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ABSTRACT Ganoderma disease is a kind of infection that actuates oil palm death. Early detection of
Ganoderma disease is the most recommended strategy for proper treatment and disease control plan to be
taken promptly. In this paper, the detection methods for Ganoderma disease were reviewed and categorized
accordingly. It was found that the combination of remote sensors and machine learning techniques could
identify the disease up to four severity levels, including the early stage of infection. It also significantly
reduced the labor and time costs compared to the traditional visual inspection and lab-based approaches.
In terms of machine learning, support vector machine (SVM) using the idea of finding a hyperplane was
suggested as the best classifier in several studies. Despite only one research was done on ANN and no
research evaluating CNN and GAN in Ganoderma disease detection; ANN, CNN and GAN were recognized
as the potential machine learning techniques that could enhance the detection system.

INDEX TERMS Basal stem rot, Ganoderma, machine learning, oil palm, remote sensors.

I. INTRODUCTION
Oil palm, Elaeis guineensis Jacq., is a key commercial crop
in food, cosmetics, plastics, detergent, lubricant, and biofuel
industries [1], [2]. Palm oil and palm kernel oil make up 40%
of vegetable oil in the world [3]. About 85% of total oil palm
production is from Indonesia and Malaysia, where Indonesia
contributes to the larger portion [2]. However, the crop in both
countries is prone to Ganoderma disease [2], [4], [5].
Ganoderma disease is caused by basidiomycete fungus
called Ganoderma boninense that spreads from the palm
roots [6]. It will destroy the internal palm tissues, causing
basal stem rot (BSR), which affects the delivery of water and
other nutrients to treetop. Eventually, it leads to the death of
the entire oil palm [1], [7].
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Ganoderma disease will induce certain symptoms on
fruits, leaves, roots, and stems of the oil palm trees. In order to
grade the infection severity, the Ganoderma disease severity
index (GDSI) was introduced by Izzuddin et al. [8] based
on visual symptoms. Initially, three categories were proposed
and defined accordingly. The first category is healthy (TO),
where the oil palm visually looks healthy without show-
ing any foliar symptom, as well as the absence of white
mycelium and fruiting bodies at the palm base. The second
category is mild (T1), where the oil palm visually looks
healthy but showing foliar symptom and the presence of white
mycelium, small white button or fruiting bodies at the palm
base that has no stem and bole botting. The third category
is severe (T2), where the Ganoderma fruiting bodies, stem,
and bole rotting are visible at the palm base, meanwhile the
oil palm has more than one unopened spear leaves, droop-
ing and yellowing of leaves, and old fronds snapping at
the petiole. Izzuddin et al. [9] then expanded the GDSI into
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four categories: healthy (TO0), early (T1), moderate (T2), and
severe (T3), by including the test result from Ganoderma
selective medium (GSM) and PCR-DNA. In addition, the
definition for moderate and severe Ganoderma infections was
refined. A moderately infected oil palm tree is characterized
by the existence of less than 30% of both foliar symptoms and
rotting at the base of the stem, whereas a severely infected oil
palm tree is characterized by the existence of more than 30%
of both foliar symptoms and rotting at the base of the stem.
However, based on the BSR classification by Ibrahim [5],
the mildly infected palm is associated with the presence of
white mycelium or fruiting body without foliar symptoms
or less than 10% of stem rotting at the base; the moder-
ately infected palm is associated with the presence of white
mycelium, less than 50% of foliar symptoms, and less than
30% of stem rotting at the base; severely infected palm is
associated with the presence of white mycelium, more than
50% of foliar symptoms, and more than 30% of stem rotting
at the base.

Ganoderma disease leads to the yield reduction of fresh
fruit bunches between 1000 kg (0.04 t) and 0.434 kg/m>
(4.34 t/ha) on ten years to twenty years of planting, respec-
tively [10]. Up to the present, there is no cure for this par-
ticular disease. Paterson [2] predicted that the BSR incidents
would continue to increase to very high levels on most parts
of the island of Sumatra due to the dramatic increase of
unsuitability of the climate for oil palm after 2050.

Hitherto, appropriate disease control and management is
the only strategy to overcome the realized issue. It was
reported that oil palm trees with below 20% of infection could
still be saved by applying proper treatment [11], [12]. Early
detection of Ganoderma disease is crucial to enable quick
action to be taken at the beginning of BSR infection in order
to minimize the economic losses [ 13]. In this review paper, we
present the currently available Ganoderma disease detection
methods and highlighted the values of machine learning to
reach the purpose of early detection. We aim to contribute
in terms of pointing out relevant research gaps to researchers
who plan to establish a novel Ganoderma detection tool.

Il. METHODS OF DETECTING GANODERMA DISEASE
Methods of detecting Ganoderma disease can be divided into
three types based on manual, lab-based and remote settings
as illustrated in Figure 1.

A. MANUAL GANODERMA DISEASE DETECTION

Workers in the oil palm plantation area perform a visual
inspection to manually detect the BSR infected oil palm trees
based on the visible external symptoms at fruits, leaves, stems
and roots [5].

In general, Ganoderma disease has a four-level disease
typology, in which O labelling healthy trees, 1 labelling a mild
attack, 2 labelling a medium attack, and 3 labelling a severe
attack or near-fatal infestation. The infection levels 1, 2, and
3 are described in Table 1, whereas the oil palm appearance
in all categories is illustrated in Table 2 [14].
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FIGURE 1. Classification of Ganoderma disease detection methods.

TABLE 1. Ganoderma-specific visual symptoms. Adapted from [14].

Infection Change in stem Change in canopy
level conditions structure
1 Existence of Drying or yellowing of
mycelium in the several leaves.
stem bark. Existence of one or two
unopened spear leaves.
2 Existence of Presence of leaf
fruiting bodies at necrosis. Existence of
the stem base. three to five unopened
spear leaves.
Declination of older
leaves.
3 Existence of rotten | Existence of widely
stem. spread leaf necrosis.
Absence of new leaf
and new bunch. “Skirt-
like” shape of crown
caused by full leaf
declination.

This detection method is mainly based on the observers’
experience and knowledge. Hence, it is subjected to both
inter- and intra-observer variabilities. Most of the time, hun-
dreds of oil palm trees are to be looked into, which make the
visual screening overloaded. Unlike the significant symptoms
which could be perceived easily, the insignificant symptoms
of Ganoderma disease, particular at the early stage of infec-
tion, can be missed out, thus exhibiting a disease detection
challenge.

B. LAB-BASED GANODERMA DISEASE DETECTION

Due to the advancement in the field of biochemistry,
immunology, and molecular science, the protein and molec-
ular structures of specific fungi are well studied and
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TABLE 2. Digital images of oil palm tree in different Ganoderma disease
level. Adapted from [5].

TABLE 3. Composition of GSM.

Part A Part B
Bacto- 50¢g Streptomycin 300 mg
peptone sulphate
Agar 20.0g | Chloramphenicol 100 mg
MgSO,, 7TH,O 0.25g | PCNB, pure 285 mg
K,HPO, 0.50 g | Ridomil (25% WP) 130 mg
Distilled 900 ml | Benlate - T20 150 mg
water, pH 5.5
Ethanol, 95% 20 ml
Lactic acid, 50% 2ml
Tannic acid 125¢g
Distilled water, pH 80 ml
5.5

Infection | Infection Image
degree status
0 Healthy
1 Mildly
infected
5 Moderately
infected
3 Severely
infected

determined. This leads to the development of lab-based Gan-
oderma disease detection that usually involves specific stan-
dard operating procedures and laboratory materials.

1) GANODERMA SELECTIVE MEDIUM (GSM)

Ganoderma selective medium (GSM) was developed by Arif-
fin and Idris [15] for the isolation of Ganoderma. GSM
consists of two parts, as shown in Table 3.
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Firstly, part A was homogenized by being stirred on a hot
plate at 100 °C until the ingredients were completely dis-
solved. It was then followed by a fifteen-minute autoclaving
process. Meanwhile, part B was stirred at room temperature
for two hours. Next, it was aseptically poured into the con-
tainer with part A when the temperature of the autoclaved
medium has dropped to the range between 45 °C to 50 °C.

It should be noted that tannic acid, which possesses
antibacterial properties, worked as an inhibited growth com-
pound for the contaminant in GSM. This ingredient also
induced the formation of brown halo around the colony as
illustrated in Figure 2. Another ingredient in part B, namely
pentachloronitrobenzene (PCNB), was believed acting as a
carbon source in the medium to allow the growth of Gano-
derma [16].

Unfortunately, GSM could not be used in Indonesia due to
the restriction of the use of PCNB according to Indonesia’s
government regulation No. 85/1999 on Toxic and Hazardous
Waste Management, which stated that PCNB is considered
as a hazardous and toxic chemical [16]. United States Envi-
ronmental Protection Agency (EPA) also labelled PNCB as
a carcinogenic element. In addition, another GSM’s ingredi-
ent, namely Ridomil, was not distributed in Indonesia any-
more [16]. Taken together, it implied that the application of
GSM was easily dragged by the unavailability of its ingredi-
ents. Moreover, the accuracy concern of GSM is questionable
because other basidiomycete fungi could also grow on these
media. Hence the application of GSM for large scale moni-
toring purpose is not recommended.

2) POLYMERASE CHAIN REACTION (PCR)

Polymerase chain reaction (PCR) is a laboratory technique
used to amplify the DNA target from a DNA mixture. Inter-
estingly, the internal transcribed spacers (ITS) of nuclear
ribosomal DNA (nrDNA) is generally recognized as the offi-
cial barcode for identifying the fungi species at the molecular
level due to the multi-copy number per genome of the con-
served feature within species.
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FIGURE 2. Isolation of Ganoderma on complete GSM through the
formation of brown halo around the colony. Adapted from [15].

Midot et al. [6] amplified the ITS region using two univer-
sal primer pairs, namely ITS1 and ITS4, as well as ITS1F and
ITS4B, in a PCR reaction. The template DNA was amplified
through thermal cycling that involved initial denaturation,
annealing and extension at different temperature settings. The
PCR products were then separated through electrophoresis on
an agarose gel stained with ethidium bromide and visualized
under ultraviolet (UV) light. Lastly, the PCR products were
subjected to purification. Their results showed that a major
haplotype, designated GbHap1 (81.2%), was detected in sam-
ples collected from all sampling locations in Sarawak. This
finding suggests that the PCR method could be used for the
systematic detection of Ganoderma fungal pathogen.

Yet, the routine analysis of this application involved the
protocol complexities, reagent cost, sensitivity to contamina-
tion, and the requirement of highly skilled laboratory person-
nel, which might not be favorable to intensive monitoring.

3) ENZYME-LINKED IMMUNOSORBENT ASSAY POLYCLONAL
ANTIBODIES (ELISA-PABS)

Enzyme-linked immunosorbent assay polyclonal antibodies
(ELISA-PAbs) is an immunology assay designed to rapidly
quantify a particular protein molecule in a protein mixture
using certain highly specific antibodies [17].

Firstly, the oil palm tissue sample extracted from leaf, stem
or root was finely grounded, followed by dilution with extrac-
tion buffer and lastly, centrifugation. The total protein con-
centration was evaluated with bovine serum albumin (BSA)
as the standard. Next, the indirect ELISA was carried out
using the procedures as presented in Figure 3.

This approach offered greater simplicity and required less
equipment as compared to PCR using DNA probes. It also
showed better detection as compared to GSM [18]. Despite
those advantages, the protocol of ELISA-PABS is still sophis-
ticated and time-consuming, making it less favorable to large
scale screening.
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FIGURE 3. Flow of ELISA-PAbs. Adapted from [17].

C. REMOTE GANODERMA DISEASE DETECTION

Lately, remote sensing techniques arise to allow the collection
of massive input data from the oil palm plantation area.
Khosrokhani er al. [19] described remote sensing as a sort of
art and science of information collection with respect to the
targeted object without direct physical contact. Remote sens-
ing technology involves the usage of passive or active sensors,
which are responsible for capturing the desired signals, and
an interface such as a computer to display the raw data to the
user. Further analysis can be done either by the user input or
thru certain pre-defined computer functions to diagnose the
Ganoderma disease. Remote Ganoderma disease detection
methods can be categorized into several groups depending on
the input data forms.

1) HYPERSPECTRAL SENSOR

The hyperspectral sensor collects the data consisting of hun-
dreds or thousands of continuous spectral bands to track
the spectral responses of the targeted object over a specific
continuous wavelength [19]. As a result, the detailed spectral
signatures are obtained to enable the identification of the
object. In terms of oil palm trees, healthy trees usually present
lower visible (VIS) reflectance and higher near infrared (NIR)
reflectance, whereas unhealthy trees demonstrate different
spectral patterns regulated by the physiology and morphology
of the leaves [20]. Hyperspectral imaging can be divided
into ground-based, airborne and space-borne according to
the data collection approaches. Ground-based hyperspectral
imaging requires the experimental setup on the ground. Air-
borne hyperspectral imaging requires the use of an unmanned
aerial vehicle. Space-borne hyperspectral imaging involves
satellites in space.

A portable handheld spectroradiometer GER model 1500
(Geophysical and Environmental Research Corporation,
Millbrook, NY) with 571 available spectral bands was used
by Ahmadi er al. [21] to study the spectral analysis at
leaf level. They found that the majority of the satisfactory
results happened in the visible range, particularly in the
green wavelength. The result further revealed that the frond
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number 9 was the sensitive frond number for the proposed
ANN model as it managed to provide the highest accuracy
of 100.0% as compared with frond number 17 [21].

Perkin Elmer 2000 Series Fourier Transform Infrared
(FTIR) spectrometer with selected scanning range from
650 to 4000 cm~! was employed by Alexander et al. [22] to
investigate the Ganoderma boninense cells detection in the
oil palm tissues. Result reported that the FTIR technique was
capable of detecting the presence of Ganoderma boninense
when the percentage of the content of Ganoderma boninense
cells in oil palm tissues was only 5%. Noteworthily, this
approach attempted to detect the spectroscopic fingerprints
of Ganoderma at the cellular level.

In another study, the airborne imaging spectrometer for
applications (AISA) dual hyperspectral imaging system was
fixed on the aircraft type Short SC-7 Skyvan, a twin-engine
turboprop cargo aircraft to acquire the airborne hyperspectral
images [8]. As aresult, continuum removal (CR) analysis was
recommended. Although the added airborne feature increased
the efficiency of data acquisition in large plantation area,
however, the process of analyzing the collected data was chal-
lenging due to the noise problem caused by environmental
factors.

In order to examine the hyperspectral reflectance of
five-month-old oil palm seedlings, FirefIEYE S185 (Cubert
GmbH, Ulm, Germany) snapshot camera was fixed horizon-
tally on a custom tripod stand which was located 2.6 m above
the ground level [20]. The hyperspectral reflectance of the
first four leaflets of frond number 1 and frond number 2 was
extracted manually and randomly. It should be noted that this
method also required careful consideration when dealing with
sun angle, shadow, and weather conditions to minimize the
environmental interferences.

2) MULTISPECTRAL SENSOR

A multispectral sensor captures the reflected or emitted
energy from a specific object or area in multiple discrete
bands of the electromagnetic spectrum, generally involves
three to ten bands. As compared to hyperspectral data, less
information would be obtained from multispectral data. Mul-
tispectral imaging can be divided into ground-based, airborne
and space-borne.

Each spectral band has a specific response to plants bio-
physical changes, where the green (G) band is sensitive to
the plant or leaf nitrogen and pigment, the red (R) band is
sensitive to chlorophyll a and b content, the red edge (RE)
band is sensitive to plant stress and chlorophyll content, and
NIR is sensitive to water content, moisture, and biomass of
plant [9].

Izzuddin et al. [9] demonstrated the use of Parrot Sequoia
multispectral camera system that was mounted on a DJI Phan-
tom Matrice, a lightweight quadcopter-type unmanned aerial
vehicle (UAV) to capture the multispectral images. Based on
their findings, analysis of multispectral band combinations
provided higher accuracy as compared to individual band
analysis.
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Quickbird satellite sensor owned by DigitalGlobe, United
States, provides multispectral imagery at 2.5 m resolution,
and it can be used to identify individual oil palms with fronds
of 6 to 8 m [23]. Santoso ef al. [24] implemented three
selected classifier models: support vector machine, random
forest, and classification and regression tree models on the
Quickbird imagery that was archived on 4 August 2008.
Among the testing classifiers, the random forest model
offered the best performance in the prediction, classification,
and mapping of BSR infected oil palm as reflected in its good
overall accuracy, producer accuracy, user accuracy, and kappa
value [24].

DigitalGlobe’s another satellite, namely Worldview-3, also
provides multispectral imagery at 1.24 m resolution, which is
a bit higher than that of the Quickbird satellite. Worldview-3
imagery with the following nine bands: coastal (400 to 450
nm), blue (450 to 510 nm), green (510 to 580 nm), yellow
(585 to 625 nm), red (630 to 690 nm), red edge (705 to
745 nm), NIR 1 (770 to 895 nm), NIR 2 (860 to 1040 nm),
and panchromatic (450 to 800 nm) was archived by San-
toso et al. [25] on 6 August 2016 for BSR studies. A poor
result was obtained due to the possibly inappropriate selection
of BSR disease criteria. Hence, considerable refinement is
needed.

3) TOMOGRAPHY

Tomography is an imaging technique using ray transmission
measurement to illustrate a 2D cross-sectional view of an
object’s interior [26].

A portable gamma-ray computed tomography system for
early detection of oil palm BSR was locally built at the
Malaysian Nuclear Agency, Kajang, Malaysia, based on
GammaScorpion [26]. Although the authors stated that this
mobile CT system could detect BSR infected oil palm in situ,
the statistical result was not provided. The use of this system
remains a challenge as the radiation emitted from the system
might affect human health.

Ishaq et al. [7] conducted a study to detect the internal
lesion of BSR using PiCUS Sonic Tomograph by strategically
placing a set of sensors around a tree trunk. As a result,
the tomogram accuracy was 96% in detecting the BSR and
82% in determining the BSR severity level. Although it gave
a promising result, the setup protocol was time-consuming
due to the location of sensor placement. Different sensor
placement patterns may produce different results.

4) RADAR
Radar stands for ‘radio detection and ranging’. It is a system
that works by transmitting energy in the form of microwave
signals into space and then monitoring the reflected signals
from the object. This system does not face image distortion
problem as it is less influenced by weather conditions, such
as cloud cover, haze, and solar illumination.

The Synthetic Aperture Radar (SAR) system can pro-
vide complementary information for optical remote sensing
through the backscattering signals from SAR. Those signals
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are sensitive to the architecture as well as the dielectric
properties of land surfaces, including plant canopy, soils, and
built-up [11]. Mohd Najib et al. [27] managed to detect the
water bodies and oil palm trees through manipulation of the
horizontal-horizontal (HH) (Horizontal-transmit, Horizontal-
receive) and horizontal-vertical (HV) (Horizontal-transmit,
Vertical-receive) polarizations of ALOS PALSAR SAR data.

Hashim et al. [11] extracted the ALOS PALSAR 2 images
with dual polarization, HH and HYV, from the developer,
Japan Aerospace Exploration Agency (JAXA), to study the
detection of Ganoderma disease. However, it failed to provide
satisfactory results in identifying the healthy and infected oil
palms. The poor performance could be due to ignorance of
key parameters and variables, such as biomass and moisture
content.

Toh et al. [28] examined the relationship between the bio-
physical parameters of Ganoderma infected oil palm with the
L band backscatter coefficient. The number of fronds, number
of pinnae, frond length, and petiole width were found to be
greatly correlated with the occurrence of high Ganoderma
disease severity index. It should be noted that this study was
limited to oil palm trees aged 8 years old and 16 years old.

5) ELECTRONIC NOSE

Electronic nose is a technology that mimics the mammalian
sense of smell by creating a composite response that is unique
and specific to each odorant [13].

Volatile organic compounds (VOCs) released from Gano-
derma boninense cultures and infected oil palm wood were
analyzed using the headspace solid-phase micro-extraction
(HS-SPME) method coupled with gas chromatography-mass
spectrometry (GC-MS) [29]. Most of the VOCs were deter-
mined.

Rahmat et al. [30] developed a modified carbon electrode
with reduced graphene oxide (rGO) and zinc oxide nanopar-
ticles (ZnO-NPs) as surface modifiers. Meanwhile, the dis-
posable modified screen-printed carbon electrode (SPCE)
was built to be used as a sensing material to detect the
stress in oil palms leaves induced by Ganoderma infection.
The results showed that the ZnO-NPs/rGO/SPCE modified
electrode could exhibit good sensitivity towards stress oil
palm leaves crude extracts. It also presented good stability
and reproducibility, indicating that the ZnO-NPs/rGO/SPCE
modified electrode could be utilized as a potential candidate
for the stress monitoring in oil palm leaves caused by Gano-
derma infection.

6) TERRESTRIAL LASER SCANNING (TLS)

Terrestrial laser scanning (TLS), also known as ground-based
LiDAR, is an active remote sensing imaging method that
employs laser light to measure the range or distance to a
targeted object. It operates by releasing a pulsed laser light to
illuminate the target. The reflected pulses are then measured
with a sensor to directly represent the external structures,
meanwhile, carry out profiling for the targeted objects [31].
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FIGURE 4. Point cloud images illustrate the positions of C650, C700,
€750, C800, and C850. Adapted from [33].

Khairunniza-Bejo and Vong [32] was the first that pro-
posed the use of TLS application for the study of BSR detec-
tion. The scanning of oil palm trunks and canopies was done
by using Faro Laser Scanner 3D data. The results pointed
that in the case of oil palm at 150 cm height, the trunk
area and its respective perimeter were associated with the
oil palm BSR severity level up to four infection levels with
the coefficient of determination, R2 at 0.8814 and 0.7312,
respectively. In short, the higher the BSR infection level, the
smaller the trunk area as well as the perimeter.

Husin et al. [31] analyzed oil palm canopy architecture
using the point clouds data through TLS technology. They
selected five parameters: S200 (canopy strata at the level
of 200 cm from the top), S850 (canopy strata at the level
of 850 cm from the top), crown pixel (pixel amount inside
the crown), angle of frond (angle degree between fronds) and
the number of fronds. Based on the outcomes from statistical
analysis, the number of fronds was considered as the best
single parameter for the BSR detection as early as mild
infection.

Husin er al. [33] also investigated the impact of BSR on
the oil palm crown profile. The crown strata profiles indicated
that the healthy oil palm trees have higher crown densities as
compared to the unhealthy oil palm trees starting from 250 cm
from top to bottom. Additionally, five crown strata (C650,
C700, C750, C800 and C850) at the bottom area, as illustrated
in Figure 4, were found to have significant differences with
p-values smaller than 0.0001 based on the 7-test.

7) ELECTRICAL PROPERTIES

The electrical properties of a material depend on the water
content inside the material as water has a permanent elec-
tric dipole moment, allowing polarization when an external
electric field is applied. Since Ganoderma disease restricts
the water consumption and delivery to the leaves, leading to
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TABLE 4. Comparison of ganoderma detection methods.

Methods | Sub category ::5;;2‘ Features Pros Cons
Diagnosis is subjected
to human visual

. . processing bias.
Visual o s Canopy Sqnple operation by Input variables cannot
Manual . . Qualitative | ¢ Trunk skilled personnel.
inspection be recorded for further
e Root Low apparatus cost.
study.
Limited processing
capacity.
Isolation of PCNB is hazardous
e Root Ganoderma allows and restricted in
GSM Qualitative tissue opportunities for Indonesia.
pathogen-based Limited processing
further study. capacity.
e Trunk Lengthy protocols.
Lab- PCR Qualitative tissue High reliability. Limited processing
based capacity.
High false positive rate
e Leaf .
. (potentially caused by
tissue . a1
e Stem reaction of antibodies
ELISA-PAbs Qualitative fissue High sensitivity. with antigens from
other fungi species).
e Root . .
. Limited processing
tissue .
capacity.
Hyperspectral Quantitative e Leaf Able to record spatial Easily influenced by
sensor spectral features. sunlight condition.
Multispectral o o Leaf Large coverage area Easily influenced by
sensor Quantitative spectral with satellite. sunlight condition.
e Trunk ilrrllsSIeucl:tion interior Limited to transverse
Tomography | Quantitative p ) . plane.
area Able to detect air Risk of radiation
voids inside trunk. )
Large coverage area.
Monitoring of
Radar Quantitative Canopy biophysical Results influenced by
Soil parameters. multiple variables.
Unaffected by
Remote weather conditions.
Detection of Not all organic
Electronic Quantitative o Leaf Ganoderma-specific compounds in
nose ordour smell via volatile Ganoderma are well
organic compounds. studied.
Point clouds data
_ enabling Complicated setup for
LS Quantitative | e Canopy visualization of 3D individual tree.
tree architecture.
. * Leaf . o Different measurement
Electrical _ properties Monitoring of water . .
. Quantitative . . . points may give
properties e Soil status in plant or soil. .
. different results.
properties
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a decreased water content in all plant organs, detecting the
electrical properties of leaves or soil can be used for BSR
detection.

Khaled et al. [4] was the first research team to use dielectric
spectroscopy to detect BSR. Electrical properties, including
impedance, capacitance, dielectric constant, and dissipation
factor of oil palm leaves, were measured with a precision
solid dielectric test fixture (16451B, Keysight Technolo-
gies, Japan) that was connected to an impedance analyzer
(4294A, Agilent Technologies, Japan) and a computer that
was responsible for controlling and data logging. Based on
the study, impedance provided a more accurate estimation of
BSR severity.

Aziz et al. [34] presented another approach of BSR detec-
tion by utilizing a soil moisture sensor to measure the soil
resistivity in a unit of an ohm (£2) at a distance of 15 cm
surrounding the basal stem of oil palm trees. The results
indicated that healthy oil palm trees significantly possessed
a higher mean (ERMpan > 400) of electrical resistance
readings as compared to infected oil palm trees (ERMEAN <
400). A new index, called K-index, was introduced and used
together with ERypan to develop a model that has provided
accuracy rates at 82% and gained a 100% successful rate
during validation.

D. COMPARISON OF GANODERMA DISEASE DETECTION
METHODS

The three Ganoderma disease detection methods possess pros
and cons as described in Table 4. Although manual detection
is the simplest yet traditional method without the need of
data storage and experimental setup, however its reliability
is greatly dependent on the knowledge and experience of
workers. The process of transferring knowledge and expe-
rience from worker to worker is slow and difficult, making
the manpower expansion rate lags behind the oil palm field
expansion rate. Furthermore, human error could be made
easily due to fatigue and working mood. Nevertheless, this
method is appreciated in terms of discovering knowledge
regarding disease external symptoms as well as establishing
a disease severity index from scratch. Lab-based detection
is generally recognized as highly reliable method as it is
Ganoderma-specific. Most studies employed GSM and PCR
to validate the results of proposed methods [9], [20], [31].
Despite insufficiency of this method for large scale dis-
ease detection task, yet it is meaningful in the projects of
formulating biological control agent and fungicide. Despite
high capital investment, considerable attention is still paid
to remote sensing techniques for Ganoderma detection. The
key advantage of remote sensor is the data could be stored
for further study, facilitating the expansion of knowledge
boundaries systematically.

Ill. MACHINE LEARNING FOR GANODERMA DISEASE
DETECTION

Manpower and time constraints, which are usually viewed as
the limitations of most Ganoderma disease detection meth-
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FIGURE 5. Machine learning approaches for Ganoderma disease
detection.

ods, are also recognized as the development opportunities
which should be worked through innovative approaches.
In the previous plant disease studies, people started to inves-
tigate information technology as well as deep learning arti-
ficial intelligence tools. Researchers were further motivated
by the significant improvement in human healthcare system
as contributed by machine learning and internet of things
(IoT) [35]-[39]. Hence, the concept of an automated plant
disease detection system was proposed [40]. Machine learn-
ing has been utilized to analyze and classify the input data for
automatically detecting plant disease [41]-[43]. In terms of
Ganoderma disease of oil palm, remote sensors with quantifi-
able input data are utilized and paired with machine learning
approaches. This method offers several advantages, such as
simple operation, low cost, and rapid detection, making it a
powerful agricultural technology tool. Several machine learn-
ing approaches have been identified and listed in Figure 5.
All of them would be discussed explicitly in the following
section.

A. DECISION TREE (DT)

Decision tree (DT) algorithm is a supervised regression
machine learning approach that splits the dataset into several
tree-like models, which consist of a number of nodes for test-
ing attributes, a number of edges for branching by the value
of selected attributes, and a number of leaves for labelling
classes [44].

Hashim et al. [11] illustrated the application of the DT
classifier on the ALOS PALSAR 2 backscatter coefficients
to differentiate between Ganoderma infected and healthy oil
palm trees. HH and HV backscatter classifications achieved
the overall accuracy at 45.65% and 56.52%, respectively.
The study also reported that the radar backscatter coefficients
were affected by complex interactions among plant scattering
and soil, and not simply by means of a correlation to a single
variable.

DT was used as one of the classifiers by Husin et al. [44]
and achieved 80% accuracy in the four BSR level classifica-
tion using the TLS data. From the result, 90% accuracy was
achieved in the healthy level classification.

B. DISCRIMINANT ANALYSIS (DA)
Discriminant analysis (DA) is a supervised classification
machine learning approach that assigns observations to
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pre-defined groups by evaluating the differences between two
or more groups of objects with regards to a few variables
simultaneously [44].

Partial least square discriminant analysis (PLS-DA) was
adopted by Lelong et al. [14] in classifying the oil palm into
a four-level typology based on the hyperspectral reflectance
data. At the end of the study, global performance of close to
94% was achieved.

Quadratic discriminant analysis (QDA) was used as one
of the classifiers in a study carried out by Khaled et al. [45]
to classify four classes of Ganoderma infection based on the
data of dielectric properties. The mean accuracy of QDA
classification in the study was 80.79%. Husin et al. [44]
also used QDA on TLS data and achieved 75% accuracy in
classifying four BSR infection.

Linear discriminant was applied on TLS data and 80% of
accuracy was achieved in classifying multiple levels of BSR
infection [44].

C. NAIVE BAYES (NB)

Naive Bayes (NB) is a supervised classification machine
learning approach that allocates each object to the class with
the highest conditional probability, using a strong assumption
of independence between the parameters [44].

Husin er al. [44] used kernel Naive Bayes (kNB) to analyze
the TLS data for the four BSR level classification. About 85%
accuracy was recorded for four level classification, whereas,
100% accuracy was achieved for healthy level classification.
The authors suggested that kNB could be used to perform
classification.

Nababan et al. [46] employed NB in an intelligence-based
application to diagnose the type of oil palm plant disease.
Bayes method was conducted based on the formulation of the
recognized symptoms. Thru the selected symptoms, the bayes
value was 80%, with the type of disease was a rotten bunch.

D. NEAREST NEIGHBOUR
Nearest neighbour is a supervised classification machine
learning approach that stores the existing cases and classifies
new cases based on similarity measures, such as distance
functions [44]. K-nearest neighbour (kNN) algorithm is com-
monly used for multivariate analysis.

kNN based model managed to predict the Ganoderma
disease with a high average overall classification accuracy at
97% using the second derivative of hyperspectral reflectance
dataset [47].

Husin et al. [44] used fine kNN to classify multiple BSR
infections based on TLS data. This method obtained the
highest accuracy at 82.50%.

E. ESEMBLE MODELING (EM)

Ensemble modelling (EM) is a supervised regression machine
learning approach that builds a set of classifiers, followed by
the categorization of new data by taking a weighted vote of
those classifiers’ combined predictions.
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Random forest (RF) is one of the examples of EM in
which the classification of data is based on the weighted vote
from multiple decision trees [48]. RF classifier model was
suggested as the best classifier by Santoso, et al. [24] as it
achieved 91% overall accuracy on the Quickbird imagery data
in classifying the healthy and mildly BSR infected oil palm
tree.

F. SUPPORT VECTOR MACHINE (SVM)

Support vector machine (SVM) is defined as a supervised
classification machine learning approach that forms a hyper-
plane or line in dimensional space to distinctly separate the
data into classes [44].

Santoso et al. [25] applied SVM on Worldview-3 multi-
spectral imagery data to perform the classification of four
BSR classes. However, the overall accuracy was only 54%.
It revealed that different canopy conditions caused by

Ganoderma disease also affected the characteristics of
Worldview-3 spectra.

Khaled et al. [4] integrated feature selection (FS) pre-
processing technique into SVM in analyzing the electrical
properties of oil palm leaves. As a result, SVM-FS achieved
an overall accuracy of 88.64%.

Montero et al. [49] developed a classification model
based on binary SVM to detect bud rot (BR). Bootstrapping
was applied to balance the classes. The model successively
achieved a performance greater than 96.0%.

Noor Azmi et al. [20] applied SVM on the hyperspec-
tral images of oil palm seedlings’ front number 1 (F1) and
frond number 2 (F2). Five types of kernels, including linear,
quadratic, cubic, fine Gaussian, median Gaussian and course
Gaussian, were used and compared. All classifiers resulted
in 100% accuracy using 35 bands and 18 bands of F1 data.
A similar result was obtained through the combination of
F1 and F2, indicating that the separation of F1 and F2 data
was not necessary.

G. ARTIFICIAL NEURAL NETWORK (ANN)

Artificial neural network (ANN) consists of multilayer and
back-propagation to enable the learning ability of computer
in determining the nonlinear combinations [21].

By applying ANN on the first derivative visible-infrared
(VIS-NIR) hyperspectral reflectance data, the healthy oil
palm trees and those mildly infected by Ganoderma disease
were classified satisfactorily with an accuracy of 83.3%, and
100.0% in 540 to 550 nm, respectively [21].

H. CONVOLUTIONAL NEURAL NETWORK (CNN)

Convolutional neural network (CNN) is generally recog-
nized as the upgraded version of ANN called deep learn-
ing neural network. This approach utilizes a system much
like a multilayer perceptron that has been designed for
reduced processing requirements. CNN consists of an output
layer, a hidden layer, multiple convolutional layers, pooling
layers, fully connected layers, and normalization layers to
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automatically extract abstracted shallow and deep features of
the input [50].

Nguyen et al. [48] used 2D-CNN and 3D-CNN to extract
spatial-spectral representations of hyperspectral images.
Results showed that the concurrent 3D-CNN transformation
allowed the model to learn features better from the hyper-
spectral cubes. However, it also possessed more trainable
parameters in each block, making the whole model more
complex, more time-consuming, and requiring more compu-
tational resources compared to the 2D-CNN. This study was
limited to the detection of grapevine viral diseases.

Xiao et al. [40] proposed a CNN model to detect strawberry
diseases thru digital images. The proposed model managed to
get a satisfactory classification accuracy rate at 100% for leaf
blight cases affecting the crown, leaf, and fruit; 98% for gray
mold cases; and 98% for powdery mildew cases.

It was noteworthy that the CNN model needed a large
training dataset, which was ordinarily not the case for plant
disease detection. In the case where the number of model
parameters exceeded the number of data samples, a small
training dataset would easily suffer the overfitting problem,
which was resulted from a model that responded too closely
to a training dataset and failed to fit additional data or predict
future observations reliably [51].

I. GENERATIVE ADVERSARIAL NETWORK (GAN)
Generative adversarial network (GAN) is an unsupervised
machine learning that uses a supervised loss as part of training
thru two sub-models, which are discriminator and generator
models [52]. The discriminator model involves automatically
discovering and learning the patterns in input data so that the
generator model can be utilized to generate new examples that
plausibly could have been drawn from the original dataset.
GAN was designed using game theory to create additional
samples with the same statistics as the training set. This is
also known as data augmentation. Compared with the other
methods as mentioned in the existing literature, GAN is the
only machine learning method that is capable of generating
full synthetic images to increase the dataset’s diversity [51].

Wasserstein Generative Adversarial Network (WGAN)
was introduced to improve the stability during the training
of the model by providing a loss function that correlates with
the quality of generated images.

Another variant of the GAN network, called auxiliary clas-
sifier GANs (AC-GAN), includes a c classification task into
the GAN model. In a project conducted by Wang et al. [52]
studying the early detection of tomato spotted wilt virus, AC-
GAN was modified into outlier removal auxiliary classifier
generative adversarial network (OR-AC-GAN) with the allo-
cation of an additional label c+1 in training the discriminator
model meanwhile, all fake data was classified into additional
class. The proposed OR-AC-GAN model was used to analyze
the hyperspectral data. The plant level classification accuracy
reached 96.25% before the occurrence of visible symptoms.
In addition, the performance of the model was significantly
improved with the band selection algorithms.
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Li and Chao [53] combined GAN and CNN in formulating
an ANN-based continual classification approach. The results
showed that the regular CNN could deal with a single task
well but having a serious forgetting problem when it dealt
with continuous tasks. This issue was solved by including
the memory storage and retrieval mechanism provided by
the GAN model. Interestingly, the modified continual model
managed to distinguish all the categories from both old and
new tasks. Hence, it successfully proved that the GAN model
could extract key information from old tasks while generating
abstracted images as a memory for future task.

IV. CONCLUSION

Based on the systematic review, it was found that the com-
bination of remote sensors and machine learning techniques
were capable of classifying the four severity levels of Gano-
derma disease, including the early infection stage. Remote
sensors could collect the raw data from the oil palm trees
through direct or indirect contact, whereas the machine learn-
ing techniques are rapid in data processing and analysis.

The high labor and time costs of the traditional visual
inspection and lab-based approaches could be solved by
employing remote sensing techniques. Nevertheless, those
remote sensors still possessed certain limitations. Hyperspec-
tral and multispectral imaging can be influenced by sunlight
conditions. Tomography involves the emission of radiation
that might affect human health. Although the radar system is
not affected by weather condition, it requires energy emis-
sion from the satellite, which is under the management of
other agencies. The development of the electronic nose is
not mature enough as the information regarding the chemical
properties of the Ganoderma sample has not been fully dis-
covered. TLS and electrical properties measurements involve
a complicated setup for each tree which might not be practical
to large scale plantation area. More research is still required
to explore a more user-friendly and cost-effective data acqui-
sition system.

Many researchers have used traditional machine learning
methods, such as DT, DA, NB, kNN, EM and SVM, to detect
Ganoderma disease severity. SVM was recommended as the
best classifier in several studies. Only one related research
was done using ANN, whereas no research evaluated CNN
and GAN in the detection of Ganoderma disease. However,
the computing power of ANN and CNN and the generative
power of GAN are still considered highly potential in con-
tributing to this kind of research.

CONFLICT OF INTEREST
There is no conflict of interest reported.

REFERENCES

[1] A.H. Abdullah, A. H. Adom, A. Y. M. Shakaff, M. N. Ahmad, A. Zakaria,
F. S. A. Saad, C. M. N. C. Isa, M. J. Masnan, and L. M. Kamarudin,
“Hand-held electronic nose sensor selection system for basal stamp rot
(BSR) disease detection,” in Proc. 3rd Int. Conf. Intell. Syst. Model. Simul.,
Feb. 2012, pp. 737-742.

105785



IEEE Access

C. A. T. Tee et al.: Discovering Ganoderma Boninense Detection Methods Using Machine Learning

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

R. Paterson, “Ganoderma boninense disease of oil palm to significantly
reduce production after 2050 in sumatra if projected climate change
occurs,” Microorganisms, vol. 7, no. 1, p. 24, Jan. 2019.

USDA. Oilseeds: World Markets and Trade. United States Depart-
ment of Agriculture2021. Accessed: Jan. 29, 2021. [Online]. Available:
https://www.fas.usda.gov/data/oilseeds-world-markets-and-trade

A. Y. Khaled, S. A. Aziz, S. K. Bejo, N. M. Nawi, and I. Abu Seman,
“Spectral features selection and classification of oil palm leaves infected
by basal stem rot (BSR) disease using dielectric spectroscopy,” Comput.
Electron. Agricult., vol. 144, pp. 297-309, Jan. 2018.

M. S. Ibrahim, A. S. Idris, M. H. Rusli, M. A. Izzuddin, N. Kamarudin,
K. Hashim, and Z. A. Manaf, “Surveillance of Ganoderma disease
in oil palm planted by participants of the smallholders replanting
incentive scheme in Malaysia,” J. Oil Palm Res., vol. 32, no. 2,
pp. 237-244, Jun. 2020. [Online]. Available: http://jopr.mpob.gov.my/wp-
content/uploads/2020/06/JOPR-Vol-322-June-2020-7.pdf

F. Midot, S. Y. L. Lau, W. C. Wong, H. J. Tung, M. L. Yap, M. L. Lo,
M. S. Jee, S. P. Dom, and L. Melling, “Genetic diversity and demographic
history of ganoderma boninense in oil palm plantations of Sarawak,
Malaysia inferred from ITS regions,” Microorganisms, vol. 7, no. 10,
p. 464, Oct. 2019.

I. Ishaq, M. S. Alias, J. Kadir, and I
of basal stem rot disease at oil palm plantations using
sonic tomography,” J. Sustain. Sci. Manage., 2014. [Online].
Available: http://www.myjurnal.my/public/article-view.php?id=82747
and http://agris.upm.edu.my:8080/dspace/handle/0/17707

M. A. Izzuddin, M. N. Nisfariza, B. Ezzati, A. S. Idris, M. D. Steven, and D.
Boyd, “Analysis of airborne hyperspectral image using vegetation indices,
red edge position and continuum removal for detection of Ganoderma
disease in oil palm,” J. Oil Palm Res., vol. 30, pp. 416-428, Sep. 2018.
M. A. Izzuddin, A. Hamzah, M. N. Nisfariza, and A. S. Idris, ““Analysis of
multispectral imagery from unmanned aerial vehicle (UAV) using object-
based image analysis for detection of Ganoderma disease in oil palm,” J.
Oil Palm Res., vol. 32, no. 3, pp. 497-508, Jun. 2020.

A. Roslan and A. Idris, “Economic impact of Ganoderma incidence on
Malaysian oil palm plantation—A case study in Johor,” Oil Palm Ind.
Econ. J., vol. 12, no. 1, pp. 24-30, 2012.

I. C. Hashim, A. R. M. Shariff, S. K. Bejo, F. M. Muharam, and K. Ahmad,
“Classification for non infected and infected ganoderma boninense of oil
palm trees using ALOS PALSAR-2 backscattering coefficient,” IOP Conf.
Ser., Earth Environ. Sci., vol. 169, no. 1, 2018, Art. no. 012066.

M. S. Meor Yusoff, M. A. Khalid, and A. S. Ideris, ‘“Identi-
fication of basal stem rot disease in local palm oil by micro-
focus XRE” J. Nucl. Related Technol., 2009. [Online]. Available:
http://www.myjurnal.my/public/article-view.php?id=17739

I. Kresnawaty, A. S. Mulyatni, D. D. Eris, H. T. Prakoso, K. Triyana, and
H. Widiastuti, “Electronic nose for early detection of basal stem rot caused
by Ganoderma in oil palm,” IOP Conf. Ser., Earth Environ. Sci., vol. 468,
no. 1, 2020, Art. no. 012029.

C. C. Lelong, J. M. Roger, S. Brégand, F. Dubertret, M. Lanore,
N. A. Sitorus, D. A. Raharjo, and J. P. Caliman, “Evaluation of oil-palm
fungal disease infestation with canopy hyperspectral reflectance data,”
Sensors, vol. 10, no. 1, pp. 734-747, 2010.

The Ganoderma Selective Medium (GSM), 0128-5726, Malaysian Palm
Oil Board, Ministry Plantation Ind. Commodities, Kuala Lumpur,
Malaysia, 1992.

W. 1. Amanda and H. T. Prakoso, ‘“Modified Ganoderma selective medium
to meet Indonesia’s government regulation,” IOP Conf. Ser., Earth Envi-
ron. Sci., vol. 183, no. 1, 2018, Art. no. 012020.

Polyclonal Antibody for Detection of Ganoderma, Malaysian Palm Oil
Board, Ministry Plantation Ind. Commodities, Kuala Lumpur, Malaysia,
2008.

A.Z. Madihah, A. S. Idris, and A. R. Rafidah, “Polyclonal antibodies of
Ganoderma boninense isolated from Malaysian oil palm for detection of
basal stem rot disease,” Afr. J. Biotechnol., vol. 13, no. 34, pp. 3455-3463,
Aug. 2014.

M. Khosrokhani, S. Khairunniza-Bejo, and B. Pradhan, “Geospatial tech-
nologies for detection and monitoring of ganoderma basal stem rot infec-
tion in oil palm plantations: A review on sensors and techniques,” Geo-
carto Int., vol. 33, no. 3, pp. 260-276, Mar. 2018.

A. N. N. Azmi, S. K. Bejo, M. Jahari, . M. Muharam, 1. Yule, and
N. A. Husin, “Early detection of Ganoderma boninense in oil palm
seedlings using support vector machines,” Remote Sens., vol. 12, no. 23,
p. 3920, Nov. 2020.

Kasawani, ‘Detection

105786

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

P. Ahmadi, F. M. Muharam, K. Ahmad, S. Mansor, and I. A. Seman, “Early
detection of ganoderma basal stem rot of oil palms using artificial neural
network spectral analysis,” Plant Disease, vol. 101, no. 6, pp. 1009-1016,
Jun. 2017.

A. Alexander, C. S. Sipaut, K. Chong, P. Lee, and J. Dayou, “Sensitivity
analysis of the detection of Ganoderma boninense infection in oil palm
using FTIR,” Trans. Sci. Technol., vol. 1, pp. 1-6, Dec. 2014. [Online].
Available: http://www.myjurnal.my/public/article-view.php?id=98152

H. Santoso, T. Gunawan, R. H. Jatmiko, W. Darmosarkoro, and
B. Minasny, “Mapping and identifying basal stem rot disease in oil palms
in North Sumatra with QuickBird imagery,” Precis. Agricult., vol. 12,
no. 2, pp. 233-248, Apr. 2011.

H. Santoso, H. Tani, and X. Wang, ‘‘Random forest classification model of
basal stem rot disease caused by Ganoderma boninense in oil palm planta-
tions,” Int. J. Remote Sens., vol. 38, no. 16, pp. 4683-4699, Aug. 2017.
H. Santoso, H. Tani, X. Wang, A. E. Prasetyo, and R. Sonobe, ‘“Classi-
fying the severity of basal stem rot disease in oil palm plantations using
WorldView-3 imagery and machine learning algorithms,” Int. J. Remote
Sens., vol. 40, no. 19, pp. 7624-7646, Oct. 2019.

J. Abdullah, H. Hassan, M. R. Shari, S. Mohd, M. Mustapha,
A. A. Mahmood, S. Jamaludin, M. R. Ngah, and N. H. Hamid, “Gam-
maScorpion: Mobile gamma-ray tomography system for early detection of
basal stem rot in oil palm plantations,” Opt. Eng., vol. 52, no. 3, Mar. 2013,
Art. no. 036502.

N. E. Mohd Najib, K. D. Kanniah, A. P. Cracknell, and L. Yu, “Synergy
of active and passive remote sensing data for effective mapping of oil palm
plantation in Malaysia,” Forests, vol. 11, no. 8, p. 858, Aug. 2020.

C. M. Toh, M. A. Izzuddin, H. T. Ewe, and A. S. Idris, “Analysis of oil
palms with basal stem rot disease with 1 band SAR data,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2019, pp. 4900-4903.

N. H. Z. Hilmi, A. S. Idris, and M. N. M. Azmil, “‘Headspace solid-phase
microextraction gas chromatography-mass spectrometry for the detection
of volatile organic compounds released from ganoderma boninense and oil
palm wood,” Forest Pathol., vol. 49, no. 4, Aug. 2019, Art. no. e12531.
N. Rahmat, N. A. Yusof, A. Isha, W. Mui-Yun, R. Hushiarian, and
F. S. Akanbi, “Detection of stress induced by ganoderma boninense infec-
tion in oil palm leaves using reduced graphene oxide and zinc oxide
nanoparticles screen-printed carbon electrode,” IEEE Sensors J., vol. 20,
no. 22, pp. 13253-13261, Nov. 2020.

N. A. Husin, S. Khairunniza-Bejo, A. F. Abdullah, M. S. M. Kassim,
D. Ahmad, and A. N. N. Azmi, “Application of ground-based LiDAR for
analysing oil palm canopy properties on the occurrence of basal stem rot
(BSR) disease,” Sci. Rep., vol. 10, no. 1, p. 6464, Apr. 2020.

S. Khairunniza-Bejo and C. N. Vong, “Detection of basal stem rot (BSR)
infected oil palm tree using laser scanning data,” Agricult. Agricult. Sci.
Procedia, vol. 2, pp. 156-164, Jan. 2014.

N. A. Husin, S. Khairunniza-Bejo, A. F. Abdullah, M. S. M. Kassim, and
D. Ahmad, “Study of the oil palm crown characteristics associated with
basal stem rot (BSR) disease using stratification method of point cloud
data,” Comput. Electron. Agricult., vol. 178, Nov. 2020, Art. no. 105810.
M. H. A. Aziz, S. K. Bejo, F. Hashim, N. H. Ramli, and D. Ahmad,
“Evaluations of soil resistivity in relation to basal stem rot incidences
using soil moisture sensor,” (in English), Pertanika J. Sci. Technol., vol. 27,
no. 101, pp. 225-234, 2019.

Y. Zhang, S. Wang, K. Xia, Y. Jiang, and P. Qian, “Alzheimer’s dis-
ease multiclass diagnosis via multimodal neuroimaging embedding feature
selection and fusion,” Inf. Fusion, vol. 66, pp. 170-183, Feb. 2021.

Y. P. Zhang, G. J. Wang, F. L. Chung, and S. T. Wang, ““Support vector
machines with the known feature-evolution priors,” (in English), Knowl.-
Based Syst., vol. 223, Jul. 2021, Art. no. 107048.

M. A. Al-Garadi, A. Mohamed, A. K. Al-Ali, X. Du, I. Ali, and
M. Guizani, “A survey of machine and deep learning methods for Internet
of Things (IoT) security,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1646-1685, 3rd Quart., 2020.

Y. C. Hum, K. W. Lai, and M. I. M. Salim, ‘““Multiobjectives bihistogram
equalization for image contrast enhancement,” Complexity, vol. 20, no. 2,
pp. 22-36, Oct. 2014.

K. Teo, C. W. Yong, J. H. Chuah, B. P. Murphy, and K. W. Lai, “Dis-
covering the predictive value of clinical notes: Machine learning analysis
with text representation,” J. Med. Imag. Health Informat., vol. 10, no. 12,
pp. 2869-2875, Dec. 2020.

J.-R. Xiao, P-C. Chung, H.-Y. Wu, Q.-H. Phan, J.-L.-A. Yeh, and
M. T.-K. Hou, “Detection of strawberry diseases using a convolutional
neural network,” Plants, vol. 10, no. 1, p. 31, Dec. 2020.

VOLUME 9, 2021



C. A. T. Tee et al.: Discovering Ganoderma Boninense Detection Methods Using Machine Learning

IEEE Access

[41] A. D.J. van Dijk, G. Kootstra, W. Kruijer, and D. de Ridder, “Machine
learning in plant science and plant breeding,” iScience, vol. 24, no. 1,
Jan. 2021, Art. no. 101890.

[42] U. Shruthi, V. Nagaveni, and B. K. Raghavendra, “A review on machine
learning classification techniques for plant disease detection,” in Proc.
5th Int. Conf. Adv. Comput. Commun. Syst. (ICACCS), Mar. 2019,
pp- 281-284.

[43] T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, “Current
and future applications of statistical machine learning algorithms for agri-
cultural machine vision systems,” Comput. Electron. Agricult., vol. 156,
pp. 585-605, Jan. 2019.

[44] N. A. Husin, S. Khairunniza-Bejo, A. F. Abdullah, M. S. M. Kassim,
D. Ahmad, and M. H. A. Aziz, “Classification of basal stem rot disease
in oil palm plantations using terrestrial laser scanning data and machine
learning,” Agrononty, vol. 10, no. 11, p. 1624, Oct. 2020.

[45] A. Y. Khaled, S. A. Aziz, S. K. Bejo, N. M. Nawi, I. A. Seman, and
M. A. Izzuddin, “Development of classification models for basal stem
rot (BSR) disease in oil palm using dielectric spectroscopy,” Ind. Crops
Products, vol. 124, pp. 99-107, Nov. 2018.

[46] M. Nababan, Y. Laia, D. Sitanggang, O. Sihombing, E. Indra, S. Siregar,
W. Purba, and R. Mancur, “The diagnose of oil palm disease using naive
Bayes method based on expert system technology,” J. Phys., Conf. Ser.,
vol. 1007, Apr. 2018, Art. no. 012015.

[47] S. Liaghat, R. Ehsani, S. Mansor, H. Z. M. Shafri, S. Meon, S. Sankaran,
and S. H. M. N. Azam, “Early detection of basal stem rot disease
(Ganoderma) in oil palms based on hyperspectral reflectance data using
pattern recognition algorithms,” Int. J. Remote Sens., vol. 35, no. 10,
pp. 3427-3439, May 2014.

[48] C. Nguyen, V. Sagan, M. Maimaitiyiming, M. Maimaitijiang, S. Bhadra,
and M. T. Kwasniewski, “Early detection of plant viral disease using
hyperspectral imaging and deep learning,” Sensors, vol. 21, no. 3, p. 742,
Jan. 2021.

[49] D. Montero, W. Arenas, S. Salinas, and C. Rueda, “Development of a
system based on aerial images for the morphological patterns classification
using support vector machine,” J. Phys., Conf. Ser., vol. 1702, Nov. 2020,
Art. no. 012010.

[50] L. Feng, B. Wu, S. Zhu, J. Wang, Z. Su, F. Liu, Y. He, and C. Zhang,
“Investigation on data fusion of multisource spectral data for rice leaf
diseases identification using machine learning methods,” Frontiers Plant
Sci., vol. 11, Nov. 2020, Art. no. 577063.

[51] L.Biand G. Hu, “Improving image-based plant disease classification with
generative adversarial network under limited training set,” Frontiers Plant
Sci., vol. 11, Dec. 2020, Art. no. 583438.

[52] D. Wang, R. Vinson, M. Holmes, G. Seibel, A. Bechar, S. Nof, and Y. Tao,
“Early detection of tomato spotted wilt virus by hyperspectral imaging
and outlier removal auxiliary classifier generative adversarial nets (OR-
AC-GAN),” Sci. Rep., vol. 9, no. 1, p. 4377, Mar. 2019.

[53] Y. Li and X. Chao, “ANN-based continual classification in agriculture,”
Agriculture, vol. 10, no. 5, p. 178, May 2020.

CLARENCE AUGUSTINE TH TEE (Senior Mem-
ber, IEEE) received the Ph.D. degree from
Cambridge University, in 2000. He is currently the
Distinguished Professor with Zhejiang N Univer-
sity, China. His current research interests include
engineering, life sciences and medicine and deep
learning, nanotechnology/nanoscience, optoelec-
tronics, photonics, and plasmonics. He is a fel-
low of IET (U.K.); a CCT Fellow of Peterhouse,
Cambridge, U.K.; a CTES Fellow (U.K.); a PEPC
(Electrical); a C.Eng., U.K.; an EUR ING (Europe); an ACPE (Electrical);
and a Fulbright Fellow.

VOLUME 9, 2021

YUN XIN TEOH received the B.Eng. degree
(Hons.) in biomedical engineering (prosthetics
and orthotics) from Universiti Malaya, Malaysia,
where she is currently pursuing the Ph.D. degree.
Her research interests include image processing,
machine learning, and rehabilitation engineering.

POR LIP YEE (Senior Member, IEEE) received
the Ph.D. degree from the University of Malaya,
Malaysia, in 2012. He is currently an Associate
Professor with the Department of System and
Computer Technology, Faculty of Computer Sci-
ence and Information Technology, University of
Malaya. His research interests include neural net-
works (such as supervised and unsupervised learn-
ing methods, such as support vector machine and
extreme learning machine), bioinformatics (such
as biosensors and pain research), computer security [such as information
security, steganography, and authentication (graphical password)], grid com-
puting, and e-learning framework.

BOON CHIN TAN received the B.Sc. degree
(Hons.) in biotechnology from Universiti Putra
Malaysia and the Ph.D. degree from the University
of Nottingham. He is currently a Senior Lecturer
and the Deputy Director of the Centre for Research
in Biotechnology for Agriculture, Universiti
Malaya. His research interests include plant reg-
ulatory mechanisms in biotic- and abiotic-stressed
crops and enhancing the production of some useful

- plant secondary metabolites via metabolic engi-
neering. He is currently a Council Member of the Malaysian Agricultural
Proteomics Society (MAPS), the Malaysian Society for Molecular Biology
and Biotechnology (MSMBB), and Asia Oceania Agricultural Proteomics
Organization (AOAPO), and an Editorial Board Member of Molecular
Biotechnology.

KHIN WEE LAI (Senior Member, IEEE) received
the B.Eng. degree (Hons.) from Universiti
Teknologi Malaysia and the Ph.D. degree in
biomedical engineering from Technische Univer-
sitat [lmenau, Germany, and Universiti Teknologi
Malaysia, Malaysia, through the DAAD Ph.D.
Sandwich Programme. He is the Programme Head
of the M.E. degree (biomedical) with the Faculty
of Engineering, Universiti Malaya. His research
interests include computer vision, machine learn-
ing, medical image processing, and healthcare analytics. He is a registered
Professional Engineer With Practicing Certificate (PEPC) at the Board of
Engineers Malaysia (BEM), a Fellow of the Engineers Australia (FIEAust),
an APEC Engineer IntPE, Australia, and a Chartered Professional Engineer
(CPEng.) at NER, Australia. He is a fellow of the Institute of Engineers
Malaysia (IEM), and a member of the Institution of Engineering and
Technology (IET), and a U.K. Chartered Engineer (C.Eng.). He currently
serves as the Associate Editor for IEEE Access.

105787



