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ABSTRACT This paper presents a nonlinear model predictive control (NMPC) scheme for the medium-level
control of a small-scale autonomous bulldozer to accurately and safely displace crushed materials of
masonry in construction contexts. For this purpose, the controller is required to minimize the error between
the achieved and required paths; additionally, the control actions must be smooth for minimizing the
mistreatment of equipment, which is intended to operate in the long term, as it is usual in industrial-grade
solutions. The proposed NMPC based path-follower can adequately handle the platform’s constraints and
usual perturbations. In terms of state estimation, a map-based localizer is implemented via an extended
Kalman filter (EKF) based on the platform nominal process model and light detecting and ranging (LiDAR)
and inertial measurement unit (IMU) sensors measurements. The localizer provides estimates of the plat-
form’s pose, necessary for the MPC controller’s state feedback. An actual experiment on a modified UGV
(Clearpaths Husky A-200) is performed to validate the performance of the proposed control scheme. The
UGV is retrofitted with a blade (for pushing material) and appropriate sensors for the necessary perception
tasks. Experimental results indicate that the proposed control scheme is robust and suitable for safely pushing
the crushedmaterials, presenting appropriately low deviation from the nominal path and requiring reasonably
low processing time.

INDEX TERMS Extended Kalman filter, masonry construction, nonlinear model predictive control, path-
follower, small-scale bulldozer, unmanned ground vehicle.

I. INTRODUCTION
The demand for unmanned ground vehicles (UGVs) is rapidly
growing in the construction, transportation, civil and military
applications due to the reliability, efficiency, and advance-
ment in the technology [1]–[3]. Small-scale UGVs play a
useful role in pushing the materials and debris [4]–[7] in
construction areas. These materials could also be used for
masonry construction. Some of the unused crushed bricks
and stones remain on the ground during a unit or building
construction. For this purpose, small-scale platforms may
operate in a full or semi-autonomous fashion. It can depend
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on how the high-level planning is generated (depending on
the degree of participation of the human operators).

Control of autonomous bulldozers is challenging due to
multiple factors. First, bulldozer blades may require to be
raised or lowered by an operator (often by remote or auto-
matic control) [8]. Second, they are often operated in an
uncertain and uneven environment [9]. In addition, construc-
tion bulldozers have to deal with complex sites and with
measurement errors, which lead to hazardous situations in
the operations [10]. Thus, the path-following control problem
is relevant for achieving reliability, and safety [11], [12].
A platform needs to achieve it by applying sufficiently gentle
control actions; that additional requirement usually results in
saving energy and treating the equipment adequately, in the
same way a well-trained human driver should do.
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Diverse techniques have been applied in related prob-
lems; such as the Lyapunov-based linear quadratic regulator
(LQR) applied to solve the guidance problem for specific
non-holonomic systems [13], a robust path following con-
troller for autonomous electric vehicle [6], implementations
of fuzzy logic control [14], sliding mode control [15]. Addi-
tionally, some implementations in the context of articulated
vehicles [16], [17], fault-tolerant control [18], robust track-
ing controller [19], and adaptive MPC [20]. These existing
techniques can properly solve the tracking problem; how-
ever, the vehicles are usually treated as rigid points that
ignore the boundaries while following the path. For prac-
tical applications, it is also important limiting the required
processing cost. An onboard processor performs the con-
trol processes whose resources are shared by multiple expen-
sive processes (terrainmodeling, localization, and safety). All
those processes operate in real-time, usually under limited
resources, as industrial-grade computers are typically less
powerful than state-of-the-art consumer electronics comput-
ers. There are pros and cons associated with each control
technique regarding processing cost and accuracy in practice.
Model predictive control (MPC) is a great contender to solve
the path-following problem for the small-scale autonomous
bulldozers due to its ability to handle constraints [21], [22].

In recent years, MPC has been used in construction-based
applications. For instance, to optimize the energy usage of
buildings [23], for experimental analysis of heating system
[24]. For more generalized applications, MPC is now being
used for mitigating fatal accidents in construction [25], for
keeping balanced slurry pressure in shield tunneling [26], and
for excavation [27].

Many researchers have proposed solutions to solve the
tracking problem of UGVs using MPC controllers. For
instance, a robust formulation of MPC to handle the con-
straints which consider additive disturbances by only focus-
ing on the simulations [28], a robust MPC for the linearised
error dynamics model used by [29] solves the tractor-trailer
system’s tracking problem with low tracking errors. A simu-
lated trajectory tracking problem solved by [30] has reason-
able tracking errors, a path-tracking controller based onMPC,
and nonlinear filtering [31], and a tracking error-based MPC
for mobile robots in real-time applications [32]. However,
for practical applications of MPC, the aspect of its pro-
cessing cost must be addressed, for guarantying sufficiently
low processing time at each instance of sampling and con-
trol, thus allowing it to operate under real-time constraints.
For this purpose, a generalized minimum residual (GMRES)
reduces the computational cost [33], experimental valida-
tion of Linear MPC(LMPC) and Nonlinear MPC(NPMC)
are compared with nonlinear moving horizon estimation in
[34], experimental verification of cars subject to measurable
disturbances are investigated in [12]. These techniques per-
form well in simulations and specific experimental contexts;
however, improvements in accuracy and computational time
are still required, mainly for specific industrial applications,
such as those in construction contexts. In addition, further

investigation is required for nonlinearMPC to solve construc-
tion applications providing robust performance.

In terms of existing work on autonomous bulldoz-
ers, high-level planning based on artificial intelligence is
proposed in [35]. The authors compare their proposed
autonomous planning and the manual operation typical of
an experienced human operator. They showed that their
proposed approach outperformed the typical human opera-
tor. Similarly, an efficient path to compute given tasks to
autonomous bulldozers [36], [37] and automatic material
distribution operation [38]. However, these studies focused
on the path planning of material distribution of autonomous
bulldozers, not including how to follow those generated tra-
jectories neither solving them efficiently.

In this paper, we propose an efficient nonlinear model pre-
dictive path-tracking controller for the autonomous bulldozer
used in [36], [37], [39] to push the materials of masonry in
the safe destination zone. We have run all the processes under
the industrial-grade system used by [40] and [41]. It is chal-
lenging to safely place materials and debris of masonry in a
goal location in practical work. Therefore, we want to design
a controller that can handle the constraints and predict the
systems’ response to the upcoming behavior. Thus, we opted
for NMPC for this task. So, our main contributions based on
the above challenges are as follows:

1) To design and implement a nonlinear model predic-
tive control to solve the path-following problem for
small-scale autonomous bulldozers.

2) To investigate the accuracy and processing time of the
proposed control technique.

3) To safely push the materials and debris of masonry in
a goal location using the proposed control scheme and
localization process.

The remaining paper is organized as follows; in Section 2,
the problem is formulated, and the platform’s kinematics is
discussed. Section 3 presents the design of a Nonlinear MPC
scheme for the small-scale bulldozer. In Section 4, the local-
ization process is covered. Section 5 discusses the results of
the proposed control scheme. Finally, Section 6 concludes the
paper.

II. PROBLEM FORMULATION
A. PLATFORM’S MODEL
This paper has used the unicycle configuration for the
small-scale bulldozer in the global frame position coordinates
O : (X , Y ) and body frame position coordinates o : (x, y)
as illustrated in Figure 1. The control actions produced by
the wheels are linear velocity v = (vl + vr )/2 and angular
velocity ω = (vl − vr )/L. The distance between the rear
wheels, rear and front wheels, and the wheels’ radius is B,
L, and r , respectively. The blade’s length is b1, which is
attached to the UGVwith a distance of b2. The control actions
produced by the system is u = [v, ω]T . In addition, when
operating in a 2D context, the platform has three degrees of
freedomwith translationmotion in the form of positions (x, y)
and orientation as a heading angle θ . Now, considering the

102070 VOLUME 9, 2021



S. Khan, J. Guivant: Nonlinear Model Predictive Path-Following Controller for Small-Scale Autonomous Bulldozer

FIGURE 1. Configuration of the small-scale bulldozer.

following unicycle kinematics model for the UGV:

ṗ = f (p,u) =

cos θ 0
sin θ 0
0 1

 · u, (1)

where p = [x, y, θ ]T consists of states of the vehicle. The
above equation (1) can be approximated at every time-step by
using Euler’s approximation under adequate sampling time.
Thus, making the resulting nominal processmodel as follows:

pk+1 = pk + Ts

cos θk 0
sin θk 0
0 1

 · uk (2)

where Ts is the sampling time and k = 0, 1, 2, . . . . are the
number of samples.

B. PROBLEM STATEMENT
For a reference path of the vehicle pr = [xr , yr , θr ], the UGV
should track the path with sufficient accuracy while mov-
ing the crushed materials/stones to a desired goal. Figure 2
represents the 5-steps to be followed by the UGV to express
the problem to achieve the material placement task visually.
Initially, the UGV will approach the crushed stones/material
with a proposed average speed. In step 2, as the platform is
not allowed to turn when pushing material, a linear path is
followed during the pushing action. The platform can turn
and reverse in any other situation, e.g., positioning before a
pushing action. In addition, pushing actions are performed at
a low speed. In the example, a planner decides a plan that
divides the task into two pushing actions because an obstacle
impedes the task to be achieved in just one action. In step 3,
the bulldozer should reverse since the goal location is perpen-
dicular to the current pose. In step 4, the vehicle should move
forward towards the crushed stones by correcting the actual
pose p. Finally, the bulldozer should reduce the speed before
reaching the stones, pushing them at low speed, following a
linear path to reach the temporary destination of the stones
finally.

FIGURE 2. Proposed task for the small-scale bulldozer (it turn when
pushing material).

III. DESIGN OF NMPC
To solve the path tracking problem, consider the following
nonlinear model of the platform as:

pk+1 = fa(pk ,uk ), (3)

with states pk ∈ Rn and control inputs uk ∈ Rm. The
function fa is not exactly known process model due to the
system being perturbed by disturbances. Therefore, (3) can
be expressed as

pk+1 = f(pk ,uk )+ d(ck ) (4)

where the bounded disturbances have the dependency on
ck ∈ Rp, the nonlinear process model f(.) is the assumed
process model (nominal), which represents our knowledge of
fa.While d(.) is assumed to be aGaussian process disturbance
model as described [42].

NMPC’s main goal is to find a set of a control sequence
for predicting the system’s future response over a given
horizon. Therefore, the cost function to be minimised over
the k samples is consists of stage cost L(p,u) = (p −
pr)TQ(p− pr)+ uTRu and terminal cost LN (p,u) = (pN −
pr)T Q̂(pN − pr) + uT R̂u. The matrices Q, Q̂ ∈ RKn×Kn

and R, R̂ ∈ RKm×Km are the positive semi-definite and
positive definite, the sequence of predicted states is p =
(pk+1 . . . pk+K ), the reference states has a sequence of pr =
(pr ,k+1 . . . pr ,k+K ), and control actions have a sequence
u = (uk . . . uk+K−1). The sequence of predicted states p is
computed using the Sigma-Point Transform used by [42]. The
net cost function can be defined as follows:

J (p,u) = LN (p,u)+
∑N−1

i=1 L(p,u)+ d(ck + i) (5)
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subject to the following constraints:{
−umin(k + i) ≤ u(k + i) ≤ umax(k + i)
−pmin(k + i) ≤ p(k + i) ≤ pmax(k + i)

(6)

In addition, the above constraints can be defined as a com-
plete set which compose both the state and input constraints,
ai ≤ 0,i = 1 . . . 2N (n+m), whereN represents the prediction
horizon. A constrained optimization problem can be defined
to compute the optimal value of control action, as follows:

uopt = argmin
u

J (p,u) (7)

subject to following constraints:
pk+i+1 = f(pk+i,uk+i)+ d(ck+i),
i = 0 . . .N − 1,
ai(p,u)<0, i = 1 . . .Nc

(8)

For k = 1, is the currently estimated UGV’s pose; so
that the MPC is synchronized to the last valid estimates. The
term Nc = 2N (n + m) and control action are subject to
both the equality and inequality constraints. A slack variable
w = (w1 . . .wNc ) and a logarithmic barrier function [43] can
be introduced to approximate the inequality constraints as
follows:

uopt = argmin
u

J (p,u)− µ
Nc∑
i=1

log(wi) (9)

subject to following constraints:
pk+i+1 = f(pk+i,uk+i)+ d(ck+i),
i = 0 . . .N − 1,
ai(p,u)− wi = 0, i = 1 . . .Nc

(10)

The symbolµ has been opted to be close to zero throughout
the optimization process. The optimization process begin
with an initial guess ū for the applied control sequence with
u = ū + δu. The term δu is a small deviation of control
action; this enables the input constraints to compensate for the
delta function in the cost function. It is recommended to use
the initial guess for ū same as the previous time-step. In our
optimization case, we have used ū = 0 for the first time-step.
To finalize the optimization process, we have used Lagrange
methods [43].

L(s) = J (p,u)− µ
Nc∑
i=1

log(wi)

−

N−1∑
i=0

λT (pk+i+1 − f(pk+i,uk+i)− d(ck+i))

−

Nc∑
i=1

ζ (ci(p,u− wi)) (11)

The function L(s) is the Lagrangian, λi ∈ Rn, all the
remaining parameters are in s = (p,u,w, λ, ζ ). For optimal
condition, consider ∇L(s) = 0. and s = ŝ + δs described

Algorithm 1: Nonlinear MPC for Path-Tracking

Data: pk, p̂k and si
Result: uopt
initialization: ŝ = si;
while ‖p(k)− pr(k)‖ ≥ ηi do

Get the sequence of actual state p(k) at runtime
estimated state p̂(k), (4), and ŝ;
if Bulldozer has a contact with crushed stones then

slow down the speed of the bulldozer;
update the constraints;

else
maintain the current speed;
update the constraints;

compute ∇L(s) = 0 and solve δs;
Update the value of ŝ

in [42]. A threshold −5cm ≤ ηi ≤ −5cm is set for the
tracking of each way-point.

Figure 3 illustrates the block diagram of the complete sys-
tem to address the control signals provided to the small-scale
bulldozer. The generated path first goes to the comparator
to compute tracking error fed to NMPC and the current
state. The processing of NMPC produces an optimal solution
for the control actions sent to the actual platform. Thus,
the feedback control scheme drives the existing platform to
the proposed path.

IV. LOCALIZATION
A localization process is used as the path follower contin-
uously requires an estimate of the pose (2D position and
heading). Those estimates are provided by the localization
process based on sensor data fusion of measurements pro-
vided by a LiDAR and a gyroscope. The localization pro-
cess used in this application is a well-known approach in
the Robotics community, a map-based localizer, i.e., it uses
a small number of landmarks, which are deployed in the
area of operation (usually on the boundaries of the area of
operation, for minimizing disturbing the regular operation of
the platform and other agents.) Each time a LiDAR scan is
acquired (for the LMS291, in the mode of operation being
used, about 38HZ), the scan is pre-processed for perform-
ing feature extraction, particularly for detecting the poles.
After the poles are detected, a data association process is
performed, in which the detected objects are associated with
the known map’s landmarks. Those successfully associated
landmarks allow us to perform updates in the EKF fusion
process. The prediction steps of the EKF are based on a
kinematic model, whose only input is the heading rate, which
is provided by one of the IMU gyroscopes. Although the
platform has wheel encoders that would allow measuring
longitudinal velocity, those measurements are not used due to
the low reliability when slippage is present, usually in certain
types of terrain. Consequently, the state vector also includes
the longitudinal velocity, estimated along with position and
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FIGURE 3. Block diagram representation of the path tracking controller for small-scale
bulldozer.

the heading. The slow time-varying gyroscope’s bias is also
estimated in addition to those four states without compro-
mising the system’s observability. All the onboard processor
measurements are fed to EKF, which estimates the pose of the
Husky A200.

A. ESTIMATING POSE, SPEED, AND THE GYROSCOPE BIAS
Considering the case in which speed measurements are not
permanently available (e.g. no such sensor is installed on the
platform). This concept is also useful when the speed mea-
surements are available but are of low quality or are sampled
at an inadequate sampling rate. In such cases, the speed can
be estimated in addition to the rest of the states of interest.
We also estimate the bias of the vertical gyroscope; conse-
quently, we propose the following states and input variables
for the process model: X = [x , y , θ , b , v]T and u(t) = ω(t);
in which the couple (x, y) is the 2D position, θ the heading,
v the longitudinal velocity, and the variable b represents the
gyroscope’s bias. The model’s input ω is the biased angular
rate which is measured from the gyroscope. The analog pro-
cess model is

d
dt
X (t) =

d
dt


x (t)
y (t)
φ (t)
b (t)
v (t)

 =

v (t) · cos(φ (t))
v (t) · sin(φ (t))
ω (t)− b (t)

0
0

 (12)

with

X (t) =


x (t)
y (t)
φ (t)
b (t)
v (t)

 ∈ R5, u (t) = ω (t) ∈ R1

The above equation is of a nominally constant velocity
kinematic model. The state v(k) is the longitudinal velocity
of the platform. The variable b(k) is the gyroscope bias,
which is usually slowly time-variant. In theory, we could
use an accelerometer for measuring accelerations, and avoid
this simplification. However, we do not try that approach in

this case because accelerometers are not reliable enough for
this purpose. An approximated discrete-timemodel (based on
Euler’s approximation), for a sample time Ts, is the following
one:

X(k + 1) = X (k)+ Ts · Ẋ (k) (13)

B. UNCERTAINTY IN-PROCESS MODEL
Several sources of uncertainty pollute this nominal pro-
cess model; one is related to the existence of translation in
the transversal direction (perpendicular to heading), which
means that the non-holonomic constraint is not strictly
respected. Another discrepancy is that the real longitudinal
velocity is not constant as there exists an acceleration which
is unknown but still known to be bounded ‖a(t)| < amax =
1.2m/s2, for this particular platform. Consequently, we can
assume that{

1v(k) = v(k)− v(k − 1),
−Ts · amax < 1v(k) < Ts · amax

(14)

The speed variation, 1v(k) = v(k) − v(k − 1) = 0 is
unknown and thus considered to be noised, modelled as a
random variable (RV). That RV is not white, however as it
bounded and it fluctuates around 0, it is assumed to be GWN,
in the estimation process. This approximation results in the
following process model of the longitudinal velocity:

v(k + 1) = v(k)+ Ts · 0+ ζdv(k),

σdv = Ts · amax (15)

where the component ζdv(k) represents the uncertainty, which
pollutes the process model of the speed state. The proposed
value for σdv approximates the standard deviation of this
uncertainty.

For the gyroscope’s bias, an initial expected value b(0) = 0
is assumed, and initial standard deviation σb = 2 deg/s. Its
process model is that of random constant, b(k + 1) = b(k);
however, it is known to be slowly time-varying, but having
unknown variation, consequently certain GWN process noise
is assumed, b(k + 1) = b(k)+ Tsσ1b. Provided that we have
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sufficient available observations of range (r) or/and bearing
(α), the system would be observable, i.e. the full state vector,
including the longitudinal velocity, would be estimated.

C. OBSERVATION MODEL
The observations related to each observed landmark are range
and bearing:

Y =
[
r
α

]
(16)

Their observation models are:

h(X) =
[
h1(x, y, θ, v)
h2(x, y, θ, v)

]
=

[
r
α

]

=

 √
(xa − x)2 + (ya − y)2

tan−1(ya − y, xa − x)− θ +
π

2

 (17)

A couple of constants (xa, ya) is the center of geometry of
the particular landmark involved in the observation. In the
EKF pose estimator, the covariance matrices are based on
the following assumption about the noises and uncertainties
in process and observation models: the standard deviation of
noise in gyroscope is 1deg/s (free of bias noise), the standard
deviation of initial bias is 1/deg/s, the standard deviation of
bias drift is 0.01/deg/s)/s, the standard deviation of noise in
range measurement is 15 cm, and the standard deviation of
noise in bearing measurement is 2.5deg (noise characteristics
include LiDAR noise, errors due to pitch and roll effects
on LiDAR measurements due to inclination respect to the
nominally horizontal plane). Even in cases in which we do
measure the speed, wemay have a slow sensor (whose sample
rate is not the one we need); additionally, the measurements
from that sensor may be noisy; which means it is convenient
to use an estimated version of it, i.e., we estimate it, in place of
using it directly. In such a case, we can use the speedmeasure-
ments for implementing observations (updates). Although
speed measurements (from encoders) are not reliable due
to possible slippage, those can be used at low frequency as
observations and are assumed to have the noise of covariance
higher than that of the sensor operating in good conditions.
Those measurements are polluted with colored noise (far
from being GWN) during slip episodes. However, it is still
useful during the initialization stages, in which the covariance
of the estimates is relevant, or in regions of operation in which
the observability of the estimation process is weak due to the
poor availability of landmarks. However, during the system’s
usual operation and the experiments, it is assumed that a
rich deployment of landmarks is present. That assumption is
realistic in the sense that the areas of operation, in industrial
contexts, can be populated with the low-cost poles used as
landmarks. Figure 6, some of those navigation landmarks
(orange poles) can be seen.

V. RESULTS AND DISCUSSIONS
In this section, experimental results are presented. We have
tested our proposed control scheme on a Clearpath Husky

A200, which weights 50 Kg, to perform bulldozing tasks.
To perform the real experiment, the controller was run in the
onboard processor with an Intel Celeron 1.60 GHz dual-core
processor with 2GB of RAM. The NMPC control actions
were generated at 40 Hz. The LiDAR (LMS291) scans are
pre-processed, feature extraction for detecting the poles for
localization. The range and bearing observations are gener-
ated based on these detected poles. The LiDAR was read via
RS422/USB by the onboard computer at about 38Hz; predic-
tion operates at 200Hz, the onboard 3D camera is Primesense
Carmine of which has depth image size VGA(640 × 480),
and IMU via USB runs at around 200 Hz. The maximum
vehicle speed is 1.0m/s with a rated payload of 20kg. The
platform and components used for the experiment are shown
in Figure 4.
The gain tuning of Q and R are set to get a smooth and

reasonable applied control action as per the experiment’s
requirement based on the masonry application. However,
these values are not fixed, and variation could result in a
discontinuous path and aggressive control actions. For circle
shape trajectory, the values ofQ and R are diag[5, 5, 0.1] and
diag[0.1 , 0.1] respectively. The weights for the terminal cost
are selected as Q̂ and R̂ are diag[50 , 50 , 10] and diag[1 , 1]
respectively. For the saturation of u(k), although the vehicle
supports a maximum speed of 1 m/s in the masonry experi-
ment, we have used 0.15 m/s maximum speed and 45 deg/s
angular rate. In addition, for circular shape trajectory, we have
used 0.25 m/s maximum speed and 45 deg/s angular rate.
These control input constraints are set on the NMPC, making
sure that the optimizer respects these constraints. The predic-
tion horizon for both experiments are set to N = 10. The
selection of these values is based on the Husky A-200 and
the proposed masonry application’s control specifications.

A. PATH GENERATION
The planer updates the path at a lower frequency, e.g., 1HZ.
The planner always considers the approximated current plat-
form’s pose, the last estimated terrain description, and certain
high-level logistic constraints; because the NMPC operates at
a higher rate, it always uses the last planner’s output. Because
the planner always proposes a path synchronized with the last
estimated platform’s pose, the overall process is smooth.

The planner reduces the problem’s dimensionality by gen-
erating sequences of piece-wise linear (PWL) path segments,
trying to solve the problem of reaching the object of inter-
ests (OOIs) and pushing them to the destination dumpling
area. Because the segments are long enough, it is assumed
that the NMPC controller does always have enough time
and space to align the platform with each segment properly.
It is relevant because we need the machine to be in proper
pose at the points of encounter and release of the OOIs, and
also to follow well linear paths when the blade is pushing
objects (this is usual in this class of machines: the machine
does not turn when is pushing loads; even human drivers do
respect this practical rule). The machine is allowed to turn
when it is not pushing material. The planner considers that
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FIGURE 4. Small-scale bulldozer (Husky-A200) with components used for the
experiment.

FIGURE 5. Small-scale bulldozer in the experimental environment for pushing
the proposed construction application. Experiment video is available in [44].

restriction, so the paths are consistent with those require-
ments. For instance, if a load needs to be moved to a posi-
tion and the platform needs to avoid obstacles, the path
would be PWL because we cannot keep turning to follow
a smooth curved path. The load is pushed linearly up to an
intermediate point (following a linear segment), and then the
UGV attacks the OOI again for following a second segment.
Each time the UGV switches to a new segment, it needs
to maneuver/reverse, take a proper position to attack the

OOI properly, and push it linearly to the planned subsequent
position. The paths generated by the planner usually contain
a low number of PWL segments because each transition from
one segment to the following implies a maneuver whose cost
is considered in the planner’s optimization. As a result of
this overall process, the NMPC module focuses on following
the currently proposed PWL paths, which are assumed to be
feasible and well designed to avoid exposing the platform
to unnecessary strict requirements, except if there are no
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FIGURE 6. Set of 2 low-cost poles used as a landmarks.

alternatives. The planner is closing the loop at a high level,
and the NMPC closes the loop at a medium level. The accu-
racy of the NMPC module is instrumental in guaranteeing
that the overall process is feasible. The planner is designed
to apply in the same way, and a human user would safely and
efficiently perform the same complex sequence. This separa-
tion of the control process into levels allows high flexibility.

B. EXPERIMENTAL RESULTS
To test the system, we have used our lab to perform sev-
eral experiments. In Figure 5, the experiment is summarised
through six different steps: a) represents the vehicle’s initial
pose, b) the vehicle is approaching the first way-point and
trying to reach the crushed stones, c) the vehicle pushes the
stones with at low speed and moves forward d) after joining
the crushed stones together the vehicle takes a reverse, e) the
vehicle takes a forward turn and corrects its heading to push
the stones again with at a low speed, f) finally, the vehicle
approaches to the goal location and stops. We have split
path-following tests into three categories: Balanced Tuning
(BT), Less aggressive gain (LGA), and Varying Prediction
Horizon(VPH). In each of our proposed gain tuning tech-
niques, we have kept the control actions smooth, ensuring
the used matrix R of the controller does not result in aggres-
sive behavior. We call the setting a balanced tuning when
the matrix R, Q, and prediction horizon N are neither large
nor small values are in a normal range. A less aggressive
gain (LGA) is where control input and states have less aggres-
sive gain values. Finally, a varying prediction horizon (VPH)
is where the prediction horizon can be large or small. These
experiments enable us to get a feasible gain for our applica-
tion (additional details in the supplementary document [44]).
Figure 7 shows the path tracking of the given way-points in
graphical representation. The idea is to follow the nominal
PWL path and reduce the speed when pushing the materials.
The reverse is performed at a higher speed.

In addition, the control actions can be observed from
Figure 8a and Figure 8b, respectively. The linear velocity is
0.15m/s for the first 30 sec, but it reduces to 0.10m/s during
the section of the path associated to a pushing action. The
vehicle has linear velocity constraints of −0.15m/s ≤ v ≤
0.15m/s. Therefore, for the reverse action of the vehicle,

FIGURE 7. Actual path following of the UGV received from the planner.

FIGURE 8. Control actions, required by the NMPC controller. These values
are used as set-points of the low level controllers which actually operate
the platform’s electric motors for controlling the rotational speeds of the
wheels. a) Longitudinal velocity. b) Angular velocity (heading rate).

it will respect these constraints. The existence of abrupt
changes in the linear velocity is because the critical path spec-
ifies it, not because the NMPC is deciding it, as those veloc-
ities are defined by the cruise speeds, which the high-level
planner decides. The control action is smooth, which makes
the bulldozing action more safe and reliable. For the angular
velocity, the vehicle is always trying to catch up to 0 deg/s
with the constraints of −45 deg/s ≤ ω ≤ 45 deg/s. It is
crucial to investigate the tracking errors associated with the
individual states. For this purpose, we have investigated the
state errors and Euclidean distance error, shown in Figure 9
between the actual and reference paths. Figure 10 states that
the states’ time convergence to be closed to zero starts at 20s,
which is the first way-point. The vehicle tends to catch up
with the initial way-point. The moment the vehicle catches
up with the first way-point, it stays on track without having
any higher errors. Meanwhile, the Euclidean distance error is
in the range of [1 cm − 1.5 cm], which is acceptable as the
vehicle has taken a reverse. It makes the proposed controller
robust and efficient, and accurate.

The computational time of the controller is relevant for
understanding the controller’s feasibility for real applications.
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FIGURE 9. Euclidean distance error between actual and reference path.

FIGURE 10. State errors of the real-platform.

FIGURE 11. NMPC computational time.

Figure 11 shows the required processing time at each control
instance. The average computation time for this experiment
is around 27 ms, which is satisfactory for the practical appli-
cation. In this experiment, as mentioned earlier, the onboard
computer has 2-cores.

To further validate the robustness and effectiveness of the
proposed control scheme, the following circular path to be

FIGURE 12. Proposed circle tracking by the real-platform.

FIGURE 13. Euclidean distance errors between actual and reference path
of the real-platform.

tracked was considered;{
xr (t) = 3.5+ 2 · cos(0.2t)
yr (t) = 1+ 2 · sin(0.2t)

(18)

In addition, the platform’s initial pose was far from the
nominal path, pr = [0 , 0, 0]T ; that fact can be appreciated
fromfigure 12. The system is controlled at a rate of fs = 40Hz
with a sampling time of Ts = 25ms. The response is bounded
by constraints that allow the UGV to maintain local stability.
However, the vehicle acts as a leader-follower formulation to
attain stability for the reference trajectory.

In Figure 13, the robustness and effectiveness of the NMPC
can be appreciated as the euclidean distance between the
reference and desired path is always less than 1.5 cm.
The discrepancy between nominal and real angular rate
and longitudinal velocities can be appreciated in Figure 14.
Those real inputs are not real but measured or estimated
ones. A gyroscope provides the angular rate. This mea-
surement is polluted by noise, whose statistical description
can be assumed to be a GWN component and a slowly
time-varying bias. The real longitudinal velocity is estimated
by an EKF localizer (which estimates 2D position, heading,
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FIGURE 14. (a) Angular velocity required by the NMPC controller, and
angular velocity actually measured, during the test in which the platform
is required to follow a circular trajectory. The additional saturation of the
actuators was not included in the nominal process model used by the
NMPC. It can be appreciated that the low-level controllers do not achieve
specific requested high angular rates. (b) Discrepancy between the speed
required by the controller and the estimated actual speed for a circular
trajectory. The discrepancies between the nominal velocities (required by
the NMPC controller) and those achieved represent a relevant
perturbation to the system.

and longitudinal velocity, and, in addition, the gyroscope’s
bias). We do not consider measurements from the wheel’s
encoders, as those are affected, at least sporadically, by slip-
page; consequently, the EKF estimates are more reliable.

A different situation would have resulted from the same
experiment performed in simulation instead of using a real
platform. In the simulated case, we would have compared the
simulated path with the proposed one because the outputs of
the simulator could have been considered the ground truth
without uncertainty. However, the achieved path is not per-
fectly known for the real experiment because the platform’s
pose is known through estimates. Consequently, the discrep-
ancy between the desired and actual paths is due to imperfect
control and uncertainty in the pose estimates. That uncer-
tainty affects the validation of the performance due to per-
turbation in the control process. To mitigate this issue, in the
validation stages, a better localizer can be used, for instance,
a localized based on 3D scanning; however, at the moment,
that type of localizer is not usual in industrial applications.
We also know that the noisy estimates also affect the NMPC
control because we use those as feedback, which is another
perturbation to our control (in addition to those affecting the
nominal process model). However, we could still appreciate
the excellent performance of the NMPC implementation.
Table 1 compares the accuracy of a circular path with some
of the existing techniques in the literature. The accuracy of
tracking errors in our experiment is acceptable among these
promising approaches. In addition, in some techniques, they
have not performed experiments using a real platform, being
those validations focused on simulations. In our experimental
case, the proposed control technique is feasible to use for
industrial-grade applications.

In terms of chattering in Figures 8b and 14, one reason
for the appreciated chattering is that the experiment is not a

TABLE 1. Performance comparison with existing literature.

simulation and that we are showing real data in the presence
of noise. The shown curves are accurate but still showing
estimated values provided by the EKF. The EKF is an optimal
estimator; however, the noise in measurements still produces
chattering that seems unnatural. However, it is according to
the estimated covariance. A similar situation would occur if
a high accurate RTK GPS were used outdoor. A different
situation would have resulted from the same experiment per-
formed in simulation instead of using a real platform. In a
simulated case, we would have compared the simulated path
with the proposed one because the outputs of the simulator
could have been considered the ground truth without uncer-
tainty. However, the achieved path is not perfectly known
for the real experiment because the platform’s pose is known
through estimates.

The proposed algorithm would be feasible for the full-size
bulldozer as well. However, to compute the Nonlinear model
predictive control, the onboard computer is also an essential
factor. An excellent onboard processor could provide a better
response. Additionally, localization is an essential factor for
this experiment. In our case, we have provided an extended
Kalman filter. Therefore, with all these proposed approaches,
it would be feasible to work with full-size bulldozers.

VI. CONCLUSION
This paper has implemented an NMPC-based path follower
for a small-scale autonomous bulldozer to operate as part of
a construction application to displace materials and debris
of masonry. The proposed controller is robust and efficient
enough to solve the problem for proper industrial-grade appli-
cations. The overall system also involves a localization pro-
cess based on sensor data fusion of LiDAR and gyroscopes to
provide the pose estimates needed for the controller feedback
and the analysis of the controller’s performance.

The experiments on the platform show that the proposed
approach is computationally feasible, accurate, and robust.
The control signals applied to the platform are smooth for
proper treatment of the equipment. In addition, the accu-
racy of the approach is compared with existing techniques.
Thus, the proposed NMPC resulted in a feasible solution for
industrial-grade applications.
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