratory of Computer Network and Information Integration of
Ministry of Education of China under Grant 93K-9.

ABSTRACT Recently, the sparse representation ofmultivariate data has gained great popularity in real-world
applications like neural activity analysis. Many previous analyses for these data utilize sparse principal
component analysis (SPCA) to obtain a sparse representation. However, `0-norm based SPCA suffers from
non-differentiability and local optimum problems due to non-convex regularization. Additionally, extracting
dependencies between task parameters and feature responses is essential for further analysis while SPCA
usually generates components without demixing these dependencies. To address these problems, we propose
a novel approach, demixed sparse principal component analysis (dSPCA), that relaxes the non-convex
constraints into convex regularizers, e.g., `1-norm and nuclear norm, and demixes dependencies of feature
response on various task parameters by optimizing the loss function with marginalized data. The sparse
and demixed components greatly improve the interpretability of the multivariate data. We also develop a
parallel proximal algorithm to accelerate the optimization for hybrid regularizers based on our method.
We provide theoretical analyses for error bound and convergency.We apply ourmethod on simulated datasets
to evaluate its time cost, the ability to explain the demixed information, and the ability to recover sparsity
for the reconstructed data. Finally, we successfully separate the neural activity into different task parameters
like stimulus or decision, and visualize the demixed components based on the real-world dataset.

INDEX TERMS Dimensionality reduction, sparse principal component analysis, demixed principal
component analysis, parallel proximal algorithms.

I. INTRODUCTION
Multivariate data is often used to describe systems with
multiple dimensions and with many real-world applications
like describing neural firing rate in neuroscience [1]–[7] or
weather changes in meteorology [8]. Sparse representation
of multivariate data achieved great success because it fully
considers the inner sparsity of multivariate data itself and
highlights the important features with shorter expressions.
Analyzing how different task parameters are represented in
multivariate data with sparsity is usually an elementary task.
For example, in many neurological experiments, the neural
activity is affected by multiple task parameters, i.e., the envi-
ronment settings. Considering the inner structure of nervous
system, only part of the neurons will response the change
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of a specific task parameter. As a result, the neurons could
be described by sparsely linear-combined ‘‘components’’
in a low-dimensional space. The sparse representation pro-
vides a more explicit and interpretable way of understanding
the relationship between neural activities and various task
parameters.

A promising way to analyze the sparse representation of
multivariate data is referred to as sparse principal compo-
nent analysis (SPCA). SPCA aims to reduce the number of
used variables, thus concentrating on the remaining important
information and improving the interpretability of the model.
SPCA finds the sparse representation of the multivariate data
by setting a large number of coefficients to zero in the pro-
jection vectors of principal components (PCs), representing
the most representative features of data. To be explicit, SPCA
assumes that the features are sparsely correlated with each
other. That is, let the X ∈ Rn×p denote the data matrix with
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FIGURE 1. Demixing analysis of neuron data. The brain populations of each neuron can be represented in the form of a time sequence.
Thus, we use a set of circles to represent neurons with mixed information. After demixing, each circle represents one component and can
interpret the neuron with only one task parameter.

p features and n samples, the covariance matrix 6 = X>X ∈
Rp×p have a sparse representation like 6 = 6̃ + ε where
6̃ is a sparse matrix and ε is a random perturbation. 6̃ can
be recovered from noisy data by adding sparse constraints,
i.e., `0-norm, when estimating its eigenvectors of 6.
However, SPCA encounters challenges in mainly two

aspects. Firstly, SPCA is difficult to solve because it is
non-differentiable and non-convex [9]. Since the `0-norm
is non-differentiable, it is hard to optimize. Because the
`0-norm is non-convex, the optimization procedure may
obtain local optimum rather than the global optimum. The
PCs they extract can be the linear combinations of multiple
optimal components, therefore, leading to poor demixing
performance. Secondly, the multivariate data in real-world
applications may have complex dependencies on various
task parameters, such as stimulus and decision in the neu-
ral data. SPCA methods can only obtain mixed information
that contains little interactive information. In some research
and applications, there is great interest in analyzing neuron
activities with respect to a single set of task parameters.
For example, in a prefrontal cortex (PFC) experiment of
monkeys [1], we just want to figure out the relationship
between the firing rates and external factors such as 6 differ-
ent stimuli or 2 different decisions, respectively. In past clin-
ical researches [10], solid tissue samples could be influenced
by glandular epithelium and its nearby stroma. By demixing
the dependencies between the feature response and the two
task parameters, the heterogeneity in tumor samples can be
removed, thus helping us better analyze the factors contribut-
ing to the cancer.

To improve the performance of the original SPCA
based on the `0 norm when facing non-convex optimiza-
tion, several methods are proposed [11]–[16]. The recent

developed log-determinant rank approximation [11] applied
a log-determinant function to get an non-convex rank approx-
imation. This method contributes less to the large singular
values and keeps the small singular values close to zero. Even
though it is still a non-convex method, it is differentiable.
Another common used way to ameliorate the non-convex
optimization is to relax the non-convex constraints. In [14],
LASSO based SPCA was first proposed to activate only a
few coefficients in the multivariate data by using the `1-norm
regularization. In [16], elastic net based SPCA was proposed
to consider the grouping effect of the `1-norm and `2-norm,
which is useful when the number of features p is much
larger than the number of samples n. Then, structured SPCA
(SSPCA) [15] was developed to consider both sparse and
some previously known related structural constraints.

However, the mentioned non-convex or convex meth-
ods fail to finish the demixing task, especially for
non-convex methods that always result in the local opti-
mum. In Section VI, we compare the performance of both
non-convex constraints and convex regularizers in detail.
From the results, we can infer that non-convex constraints
are not suitable to be combined with demixing idea. To solve
the demixing problem, recently, some methods have been
introduced. For example, [17], [18] used demixed princi-
pal component analysis (dPCA) to separate neural activity
into stimulus-influenced, decision-influenced or other factor-
influenced components. Therefore, the demixed PCs have
clear meanings and greatly improve the interpretability of
the model, just as Figure 1 shows. However, for now, these
demixingmethods rely on naïve PCA that ignores the sparsity
commonly existing in multivariate data.

In this paper, we propose a demixing and sparse multi-
variate data analysis method called demixed sparse principal
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component analysis (dSPCA) based on a hybrid-regularized
optimization problem. dSPCA combines the `1-norm with
the nuclear norm regularizers to get sparse and low-rank
estimates. Also, our model leverage the idea of demixing to
decompose the multivariate data into different components.
Each component explains variance mostly from only one
subset of task parameters, so it shows how the particular task
parameter affects the final response. Moreover, we apply four
different proximal operators to deal with the optimization of
two regularizations in parallel, whichmakes ourmethodmore
effective. Ourmethod can be seen as complementary to dPCA
and SPCA in component analysis. To be specific, this paper
makes the following contributions:

• Novel demixed sparse principal component analysis
method. We propose a novel method called dSPCA to
simultaneously extract the demixed sparse and low-rank
PCs from data. Each demixed PC explains only one
subset of the task parameters and recovers the sparse
effects of the task parameters. Therefore, the sparse and
low-rank representation with demixed dependencies on
various task parameters explains the multivariate data
in a more explicit way and we can better analyze the
relationship between feature response and different task
parameters.

• Fast and scalable solution with convex and tractable
regularizers. We relax the commonly used non-convex
constraints into convex regularizers. Different form the
non-convex constrains resulting in messy local opti-
mum problems, `1-norm and nuclear norm regulariz-
ers can offer an accurate and tractable approximation
for different task parameters. Moreover, we adjust the
formulation of the optimization problem slightly to
get faster convergence like Elementary Estimators (EE)
have done. Then the optimization problem can be accel-
erated through parallel proximal related algorithm.

• Theoretical analysis and convergence guarantee. We
provide theoretical analyses of dSPCA with respect to
time complexity and the upper error bound for its esti-
mates. Additionally, we guarantee the convergence of
the proposed algorithm. These analyses ensure the effec-
tiveness of dSPCA.

II. BACKGROUND
A. PRINCIPAL COMPONENT ANALYSIS
We first consider naïve dimension reduction model principal
component analysis (PCA). PCA is a well-known unsuper-
vised method to analyze the representation of multivariate
data. Without considering labels or parameters, it mainly uses
different linear combinations of the original data to maximize
the variance, thereby preserving the variability of data as
much as possible.

These new variable linear combinations are called princi-
pal components (PCs). PCA often extracts PCs to maximize
the explained variance. Let X represent the original data
where X ∈ Rn×p (suppose X is already centered), n stands

TABLE 1. The notations we mainly use in this paper.

for the number of samples and p represents the number of
features. The optimal problem can be described as follows:

D̂ = argmin
D

‖X− XDF‖2F . (1)

Here D ∈ Rp×q represents the decoding matrix, which
reduces the dimension of the multivariate data. F = D> ∈
Rq×p is the encoding matrix, which restores the composed
data. q is the dimension of the principal components. The PCs
can be given by the matrix multiplication XD.

Although PCA can minimize the error between the pro-
jected data and the original data, it still faces some problems.
One of the most common problems is that PCA just uses a
linear combination of all variables, most PCs are not zero,
so they contain many unimportant features and transform the
data into meaningless axes. Therefore, PCA is often difficult
to interpret.

B. SPARSE PRINCIPAL COMPONENT ANALYSIS
To reduce the number of variables used, one of the most
common methods is to add sparse and low-rank constraints
to the problem, to prevent meaningless PCs. Sparse principal
component analysis (SPCA) was proposed to find the sparse
representation of multivariate data. To directly obtain the
sparsity factor, we can use `0-norm and rank function to
control the number of non-zero elements and low-rankness.
The optimization problem can be written as follows:

(D̂, F̂) = argmin
D,F

‖X− XDF‖2F

s.t. rank(DF) ≤ q

FF> = I(q×q)
‖DF‖0 ≤ k. (2)
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Here D ∈ Rp×q is the decoder matrix and F ∈ Rq×p is the
encoder matrix. p represents the number of features, q is the
dimension of the principal components, the maximum rank is
DF, and k is the number of non-zero elements. The PCs can
be obtained by matrix multiplication XD.
However, since determining the `0-norm and rank is a

non-convex problem, it is highly possible to obtain local
optimum. And according to [19], the problem in Eq. (2) can
be viewed as a feature selection problem for ordinary least
square regression. So, it is NP-hard and can result in a large
computational cost.

Since non-convex problems are hard to deal with,
the constraints are often relaxed as convex regularizers like
`1-norm [14]. The problem of LASSO based SPCA has the
following form:

(D̂, F̂) = argmin
D,F

‖X− XDF‖2F + λ‖D‖1

s.t. FF> = I(q×q), (3)

Here D ∈ Rp×q is the decoder and F ∈ Rq×p is the
encoder of the data X. p is the number of features and q is the
dimension of the decomposed data. λ represents the penalty
parameter for `1-norm regularization. The problem can be
solved through standard convex optimization to get the global
optimum.

Generally, in SPCA, multivariate data is projected to fewer
main axes. Due to the reduction in the number of non-zero
entries loaded, SPCA can be more clearly represented by
using fewer PCs. Thus, it is more interpretable than original
PCA.

However, in real world applications, since PCs have
mixed information, the hidden dependencies between feature
response and different task parameters are hard to detect.
Therefore, we always hope that each PC can only have an
exact meaning, which will help us better analyze the mul-
tivariate data. In the monkey PFC experiment, we want to
figure out how stimuli or decisions affect the neuron popu-
lations respectively, but SPCA can do nothing when facing
this problem. SPCA is still unable to solve the demixing
problem and fails to interpret data dependencies over each
task parameter, which is a limitation of the method.

C. DEMIXING PROBLEM AND DEMIXED PCA
In a gesture to demix the task parameter dependencies,
demixed principal component analysis (dPCA) was pro-
posed in [18]. Apart from compressing the data into a new
space, [18] tells us the dependencies of the multivariate data
on different task parameters and improves the interpretability
of the method. In the monkey PFC experiment, the method
successfully demixes the neural activity into stimulus or deci-
sion information and uses the corresponding PCs to represent
them.

Decoder D is directly related to the generation of PCs.
The decoder D can be obtained mainly through two steps:
marginalization and loss function optimization.

Marginalization separates all task parameters by decom-
posing the data into different sets of averages. Suppose all
the task parameters of the data are represented by the set 8,
for example 8 = {a, b, c}. Then we can decompose x by

x = xa + xb + xc + xab + xac + xbc + xabc + xnoise
=

∑
φ

xφ + xnoise. (4)

We use xφ to represent the marginalized averages over the
task parameter subset φ ⊂ 8. For example, xa is only depen-
dent on task parameter a. The multiple character subscripted
marginalized data, like xab, is the simplification for a subset
of all the characters, like x{a,b}. Then Xφ can be obtained by
stacking the sample vectors xφ ,

X =
∑
φ

Xφ + Xnoise. (5)

Through marginalization, in Eq. (5), data X can be decom-
posed into different sets of averages Xφ . Xφ is the marginal-
ized part for each subset φ, we can get the corresponding Dφ
from Xφ , the loss function optimization to get Dφ is similar
to what has been done in PCA.

In order to avoid overfitting in dPCA, a regularization
function is added to the loss function. The quadratic penalty
is preferred because an `2-norm has a unique solution [17].
Therefore, the problem for each subset φ can be re-written
into the following form:

(D̂φ, F̂φ) = argmin
DφFφ

∑
φ

‖Xφ − XDφFφ‖2F + λ‖DφFφ‖
2
F

s.t. FφF>φ = I(q×q), (6)

where Dφ ∈ Rp×q, Fφ ∈ Rq×p denote the decoder and
encoder, respectively, while λ stands for the `2-norm penalty
parameter.

However, `2-norm regularization still fails to consider the
sparsity of the data itself. Additionally, if we want to add
`1-norm regularization or simultaneously add more than two
structural constraints to dPCA, like SPCA has done [20],
a huge computational cost for the optimization is added
because the `1-norm is non-differentiable for all demixed
subsets φ ⊂ 8. Therefore, it is always difficult to achieve
a simple combination of SPCA and dPCA.

D. ELEMENTARY ESTIMATORS FOR MULTIVARIATE DATA
It is critical to find out a method which can solve the
`1-norm related regularization quickly. As for the linear
regression problem, elementary estimators (EE) [21] provide
a closed-form solution with consistent estimators and fast
convergence for regularized convex problems.

Consider the linear regression model,

ŵ = argmin
w

n∑
i=1

(yi − x>i w)
2, i = 1, . . . , n, (7)

the Elementary Estimator [21] with general structural
regularizers was proposed for high-dimensional linear
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FIGURE 2. Relaxing non-convex constraints. Previous SPCA methods considered the `0 norm and the rank function to control the number of zero
elements and the low-rankness. However, as non-convex constraints, the problem is NP-hard and may sometimes obtain a local optimum. This problem
can lead to wrong approximation when combined with dPCA. By relaxing the non-convex constraints, in dSPCA we used `1-norm and nuclear norm as the
convex regularizers of the original problem. Thus, the problem is converted to the tractable problem and we can get global optimum.

regression models. For Eq. (7), its corresponding Elementary
Estimators can be written as follows:

ŵ = argmin
w

R(w)

s.t. R∗(w−2) ≤ λ, (8)

where 2 = (X>X + µI)−1X>y is determined from the
well-known least square solution. R(·) represents the regu-
larization function andR∗(u) = supw:R(w)6=0

u>w
R(w) is its dual

form.
The estimator is available to minimize the structural com-

plexity and is suitable for many typical regularizations, since
it uses an initial estimator closer to the global optimum than
a random start. For example, consider the `1-norm as an
example, the estimator can be given by

ŵ = argmin
w

‖w‖1

s.t. ‖w−2‖∞ ≤ λ, (9)

and the unique solution in closed form can be determined by:
ŵ = Sλ(2), where [Sλ(w)]i = sign(wi) max{|wi| − λ, 0}
represents the soft-thresholding function.

EE can provide a closed-form estimator for most
single-norm constrained problems and can offer a faster con-
vergence when compared with normal regression problem.

III. PROPOSED: DEMIXED SPARSE PRINCIPAL
COMPONENT ANALYSIS THROUGH HYBRID
STRUCTURAL REGULARIZERS
To get sparse representation of the multivariate data, previous
SPCA methods utilize sparse constraints, but they fail to
demix the dependencies between task parameters. In this
paper, we propose a method called demixed principal com-
ponent analysis (dSPCA), not only uses the demixing idea
similar to dPCA, but also relax the non-convex constraints
into convex regularizers to reach the ideal sparsity of load-
ings. The advantages of convex regularizers are shown in
Figure 2. By applying parallel proximal related algorithm,
we use fewer computational resources and accelerate the
optimization. Figure 3 shows the whole process of generating
the demixed PCs using convex regularizers on dSPCA.

A. RELAXING NON-CONVEX CONSTRAINTS
FOR DEMIXED DATA
SPCAmethods suffer from non-convex and non-differentiable
constraints. In our proposed method, we relax the `0 norm

and rank constraints into convex regularizers instead. We use
an `1-norm as a substitute for the `0-norm, and the nuclear
norm to substitute rank limit. Therefore, the convex solution
offers a global optimum. To obtain the demixed information
over different task parameters, we generate the demixed
decoder Dφ and encoder Fφ after marginalization, like dPCA
has done. Moreover, inspired from EE, we can revise the
optimization problem for faster convergence, just as Eq. (11)
shows. The process of relaxing non-convex problem is shown
in Figure 2.
To separate the dependencies on different task parameters,

similar to dPCA, the sparse and demixed PCs are obtained
through matrix multiplication between X and Dφ . The key
point of our model lies in the generation of the decoder Dφ .
The generation ofDφ includes two parts: marginalization and
loss function optimization.

The marginalization of data X can be calculated using a
recursion style like

Xφ = 〈X〉8\φ −
∑
τ⊂φ

Xτ , (10)

where 〈X〉8\φ stands for averaging X among all parameter
combinations in the task parameter subset8\φ. By calculat-
ing the averages of a set of task parameters, marginalization
allows us to separate the variance of X [17].

With the marginalized data and an initial estimator 2 =
(X>X + µI)−1X>Xφ , from a regularized linear regression
solution and EE, our proposed decoder Dφ and encoder Fφ
are determined via the following optimizing problem:

(D̂φ, F̂φ) = argmin
DφFφ

‖DφFφ‖1 + ‖DφFφ‖∗

s.t. ‖DφFφ −2‖∞ ≤ λ

‖DφFφ −2‖2 ≤ γ

FφF>φ = I(q×q). (11)

Here, Dφ ∈ Rp×q and Fφ ∈ Rq×p are the decoding matrix
and encoding matrix, respectively. The `1-norm regulariza-
tion controls the sparsity and the nuclear norm regularization
controls the low-rankness. The `∞-norm and nuclear norm
are their corresponding dual functions. Notice that we relax
the rank constraints in SPCA to avoid problems so that the q
here is just used to extract the top-q components to compare
with other methods. λ and γ are tuning parameters. λ repre-
sents the penalty parameter for `1-norm. The larger the λ is,
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FIGURE 3. Flow diagram of proposed method. In the proposed method, a single neuron can be demixed using two main steps. For the decoder
generalization, we apply marginalization to each input data to get Xφ . Considering the sparsity and low-rankness of data itself, regularizers are added
to the problem. As is illustrated before, the `1-norm and nuclear norm are the relaxed regularizers that can help find the global optimized decoder Dφ .
After generating the decoder from the initial data X, X can also combine with the decoder Dφ to conduct dimension reduction with demixing. We apply
matrix multiplication to X and Dφ to get the demixed PCs.

the sparser the demixed data will be. γ represents the penalty
parameter for nuclear norm. The larger the γ is, the stronger
the low-rank data will be.

Different from the `2-norm dPCA, hybrid structural reg-
ularizers can deal with both sparse and low-rank structures
at the same time, which allows the transformed data to have
more explicit representations.

B. FAST OPTIMIZATION THROUGH PARALLEL
PROXIMAL ALGORITHM
To use fewer computational resources when handling the
`1-norm and nuclear norm, we use a parallel proximal algo-
rithm related to our method instead. Inspired from the parallel
proximal algorithm [22], we can optimize the problem and
consider two regularizers simultaneously. Let W = DφFφ
as the reconstruction matrix for marginalization subset φ.
We omit the subscript φ in W for notation simplification.
Eq. (11) can be equivalently written as follows:

Ŵ = argmin
W1,W2,W3,W4

f1(W1)+ f2(W2)+ f3(W3)+ f4(W4)

s.t. W1 =W2 =W3 =W4, (12)

where f1(·) = ‖ · ‖1, f2(·) = ‖ · ‖∗, f3(·) = I{‖W−2‖∞≤λ}(·),
f4(·) = I{‖W−2‖2≤γ }(·). IS (·) stands for an indicator function
of set S as IS (W) = 0 only when W ∈ S, else IS (W) = ∞.
In this case, both f1, f2, f3 and f4 are convex functions, which
satisfy the conditions to use parallel proximal algorithm.

The total process can be summarized in Algorithm 1.
We generate the model parameters according to the initial
parameter2. The updates for ai, as well asWi, i = 1, 2, 3, 4,
are four independent calculations, so that we can compute
them with four threads in parallel. Thus, the time cost can
be reduced. In the algorithm, α represents the learning rate

Algorithm 1: Parallel Proximal Based Algorithm for
dSPCA
Data: original data X,marginalized data Xφ from

Eq. (10), number of components q, the maximum
number of iterations T , learning rate α ∈ [0, 2],
ridge penalty parameter µ, tuning parameters
β = {λ, λ, γ , γ }.

1 Initialize the model parametersW =W1 =W2 =

W3 =W4 = 2 = (X>X+ µI)−1X>Xφ
2 for t = 1 to T do
3 for i = 1, 2, 3, 4 parallelly do
4 ati = prox4βifi (W

t
i )

5 end
6 at = 1

4

∑4
i=1 a

t
i

7 for i = 1, 2, 3, 4 parallelly do
8 Wt+1

i =Wt
i + α(2a

t
−W− ati )

9 end
10 W =W+ α(at −W)
11 end
12 Choose top-p singular values {σ1, . . . , σq} of XφW and

their corresponding right-singlar vectors
{v1, v2, . . . , vq};

13 Fφ = (v1, v2, . . . , vq)>

14 Dφ =WF>φ
Result: Decoder Dφ , Encoder Fφ

of the parallel proximal algorithm for dSPCA. In Section VI,
we generally set α = 1.

The proximal operator of each fi is derived in detail below.
For `1-norm,

prox4λ||W||1 (W) = S4λ(W), (13)
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where (S4λ(W))ij = sign(Wij) max(|Wij| − 4λ, 0) is the soft-
thresholding function. For its corresponding dual function,

prox||W−2||∞≤λ(W) = Tλ(W;2), (14)

where (Tλ(W;2))ij = 2ij + sign(Wij − 2ij) min(|Wij −

2ij|, λ). For the nuclear-norm function, assuming matrix
X has singular value decomposition (SVD) as X =

U6V>, 6 = diag(σ1, σ2, . . . , σr ) where r represents the
rank of X. We use SVD to represent the proximal mapping
of the nuclear norm function:

prox4γ ||W||∗ (W) = US4γ (6)V>, (15)

where W = U6V>. For its corresponding dual form,

prox||W−2||2≤γ (W) = UTγ (6; 0)V> +2. (16)

Here the S4γ (·) and Tγ (·) is defined above.
Once we obtain the optimal solution Ŵ of Eq. (12), we can

reconstruct the data X into XŴ. According to Eckart-Young-
Mirsky theorem [23], its q-rank approximation is given by its
top-q principal components. Assuming that XŴ = U6V>

is the singular value decomposition of the reconstructed data,
the encoder and decoder can be set as Fφ = V>q , Dφ = ŴF>φ
where Vq is the q right-singular vectors with regard to the
top-q singular values.

IV. THEORETICAL ANALYSIS
A. TIME COMPLEXITY
Since the marginalized step is the same with dPCA and
its complexity is much lower than the following optimiza-
tion procedure, we only analyze the optimization step. First,
we initialize W once and compute W, which only needs to
considermatrixmultiplication andmatrix inversion. Since the
computation can be easily finished by a GPU in a short time,
this part can be ignored. Next, the update ofW can be solved
and the computation for the proximal operators can be sped
up by Algorithm 1. From the algorithm we can easily find
that the time cost is mainly composed of the computation for
SVD with O(p3) time complexity in each step. If we assume
that Algorithm 1 converges in T steps, then the total time
complexity is bounded above by O(Tp3).

B. ERROR BOUND
In this section, we prove the upper bound of our proposed
model. We state two essential assumptions:

(C1: sparse) The true reconstruction matrix W∗ has at
most k non-zero elements.
(C2: low-rank) The rank of the true reconstruct matrixW∗

is less than r .
These two assumptions precisely define sparsity and low

rank. Then the error bound is provided below.
Theorem 1: Suppose that the true reconstruction matrix

W∗ = D∗F∗ satisfies assumptions (C1: sparse) and (C2:
low-rank). Assume that the hyper-parameters λ, γ satisfies
λ ≥ ‖W∗ −2‖1 and γ ≥ ‖W∗ −2‖2. Let Ŵ be the optimal

solution of Eq. (11). Thus,

‖Ŵ−W∗‖F ≤ 4
√
λ2k + γ 2r . (17)

See Appendix A for the detailed proof.

C. CONVERGENCY
We provide the convergence guarantee for the iteration part
of Algorithm 1 as Theorem 2.
Theorem 2: Assume the input hyper-parameters of Algo-

rithm 1 satisfies α ∈ [0, 2], λ, γ > 0, the iteration part of
the algorithm generates a sequence {Wt

} that converges to a
solution of Eq. (12).

Proof: Our convergence guarantee is based on Theo-
rem 3 (Proved in [24] Section 3.3. See detailed theorem in
Appendix B.) that provides the convergence guarantee for the
parallel proximal algorithm (PPXA). Consider the problem of
Eq. (12), it is obvious that

lim
‖W‖→+∞

f1(W)+ f2(W)+ f3(W)+ f4(W) = +∞, (18)

and

0 ∈ int{(W−W1, . . . ,W−Wm) |W,Wi ∈ Rp×p
}

⊂ sri{(W−W1, . . . ,W−Wm) |W,Wi ∈ Rp×p
}, (19)

where int{·} is the interior of a set and sri{·} is the strong
relative interior defined in [24]. If we replace the notations
in Theorem 3 with those in our algorithm, i.e., fi(x)→ fi(W),
γ → β, yti → Wt

i , xt → Wt , and set wi = 1/4, λt = 1,
the first two assumptions of Theorem 3 are satisfied. Since
we set λt = 1,∑

t∈N
λt (2− λt ) =

∑
t∈N

1 = +∞. (20)

Thus, the three assumptions are all satisfied and then due
to Theorem 3 the sequence {Wt

} generated by Algorithm 1
converges to a solution point for Eq. (12). �

V. RELATED WORK
Table 2 compares our proposed method with the related
studies in three different aspects. The previous methods miss
at least one aspect while our proposed method considers

TABLE 2. Comparison of related studies for the analysis of multivariate
data. The columns indicate the properties of methods: Sparsity refers to
whether the representation of multivariate data is sparse or not;
Regularizers refers to what regularizers the optimization problem has;
Demixing refers to whether the representation is demixed; Parallelism
refers to whether the task uses parallel optimization.
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all of them. This illustrates that our method combines the
advantages of both SPCA and dPCA.

Traditional methods have been applied when analyz-
ing the representation of the multivariate data. A kind of
classical methods for the analysis of multivariate data are
statistical tests and their related methods [2], [27]–[32].
Brody et al. [2] modeled the firing rate decomposing the
task via linear regression to find the relationship between
firing rate and multiple task parameters like stimulus and
decision for each neuron at each time in the PFC of the mon-
key experiment. Another regression-based method is [27],
for each task parameter, one component can be extracted
through regression coefficients weighted linear combination.
Since the regression based method is generally influenced
by labels and task parameters, the transformed data cannot
faithfully represent the original data and lose relatively much
information. In [27], the method only explained 23% of total
variance. Therefore, these two supervised methods cannot
help the observer to infer what the original data clearly is from
its new representation. The improvement of random forest
can also be a supervised method analyzing the multivariate
data [26], [33]. In [26], the authors proposed parallel ran-
dom forest (PRF) algorithm, which uses dimension-reduction
approach during the training process and both data-parallel
and task-parallel optimization to improve the performance.
However, PRF only considers the classification task while
ignores the relationship between the feature response and
different task parameters in the original data.

When trying to obtain more information from the original
data, unsupervised approaches can be more reliable. PCA
behaves like a classical unsupervised method, extracting a
serious of principal components (PCs) to represent multi-
variate data [25], [34]–[38]. The PCs aim to maximize the
explained variance, and in PFC experiment mentioned above,
the first PC explained 69% of the variance, which is about
three times when compared with supervised linear mod-
els [17]. However, as a naïve unsupervised method, PCA fails
to consider the sparsity of multivariate data and is unable to
prevent the overfitting problem.

To consider the sparse constraints, [9], [15], [20], [39]–[47]
applied sparse principal analysis (SPCA). In [9], the authors
introduced `0-norm penalty to control sparsity. To solve the
non-convex related problem caused by `0-norm, a convex
relaxation to the constraints is proposed, which is solved
using a greedy algorithm. Erichson et al. [40] used LASSO or
elastic net to bring in the sparse loadings to the original data.
Since many of the coefficients are brought to zero, SPCA
obtains a sparse representation of ocean temperature data and
successfully discriminated the band of warmer temperatures
when compared with PCA, which only found spurious global
correlations [40]. In [45], the authors proposed an efficient
SPCA method, namely sparse PCA via regularized SVD
(SPCA-rSVD), which considers the link between PCA and
SVD of the input data to extract the PCs via the regularized
low rank matrix approximation. Since the above SPCAmeth-
ods both need to calculate the full SVDs, as an expansion

of SPCA, robust principal component analysis (RPCA) was
proposed to calculate partial SVDs instead of all SVDs
[48], [49]. To avoid high computational cost and get a more
accurate approximation of the rank, [13] proposed the Fast
Factorization-based RPCA model (FFP), and applied factor-
ization approach to further reduce the time complexity. The
non-convex factorization approach transforms the original
data X into low-rank part L and sparse part S. The rank of L
is much smaller than p and n, and makes the time complexity
of FFP much faster than any other SPCA methods. Similar to
FFP, [11], [12] also use non-convex constraints when analyz-
ing the representation of multivariate data. However, in most
of these mentioned methods, the mixed information cannot
identify the respective information for each component.

To demix the multivariate data, [18] proposed a
probabilistic graphical model and applied a fast Expectation-
Maximization (EM) algorithm to finish the principal com-
ponent analysis (dPCA) task. Offering a more flexible loss
function, [17] used dPCA to analyze neural populations.
In a PFC experiment, dPCA decomposed population activity
into five parts like stimulus, decision, condition-independent,
stimulus-decision interaction and noise. Each component of
different parts tends to maximize the explained variance.
dPCA found that 65%-90% of information was captured by
condition-independent components and the variance of inter-
action between stimulus and decision accounts for 5%-22%.
Based on the findings of dPCA applied in neuron data, [50]
analyzed the neural code and its potential working mecha-
nisms. To prevent overfitting in dPCA, [17] also implemented
a quadratic penalty to the loss function. After 100 iterations
of cross-validation of a PFC somatosensor task, the classi-
fication accuracy can reach around 80%. But dPCA with `2
regularization still ignored the sparsity of data representation,
making this model hard to interpret in real-word messy
data.

VI. EXPERIMENT
We conducted simulated and real-world experiments with
dSPCA and several baseline methods to compare their behav-
ior. The detailed experimental settings and results are pro-
vided below.

A. IMPLEMENTATION
We implement our proposed methods according to
Algorithm 1. The code is available at https://github.com/
SuikaXhq/dSPCA. The packages we mainly use in the imple-
mentation of dSPCA and baselines are numpy, scipy and
scikit-learn. We conduct our experiments on a Linux server
with 2 Intel Xeon Silver 4216 CPUs.

B. BASELINES
We compare our proposed method with the four baseline
methods below:

• PCA: Principal component analysis, the traditional sta-
tistical analysis method. It aims to extract principal
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components from all the dimensions, via a linear com-
bination, to explain the main variance of the data.

• SPCA [51]: An implementation of Sparse PCA. It adds a
sparse regularizer to the encoder and solves the problem
via an iterative approach.

• dPCA [17]: Demixed principal component analysis
described in Section II-C.

• `2-dPCA: The `2 regularized dPCA described in [17].
A regularization is added to avoid overfitting.

• RPCA [13]: Robust principal component analysis. This
method uses nonconvex regularizers and achieve high
estimation speed.

C. METRICS
1) EXPLAINED VARIANCE
We use the cumulative explained variance and individual
explained variance to estimate the performance of informa-
tion description for different components. The cumulative
explained variance can be regarded as the capability of pre-
serving the information needed for the dimension reduction
task. Here we use R2 to represent the cumulative explained
variance defined as

R2 =
‖X‖2F − ‖X− XDF‖2F

‖X‖2F
. (21)

The variance explained by each component can also be
calculated using Eq. (21) replacing D,F with each projec-
tion axis d, f>. To describe the marginalized information
explained by the demixing components, we further decom-
pose the R2 to split the fraction of explained variance into
additive contributions from the marginalization. That is, for
each subset φ, the marginal explained variance R2φ is defined
as

R2φ =
‖Xφ‖2F − ‖Xφ − XDF‖2F

‖X‖2F
, (22)

and R2 =
∑
φ R

2
φ due to the decomposition X =

∑
φ Xφ .

2) TIME
We record the wall-clock time of our dSPCA method and
SPCA. Since the rest of the baseline methods do not add
the sparsity and low-rankness constraints in their method,
the estimating time is not compared in the simulation
experiments.

3) SPARSITY RECOVERY
We viewed the discrimination between zero and non-zero
elements as a binary classification. We suppose the zero
elements in the marginal data Xφ are part of the positive
class and the non-zero elements are part of the negative class.
The true marginal data matrix can be viewed as the ground
truth and the reconstructed data matrix is the corresponding
marginalization XDφFφ , can be viewed as a predicted con-
dition. By calculating precision and recall, we can apply an
F1 score to analyze the ability of sparsity recovery for each
method.

D. EXPERIMENT I: PERFORMANCE ON SYNTHETIC DATA
1) DATA PREPARATION
To ensure that the simulated data are task parameter struc-
tured, we generate the simulation data X ∈ RnABT×p with
p features and task parameters a, b where A,B are the cor-
responding task parameter numbers. To simulate the neuron
data, the time parameter t is also included and T is the total
number of time ticks. The final data is composed by X =
Xa+Xb+Xt +Xnoise. The noise for each sample xnoise was
generated from a normal distributionN (0, σ 2

ε Ip) where σε is
set to 1 in the experiments. We generate the data n times as
multiple trials for each task parameter pair and time tick.

The marginal data Xa is generated by the process below. I.
1) To enforce the sparsity of marginalized data Xa,

we picked out 1− s% of dimensions as support dimen-
sions that are non-zero from the overall p features. That
is, we randomly choose p′ = (1 − s%)p dimensions
from original spaceP = Rp and set the rests to be zeros
to create the support set P ′a ⊂ Rp. The data vectors are
generated in the Rp′ and then converted back into the
P ′a with p dimensions.

2) A base vector x0a ∈ RA is generated with even grid
points from [−3A/2, 3A/2].

3) The marginal data matrix for task parameter a in the
support dimension space is defined as

X′a =

x
0
a,1 x0a,2 · · · x0a,A−1 x0a,A
x0a,2 x0a,3 · · · x0a,A x0a,1
...

. . .
...


= (x′1a , x

′2
a , . . . , x

′A
a ) ∈ Rp′×A,

where each row is the previous row shifted by one
element.

4) The marginal data vectors in the original feature space
is then defined as X̃a = (x1a, x

2
a, . . . , x

A
a ), where x

i
a =

5P ′a (x
′i
a) is the back projection of x′ia from the support

space to original space.
Such element generation procedure ensures that the
rank(Xa) = A − 1 and min ‖xia − xja‖2 ≥ Var[xnoise].
Marginal data for task parameter b is generated just the same
as a.

For marginal data vectors X̃t = (x1t , x
2
t , . . . , x

T
t ), the base

vector x0t is defined as a set of even grid points from [0, 10]
and X′t = cx0>t , where c, is sampled from N (0, Ip′ ). The
back projection procedure is the same as task parameters that
xit = 5P ′t (x

′i
t ).

Collecting all the marginal data, the sample vector for
parameter a, b and time t is defined as xabt = xaa + xbb +
xtt + xnoise.

2) RESULTS
We generate the stimulated sparse datasets using the precise
method described in Section VI. We set the number of tri-
als to be n = 10 and the number of features to be p ∈
{100, 200, 300, 400, 500, 600}. For three task parameters,
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we vary A ∈ {6, 12, 18, 24, 30, 36} and fix B = 4. The
time tick is set to T = 150. Here we also use s% ∈

{0, 20%, 40%, 60%, 80%} to control the sparsity of the mul-
tivariate data. We generate 10 replicates for each setting of
data and average performance and standard deviation for each
method on the 10 replicates are recorded. The all data used
are centralized before applying the methods. The parameter
(λ, γ ) of dSPCA are choosen by grid search in (0, ‖2‖∞]×
(0, ‖2‖2], respectively. 5 × 5 grid is used and we discard
zeros in the grid since that setting parameter to zero makes
it meaningless. We choose the parameters that minimize
the reconstruction error ‖Xφ − XDφFφ‖2F . The parameters
in baseline methods are tuned via the approaches described
in their own papers. The number of components, q, is set
to 10 for all the methods in order to fairly compare their
performance.

a: TIME COST
Figure 4 shows the time cost of SPCA and our method when
varying the number of A, B and sparsity degree s%. The error
bars stand for the standard deviation of time cost, under loga-
rithmic scale. We only include SPCA for comparison because
other methods do not take sparsity into account. Comparing
time costs between different problem settings (regularizing
the sparsity or not) is unfair. Since dSPCA has a demixing
part, its time cost is the average of calculating each single
demixed component. Time is recorded in log-second units.
From the bar chart, we can find that the time cost for SPCA
is 30∼100 times higher than dSPCA. Figure 4(a) shows that
SPCA is more easily influenced by sample size while dSPCA
is not. Figure 4(b) shows that as the dimension of feature p
grows, dSPCA is more easily influenced than SPCA. Perhaps
this is because in Section IV, the complexity of our method is
O(Tp3). Even though the time cost can grow as p gets larger,
dSPCA is still much faster than SPCA. Figure 4(c) shows that
the sparsity of the multivariate data does not influence the
time cost of dSPCA, while SPCA is more easily influenced.
This can result from the optimization of SPCA for sparse
cases [51]. This can be a possible way to improve our method.

b: DEMIXING PERFORMANCE
Figure 5 shows the performance of individual explained vari-
ance for four methods.We do not include SPCA relatedmeth-
ods since SPCA related methods cannot offer the decoder D.
According to Eq.(22), we need to obtain both Dφ and Fφ .
However, SPCA related algorithms only offer Fφ . The error
bar of a single bar is the standard deviation of the total
explained variance with respect to that component. Notice
that such error contains not only the variance of the method
but also the variance within data generation since the repli-
cates slightly differ from each other. From the figure we can
observe that PCA demix poorly as we expect. While the other
three methods have similar demixing performance. Our pro-
posed method shows almost the same demixing performance
compared with dPCAmethods. The RPCAmethod generates
components that almost do not demix the task parameters.

FIGURE 4. Time cost comparison for SPCA and dSPCA. Subfigure (a)
shows time vs. sample size (in log-seconds) by varying the number of
stimulus in {6,12,18,24,30,36}. Subfigure (b) shows time vs. dimension
(in log-seconds) by varying the number of features in
{100,200,300,400,500,600}. Subfigure (c) shows time vs. sparsity (in
log-seconds) by the degree of sparsity in {0%,20%,40%,60%,80%}. The
error bars show the standard deviation of time under logarithmic scale.

It means we cannot find out any useful information about the
effects of the task parameters since each RPCA component is
depend on all the task parameters.

c: SPARSITY RECOVERY
Table 3 shows that dSPCA performs better than dPCA and
`2-dPCA when it comes to the ability to recover sparsity on
both task parameter a and b. We do not include PCA or SPCA
related methods since they are not applicable in the context of
demixing. They cannot generate projection axes specifically
for marginalized data and thus they cannot reconstruct them
but reconstruct the original data. As a result, PCA and SPCA
methods cannot provide useful information with respect to
sparse marginalized data. Since the original data X, i.e., the
summation of sparse marginalized data, is not necessary to
be sparse, it does not make sense to compare the sparsity
recovery ability on the original data. Thus, we only compare
the sparsity recovery performance on the marginalized data.
As the sparsity s% gets lower, the F1 score for dPCA and
`2-dPCA decreases, while the F1 score for dSPCA remains 1.
The high F1 score of dSPCA can be explained in two aspects.
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TABLE 3. F1 score of the marginalization for different methods. We recorded the F1 scores and their standard deviations among 10 replicates of data on
task parameters a and b after demixing. The bold numbers represent the best results among all three method. dSPCA outperforms the other two methods
in all the cases. We only discuss dPCA related methods since PCA and SPCA related methods are not applicable in the context of demixing.

FIGURE 5. Individual explained variance. The data setting is
n = 10,p = 300,A = 12,B = 4, T = 150, s% = 80%. Each bar represents
the corresponding proportion of total variance. Blue bar is the
stimulus-influenced variance, red bar is the decision-influenced variance,
and gray bar is the condition-independent variance. The error bars show
the standard deviation of the single component explained variance. SPCA
methods are not included since the related algorithms fail to give the
decoder D, the individual explained variance cannot be obtained.

On one hand, the data is quite sparse that in most cases there
are about 80% of the entries are zeros, so that the F1 score
can be 0.8889 for all-zero results. Notice that dPCA meth-
ods usually cannot achieve 0.88. On the other hand, dSPCA

regularizes the `1 norm in order to obtain sparse estimates
while dPCA methods do not. Also, Figure 6 shows the com-
parison between F1 score and the cumulative explained vari-
ance on different task parameters.We do not include PCA and
SPCA methods since they are not applicable in the context of
demixing too. This suggests that no matter how the cumula-
tive explained variance changes, the F1 score, that describes
the ability to recover sparsity from the reconstructed data,
is always very close to 1.0 (with 10−4 accuracy). While the
F1 score of other methods is about 0.08∼ 0.22 lower than
dSPCA. This shows that dSPCA can reconstruct data with
sparsity and low-rankness precisely in various settings.

d: REGULARIZER UTILITY STUDY
Figure 7 provides a visualization for the effects of
regularizers. Generally, explained variance represents the
reconstruction ability of the estimate generated by themethod
and F1 score represents the interpretation accuracy. The
explained variance is high when the two hyper-parameters are
all relatively small. Since the initial estimator of dSPCA is
the solution for regularized linear regression and with small
hyper-parameters, the regularizers have little impact on the
estimate, the reconstructed data XDφFφ is close to Xφ in
Euclidean distance. That leads to the high explained variance.
As the two parameters grow, the influence of the two regular-
izers becomes larger and explained variance firstly increases
then decreases. It means that a proper hyper-parameter setting
could help maintain the reconstruct ability of the estimate.
When the parameters are set to zero, the sparsity recovery
performance is extremely poor, indicating that the initial
estimator of dSPCA cannot reflect sparse property of the
data. However, with a small `1-regularization (a small λ),
dSPCA can provide good enough estimate with respect to
sparse interpretation.

The contributions of the two regularizers can be summa-
rized as: (1) The `1-norm regularizer controls the degree of
sparsity. With a relatively small λ, the F1 score could reach
nearly 1.0 with explained variancemaintained, indicating that
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FIGURE 6. Trade-off between cumulative explained variance and F1 score. We compare both F1 score and cumulative
explained variance to figure out the trade-off between them for dSPCA and the other two dPCA based methods. Here we set
q = 10 for all situations. We only compare the performance of dPCA related methods since PCA and SPCA related methods
are not applicable in the context of demixing.

FIGURE 7. Regularizer utility comparison. The data setting is n = 10, p = 300, A = 12, B = 4, T = 150, s% = 40%. We report
the cumulative explained variance (q = 10) and F1 score (task parameter a) from each setting of hyper-parameters λ and γ .
100% means the maximum value ‖2‖∞ and ‖2‖2 for λ, γ , respectively. The lighter entry represents the better result.
We only show the F1 score for task parameter a here in the figure since task parameter a and b behave similarly.

the `1-norm regularizer is able to recover the true sparsity of
data.With a larger λ, the `1-norm regularizer involves distinct
bias in the estimate, resulting in the poor performance. A rel-
atively small penalty on `1-norm could efficiently improve
the sparse recovery performance while larger penalty is not
recommended. (2) The nuclear norm regularizer penalizes
the rank of the result. As shown in Figure 7, the effect on
explained variance of nuclear norm regularizer is slightly
larger than that of `1-norm regularizer. The poor performance
with large γ indicates that larger penalty on rank will cause
distortion in the result. Nuclear norm regularizer has either
positive or negative impacts with different settings of γ . With
a proper setting of γ (50% in the figure), the nuclear norm
regularizer can also benefit sparsity recovery. It is better to
carefully tune the parameter γ in order to make the nuclear
norm regularizer suitable for the data.

Combine the two heat maps, results show that the choice
of λ, γ contains a trade-off between reconstruct ability
and sparse interpretability. The two regularizers cooperate
mutually for a sparse and accurate estimate. The `1-norm reg-
ularizer mainly contributes to the sparsity recovery for inter-
pretation while the nuclear norm regularizer mainly focuses
on controlling the low-rankness of the result.

E. EXPERIMENT II: PERFORMANCE ON NEURON
ACTIVITY DATA
We used a large number of neural data recordings [1]–[7]
to analyze the relationship between multiple task parameters
and the changes of animal neural firing rates in monkey PFC
with the proposed model.
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FIGURE 8. Explained variance for real-world data. We recorded the individual explained variance and cumulative explained variance by
varying the number of components. Subfigure (a)-(d) shows the individual explained variance on dSPCA and other baseline methods.
Each bar represents the corresponding proportion of total variance. The blue bar is the stimulus-influenced variance; the red bar is the
decision-influenced variance; the gray bar is the condition-independent variance, and the purple bar is the interaction between stimuli
and decisions. SPCA methods are not included since the related algorithms fail to give the decoder D, the individual explained variance
cannot be obtained. Subfigure (e) shows the cumulative explained variance on dSPCA and other baseline methods. Here we include
SPCA since it offers XD and F to obtain the cumulative explained variance.

FIGURE 9. Demixed principal components for dSPCA. In Subfigure (a), the first column represents the first principal component
and so does the second, third and fourth column. Each curve in the subplots represents this kind of setting. We use six colors to
represent six different stimuli and two kinds of line styles to represent the two different decisions. Subfigure (b) shows the time
line in the PFC experiment of monkeys.

In this dataset, the monkeys are asked to make a dis-
crimination between two different stimuli f1 and f2 with a
frequency of {10, 14, 18, 26, 30, 34}Hz, where f2 was given
3 seconds after f1. The time line is shown in Figure 9(b).

Monkeys needed to decide whether f1 > f2 and press the
corresponding button. Then the time-dependent firing rate of
neurons, which stands for the responses of the neurons, are
recorded.
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We ignore the overall 6% of the error cases and only
consider the correct trials. Then we use a Gaussian kernel to
filter the data. The firing rates used in the experiments are
sampled at 100Hz from the Gaussian kernel filtered data.

For better analysis, we ignored neurons with missing set-
tings. Also, to improve the reliability of our datasets, we left
the neurons a small number of trials n ≥ 5 and use the
averages over trials as the corresponding firing rates. After
neuron selection, 793 neurons are left and for each setting,
501 firing rates are recorded.

The whole working memory task in the PFC of monkeys
involves two task parameters: stimulus s (out of S) and deci-
sions d (out of H ). We use p to represent the number of
neurons. For each setting, the number of recorded firing rates
is T . Then the neural firing rate data can be represented as
X ∈ RSHT×p. With the assumption of our proposed method,
the each sample is composed by x = xt + xs + xd + xst +
xdt + xsd + xsdt . Since the neurons behave related closely
to time parameters, we combine some of the terms to obtain
a more reasonable representation in results: Conditional-
independent term denotes xt ; Stimulus term denotes xs+ xst ;
Decision term denotes xd + xdt ; Interaction term denotes
xsd+xsdt . The names of the terms are the same in other result
representations with respect to marginalizations.

Figure 8(a)-(d) shows that the demixing ability of dSPCA
greatly exceeds that of PCA and is similar to other dPCA
based method. SPCA related methods are not mentioned,
the reason is the same as that in Figure 5. Figure 8(e) shows
that the cumulative variance explained by dSPCA is very
close to the cumulative variance explained by other baseline
methods. Here we include SPCA since it offers XD and
F to obtain the cumulative explained variance. From these
two results, we can infer that dSPCA reserves the useful
information through hybrid regularization as well as other
PCA based methods, while it separates the dependencies of
the multivariate data on different task parameters.

Table 4 illustrates that dSPCA outperforms baseline meth-
ods on sparsity of the demixed data. We do not include PCA
or SPCA related methods since they are not applicable in
the context of demixing, too. The results highly correspond
to our expectations since dSPCA uses the `1-norm and the
nuclear norm to add sparse and low-rank regularization to the
optimization problem.

Figure 9 shows that both stimuli and decisions are
separated clearly at the spike level. From the condition-
independent dimension, the spikes with different settings

TABLE 4. Sparsity for different methods. We recorded the proportion of
zero elements to represent the sparsity of the reconstructed data.
We only compare the dPCA related methods since PCA or SPCA related
methods are not applicable in the context of demixing.

behave consistently in the time series. Since the interaction
combines both stimulus and decision information, it seems
to be a bit messy, but spikes at the same the stimulus, with
different decisions, still behave symmetrically.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we investigated the sparse and low-rank rep-
resentation problem centered on separating the dependen-
cies over different task parameters, which makes it easier
to understand how different task parameters contribute to
the explained variance. We proposed our method, dSPCA,
to decompose the multivariate data with convex sparse and
low-rank regularizations. Our method efficiently applies a
parallel proximal algorithm to speed up the optimization for
convex regularizers added to a problem. Our method out-
performs other SPCA methods in stimulated and real-world
experiments with respect to the sparse estimation and obtain a
variance that can explain the results in a way that is no worse
than baseline methods.

In our future work, we plan to reduce the time complexity
of our algorithm sinceO(p3) complexity could have problems
applying to large-scale problems. Another goal is to update
D, F. Such separate update style may provide more flexibility
into ourmethod. Also, wewill extend ourmethod in the future
to a generalized framework for hybrid constraints in PCA
and dPCA problems in order to figure out the hidden general
properties.

APPENDIX A
PROOF FOR THEOREM 1
Let Ŵ be the optimal reconstruction matrix generated from
Algorithm 1 and W∗ be the true matrix. Let 11 = Ŵ‖·‖1 −
W∗, 12 = Ŵ‖·‖∗ −W∗ where Ŵ‖·‖1 and Ŵ‖·‖∗ are optimal
solutions of minimizing `1 norm and nuclear norm corre-
spondingly. Furthermore, denote R1(·) = ‖·‖1, R2(·) =
‖·‖∗, β1 = λ, β2 = γ , I = {1, 2} for notation simplification.
The error ‖1‖F where 1 = 11 +12 is bounded as:

‖1‖2F = 〈1,1〉F

=

∑
α∈I
〈1,1α〉F

≤

∑
α∈I
|〈1,1α〉F |

≤ 4
∑
α∈I

βαRα(5Mα
(1α))

≤ 4
∑
α∈I

βα9α(Mα)‖5Mα
(1α)‖F , (23)

where 〈·, ·〉F denotes the Frobenius inner product, Mα

denotes the subspace W∗ that lies with regard to Rα and
9α(Mα) = supU∈M̄α\{0}

Rα(U)
‖U‖F

is the subspace compatibil-
ity constant defined in [52]. For an `1 norm with sparsity
assumption (C1), 91(M1) =

√
k . For nuclear norm with

low-rank assumption (C2), 92(M2) =
√
r . The second

inequality is proven by [21] with Hölder’s inequality. Similar
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to Eq. (23),

‖5Mα
(1α)‖2F ≤ ‖1α‖

2
F ≤ 4βα9α(Mα)‖5Mα

(1α)‖F .

(24)

Collect all the pieces and we obtain

‖1‖F ≤

√
16

∑
α∈I

β2α9
2
α(Mα)

= 4
√
λ2k + γ 2r . (25)

APPENDIX B
PPXA CONVERGENCE GUARANTEE
The parallel proximal algorithm (PPXA) is proposed by [24]
as Algorithm 2. The convergency of PPXA is guaranteed by
the following theorem:

Algorithm 2: Parallel Proximal Algorithm (PPXA) [24]
Data: γ > 0, wi ∈ (0, 1], i = 1, . . . ,m subject to∑m

i=1 wi = 1, y0i ∈ Rd .
1 initialize x0 =

∑m
i=1 wiy

0
i

2 for t = 1, 2, . . . do
3 for i = 1 to m do
4 ati = proxγ fi/wi (y

t
i )

5 end
6 at =

∑m
i=1 wia

t
i

7 λt ∈ (0, 2)
8 for i = 1 to m do
9 yt+1i = yti + λt (2a

t
− xt − ati )

10 end
11 xt+1 = xt + λt (at − xt )
12 end

Result: Sequence {xt }.

Theorem 3: Let G be the set of solutions to

min
x

m∑
i=1

fi(x), (26)

where fi(·), i = 1, 2, . . . ,m are convex functions. Let {xt } be
the sequence generated by Algorithm 2 under the following
assumptions.

1) lim‖x‖→+∞
∑m

i=1 fi(x) = +∞.
2) 0 ∈ sri{(x−x1, . . . , x−xm) | x ∈ Rd , xi ∈ domfi}

where sri{·} is the strong relative interior defined
in [24].

3)
∑

t∈N λt (2− λt ) = +∞.
Then G 6= ∅ and {xt } converges weakly to a point in G.
The detailed proof of Theorem 3 can be found in
Section 3.3 in [24].
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