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ABSTRACT Super-Resolving (SR) video is more challenging compared with image super-resolution
because of the demanding computation time. To enlarge a low-resolution video, the temporal relationship
among frames must be fully exploited. We can model video SR as a multi-frame SR problem and use deep
learning methods to estimate the spatial and temporal information. This paper proposes a lighter residual
network, based on a multi-stage back projection for multi-frame SR. We improve the back projection based
residual block by adding weights for adaptive feature tuning, and add global & local connections to explore
deeper feature representation. We jointly learn spatial-temporal feature maps by using the proposed Spatial
Convolution Packing scheme as an attention mechanism to extract more information from both spatial and
temporal domains. Different from others, our proposed network can input multiple low-resolution frames to
obtain multiple super-resolved frames simultaneously. We can then further improve the video SR quality
by self-ensemble enhancement to meet videos with different motions and distortions. Results of much
experimental work show that our proposed approaches give large improvement over other state-of-the-art
video SR methods. Compared to recent CNN based video SR works, our approaches can save, up to 60%
computation time and achieve 0.6 dB PSNR improvement.

INDEX TERMS Video, deep learning, residual network, hierarchical structure, super-resolution.

I. INTRODUCTION
The advent of high-definition and ultra-high-definition televi-
sion demands rapid development of image and video process-
ing in various applications. One of the applications is video
super-resolution (SR). Given the fact that the 4K or 8K reso-
lution video contains millions of pixels, it is not only difficult
for broadcast but also for storage. To suit for high-definition
devices, video SR is useful for enlarging low resolution (LR)
video to high resolution (HR) video with good visual quality.

Recently, various methods have been proposed to resolve
the video SR problem. Based on whether using the temporal
information or not, we can classify the video SRmethods into
two categories: single image SR [1]–[26] and multi-frame
SR [27]–[44], [51]–[58].

For single image SR, the task is to consider a video con-
taining independent frames and super-resolve the video frame
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by frame. Based on the methods to resolve the SR prob-
lem, researchers can either use traditional machine learning
approaches [1]–[8] to tackle the image SR as patch based
restoration or deep learning based restoration [9]–[26] to
learn nonlinear regression models. For traditional machine
learning based approaches, the key is to approximately model
the nonlinear image SR as an ensemble of linear patch based
SR. Hence, we can use classification method, such as kNN
[1], [2], Random Forest [7], [8] to classify patches into groups
and then each group can learn one linear regression model
to map the LR patches to the corresponding HR patches.
However, this divide-and-conquer strategy introduces infor-
mation loss due to possible wrong classifications. To reduce
the variance of mean squared errors between LR and HR
patches, much computation time must be used to search
for fine classification for reconstruction for most of these
approaches.

Instead of learning more and more complex features for
classification, deep learning based methods simply design an
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end-to-end Convolutional Neural Network (CNN) structure
to directly learn the nonlinear relationship between LR and
HR images. The advantage is that deep learning approaches
usually train huge datasets to extract global feature maps
from the entire image rather than patches. Straightforward
CNN based models for single image SR is one of the popular
approaches [9]–[26]. Inspired by the success of ResNet [28]
in image visual recognition, [11], [14], [15] propose more
modifications on the residual learning in image SR. The
approach resonates with the assumption that LR and HR
images share the same low frequency information. Back
projection (BP) has been recently introduced into the deep
convolutional networks, the result of which has been proven
to be very efficient in image SR [16], [17]. Most recently,
attention is widely used to learn nonlocal features for image
SR [20]–[26], including channel attention [20], [22] spatial
attention [21] and so on [23]–[26]. Both attention models
were designed for image SR that are efficient enough for
video SR in real-time applications.

Despite the good performance of single image based SR,
it does not fully exploit the temporal correlation for video
super-resolution. The reconstruction of the spatial domain
could be compensated by temporal correlation among neigh-
borhood frames. However, to process multiple frames, there
are some key issues that need to be resolved: 1) the high
redundant information in neighborhood frames makes the
training process very difficult to process; 2) the deeper and
more complicated CNN structures can achieve better visual
quality but cannot properly handle the temporal relationship
for real-time implementation, and; 3) the concept of CNN
is to extract the spatial correlation which is a big limitation
for its uses in video SR. To resolve these problems, [30]–
[34], [51]–[55] propose various approaches to extract the
temporal information by joint neighborhood frames train-
ing. Performance of the video SR has also achieved great
improvement. However, most existing video SR [51]–[55]
approaches still require pre-motion estimation, like optical
flow, to estimate the temporal correlation first and then embed
this temporal information with the frames for end-to-end
training. Besides the extra computation onmotion estimation,
the errors caused by motion estimation can be accumulated
for the final SR reconstruction.

To achieve a better visual quality as well as using less
computation cost, we propose a Space-Time Convolutional
Neural Network for video SR (ST-CNN), which is to convo-
lute adjacent frames with the learned filters across both space
and time domains to extract the correlation information. The
proposed ST-CNN network uses the back projection based
residual blocks as a backbone for deep feature extraction.
Without any pre-process or extra motion estimation, ST-CNN
can learn both the spatial and temporal information using the
proposed Spatial Convolution Packing (SCP) scheme. The
basic idea is to replace the conventional 2D convolution with
a combination of full and partial 2D convolution processes.
Interestingly, in this case, we can use fewer parameters to

model the long-term intrinsic correlation information across
time and spatial domains for video SR.

Meanwhile, we propose to use a many-to-many scheme
to train the ST-CNN network. Compared with other video
SR methods, instead of using several neighborhood frames
to output one SR frame, our proposed ST-CNN can output
the same number of SR frames as the input. This multi-
input-multi-output can save a significant amount of com-
putation time to achieve fast realization. We also suggest
adaptively boosting up the video quality by frame over-
lapping (ST-CNN(F+)) and patch overlapping processes
(ST-CNN(P+)) based on different motions of video
sequences to compensate for the error caused by dynamic
motions and complex features. We have also designed exper-
iments not only evaluating the performance by comparing the
proposed SR with the state-of-the-art video SR methods, but
also giving comprehensive and visualized interpretation to
the trained ST-CNN model.

Our main contributions can be summarized as follows.

• We propose a Space-Time Convolutional Neural Net-
work, in which we have improved the residual block
by adding an adaptive weighting convolution process
and global & local connections to learn deep feature
representation for video SR.

• The convolution in ST-CNN is done by our proposed
Spatial Convolution Packing (SCP) scheme.We can then
use fewer parameters and less computation to combine
the channel information with the spatial domain for joint
training.

• Based on the proposed hierarchical residual network,
our ST-CNN can efficiently super-resolve video with
fast computation and high visual quality without any
pre- or post-process with feature sharing and weighting
estimation.

• To boost up the visual quality, we also combine the frame
overlapping and patch overlapping processes to form
ST-CNN as the proposed ST-CNN+ to further enhance
the SR quality in terms of PSNR.

II. RELATED WORK
In this section, let us review the related work from the follow-
ing perspectives.
Image SR: In the previous research, image SR is regarded

as one of the image restoration problems. Given a degraded
LR image with various blurring effects and noises, to predict
an HR image with rich edges and textures is an ill-posed
problem. Developed from local polynomial data mapping,
manifold learning techniques are widely studied in the past
decades. The key to resolving the image SR is to treat images
as an ensemble of redundant patches. The repetitive patch
pattern can be learned by classification methods, e.g., Ran-
dom Forest [7], [8]. Image SR can then be resolved as a patch
based classification. However, most, if not all, patch based
approaches suffer from the dilemma of model complexity,
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that is, the larger patch for training, the harder it for linear
approximation.

CNN based methods have been investigated in many com-
puting vision fields and proven to be very competitive com-
pared with traditional machine learning based methods, for
their abilities to compute huge datasets and learn nonlinear
mappings. There are many research works on image SR
[16]–[26], for which they make use of the research findings
from early work to design the convolution structure to achieve
better SR performance. Residual learning, [11], [14], [15]
back projection [16], [17] and attention [20]–[26] are the
three most effective processes that are widely used in
image SR.
Video SR: In general, video SR can be regarded as multi-

frame SR which uses more than one single image to explore
the motion information among frames for SR. Related to
multi-frame SR, [31] gives an early study on using affine
transform to model the motion differences between frames.
Benefited from the study of motion estimation in video
coding, action recognition and so on, optical flow [29] is
widely used in video SR. [31]–[34] extend the optical flow
to video SR, making use of motion compensation to generate
a SR image with good quality. However, the computation
cost of motion estimation is too high for real-time appli-
cations. Much research work has been reported to avoid
motion estimation in SR. [31] uses Contourlet transform to
learn an overcomplete dictionary in the transform domain
and search for the optimal reconstruction. Instead of using
discriminative learning models, there are also some genera-
tive learning approaches proposed to model the motions of
the adjacent frames to perform SR. [32] uses Generalized
Gaussian Markov Random Fields to model the HR image
to preserve the edges and textures. To further improve the
frame quality, [33], [34] use Bayesian Maximum a Posteriori
(MAP) to estimate the deblurring kernels and motion param-
eters. Due to the simplified Bayesian model, it achieves fast
realization but relatively poor visual quality.

Similar to image SR, video SR can also be resolved by
CNN deep learning. [35] firstly makes use of CNN to learn
the nonlinear mappingmodel among the ensembled SR drafts
to generate the final SR result. [36] directly uses consecutive
frames as input to a CNN network to output SR frames.
Considering the difficulty of creating a large video dataset,
it uses large image datasets to pre-train the CNN model and
then uses a small video dataset to fine-tuning for video SR.
Lately, a sub-pixel CNN layer is proposed in [37] to aggregate
the feature maps from LR space to pixel-wise reconstruction
for efficient image and video SR. [38] further studies the sub-
pixel process and proposes an end-to-end CNNmodel to fuse
multiple frames and estimates motion vectors to reveal clear
image details. [39], on the other hand, sticks to use a more
complex CNN model to learn the temporal dynamics and
adaptively aggregate adjacent frames based on the temporal
dependency. Recently, there are several works [51]–[55] pro-
posed to use optical flow as the extra information. By mak-
ing use of mature optical flow packages, both neighborhood

frames and optical flow are fed into the network for joint spa-
tial and temporal feature extraction. For example, [51]–[53]
propose to directly input neighborhood frames and optical
flows for super-resolution via 2D convolution. [54], [55] pro-
pose deformable convolution operations for flexible subpixel
motion estimation. However, these CNN works are restricted
by the concept of the 2D convolution in the spatial domain.
A few pieces of works study the joint temporal and spatial
feature extraction specifically for video SR [37], [40]–[44],
[57], [58], i.e., group convolution and recurrent convolu-
tion. One of the straightforward ways is 3D convolution.
The 3D convolution was initiated in 2013 [40] for human
action recognition. There are also some research findings on
using a 3D CNN network for computer vision. Inspired by
the success of 3D CNN or pseudo 3D CNN in [40]–[43],
there are also some works using 3D CNN for video SR.
[37] and [44] make use of the 3D convolution concept to
extract the temporal information along with spatial informa-
tion to perform video SR. Their good performance on video
SR proves that the 3D convolution has good potential to be
applied to video SR.

In this paper, we come up with an efficient 3D convolution
network (ST-CNN) to explore the spatial-temporal depen-
dency for video SR. In the previous study [26], we only
discussed the hierarchical residual network in image SR to
obtain superior visual quality and computation cost reduction.
In this paper, we develop a new study of Spatial Convolution
Packing (SCP) and come up with better analysis and efficient
model estimation. 1) How does the SCP work in video SR?
2) What is the dependency among the neighborhood frames
and how does the short- and long-term temporal information
be traded off in video SR? Besides, we have performed
many experiments to verify the effectiveness of our model
as follows. 1) We will compare our proposed methods with
other state-of-the-art video SR approaches on standard video
sets in terms of PSNR and computation times with different
resolutions. 2) We will use 4K videos to demonstrate the
real-world applications of video SR. 3) We will visualize the
trained ST-CNN parameters to analyze the physical meanings
of spatial and temporal convolution and residual update at
different stages of the back projection.

III. HIERARCHICAL TEMPORAL RESIDUAL NETWORK
FOR VIDEO SUPER-RESOLUTION
A. FORMULATION
Consider a low-resolution video sequence with additive
noise. The objective of video super-resolution is to obtain
a high-resolution clear video. Without any pre- and post-
processing, our proposed Space-Time Convolutional Neural
Network (ST-CNN), as shown in Fig. 1, takes (2n + 1) LR
frames as input and generates (2n + 1) SR frames with
the desired resolution simultaneously, where n is a positive
integer. The network composes of cascaded up- and down-
sampling units in the form of up-down-up sampling units to
estimate the low- and high- resolution feature maps for SR.
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FIGURE 1. The proposed Space-Time Convolutional Neural Network for video SR (ST-CNN) for video SR. It takes (2n+ 1) LR
frames and simultaneously output (2n+ 1) SR frames. It consists of 2 layers of feature extraction, n layers of up-sampling
and down-sampling units, and 3 layers of reconstruction.

We can stack more up-down-up sampling units to explore
deeper feature representation. Within each up- and down-
sampling unit, instead of using the classical 2D full convo-
lution, we use the proposed SCP scheme (as shown in Fig. 2)
to extract 3D features across the spatial and temporal domains
for SR. Overall, let us denote LR frames as XLR ∈ RH×W×C

and HR frames as YHR ∈ RαH×αW×C , whereH ,W andC are
the height, width and number of LR frames, and α >1 is the
up-sampling factor. Our proposed ST-CNN network contains
three basic stages:

1) Feature extraction. This operation contains two Spa-
tial Convolution Packing (SCP) based convolution layers
(‘‘Feature extract 1 & 2’’ in Fig. 1) to expand the input LR
frames into a larger feature space to increase the dimension
of freedom for complex nonlinear mapping.

2) Hierarchical residual update. This operation stacks mul-
tiple modules of up-sampling/down-sampling units (‘‘up- &
down-sampling units in Fig. 1’’, more details about their
inside structures are given in Section 2.2.2) to update the
residue between LR and HR feature maps. It is the key stage
tominimize the loss between SR and ground truth HR frames.
Within each unit, we use the proposed SCP scheme for 3D
convolution to extract both spatial and temporal information
for reconstruction.

3) Final reconstruction. This operation (‘‘Reconstruction 1,
2 & 3’’ in Fig. 1) aggregates the intermediate results from the
second stage and uses two more 2D full convolution layers to
learn the weighted mapping to generate final SR frames.

Fig. 1 shows an overview of the proposed ST-CNNnetwork
for video SR, and Fig. 2 shows the proposed SCP scheme for
3D convolution. Let us discuss the details in the following
sections.

B. SPATIAL CONVOLUTION PACKING (SCP) PART I
In video SR, temporal information plays a crucial role,
which includes the representation of the temporal correlation

FIGURE 2. Proposed Spatial Convolution Packing (SCP) scheme. where Wi
and Ui is the full and partial convolution kernel and k is the kernel size.

dependency between frames. There are two directions to
solve this problem. 1) Prior motion estimation: The tempo-
ral information is used as an additional feature besides the
LR frames. Traditional learning approaches use geometric
transform to estimate the motion among frames and use it
as data compensation for SR. Similarly, in CNN based video
SR, some researchers also input LR frames and the prior
motion information to predict the HR frames. However, com-
pared with hand-crafted features, CNN has been proven to be
effective to learn features automatically. Using hand-crafted
motion estimation for video SR could just form suboptimal
estimation. 2) Learnable motion estimation: Naturally, 3D
convolution can be applied to video-based processing for its
ability to introduce the temporal correlation. In 3D CNN
basedmethods [40]–[43], each input part convolves with a 3D
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filter across the spatial and channel domain. Due to one extra
domain of freedom, 3D CNN needs a lot of parameters to
cover the whole data space and the optimization becomes too
complex to find the convergence. Experimental results in [41]
indicate that the number of parameters of 3D CNN must be
increased dramatically to achieve comparable performance as
2D CNN.

No matter how deep the network, once we input multiple
frames to the model, we assume that the temporal correla-
tion among different frames is never lost. It is just hidden
in the channel domain of the convolutional feature maps.
Instead of explicitly discovering the temporal information
among frames, we propose a SCP convolution scheme to
perform global and local 2D convolutions. Hence their differ-
ence becomes the residual channel correlation among feature
maps, and all these can be directly included for training.
Fig. 2(a) shows the structure of a conventional 2D full con-
volution and Fig. 2(b) shows our proposed SCP. As shown
in Fig. 2(b), the SCP includes the conventional 2D full con-
volution (Fig. 2(a)) and partial convolution processes, where
we useWi andUi (i = 1, 2, 3, 4) to represent the 2D full con-
volution and partial convolution kernels, k is the kernel size
and (M ,N ) is the size of the input. Numerically, in Fig. 2(b),
we have input data with the dimension of 8×M × N where
8 is the number of channels and (M, N) is the size of input
data. For the full convolution, we have 4 kernels {Wi} of size
8×k×k to convolute with the input data and output 4 feature
maps. For the partial convolution, if we group the input data
into 4 subgroups, each subgroup contains two channels of the
input data.We can then use 4 kernels {Ui} of size 2× k × k to
convolute with input data and output 4 feature maps. Finally,
we subtract the partial features maps from the full feature
maps to obtain the temporal feature maps. For the partial
feature map{U1}, it contains the convolution result of the first
2 channels of the input data. When we subtract it from the
full featuremap{W1}, we can obtain the residual information.
The rest of 3 residual feature maps are obtained similarly.

C. SPATIAL CONVOLUTION PACKING (SCP) PART II
Mathematically, let us denote the input feature maps of the
l-th convolution layer as Il ∈ RM×N×nl−1 , where M , N and
nl−1 are the height, width and channel of the input feature
maps, and the parameters to be learned include the weights
and the biases are indicated as θ = (W l , bl). After the convo-
lution, an activation function f = 8(x) maps the convolution
result into a nonlinear data space. The 2D convolution process
can be described as:

f (I l; θl) = 8l(W l ∗ fl−1(I l−1; θl−1)+ bl) (1)

Assume that the dimension of filters at l-th layer is nl−1 ×
kl × kl × nl , where nl−1 is the number of input feature
maps (channel of filters), kl is the size of filters and nl is the
number of output feature maps. The symbol ‘‘∗’’ represents
the convolution in the spatial domain. As shown in Eq. 2,

the 2D convolution does not include the channel domain.

I xyl =
nl−1∑
z=0

kl−1∑
h=0

kl−1∑
w=0

W xyz
l I x+h,y+w,zl−1 + bl (2)

where (x, y) is the position of the l-th output feature map, and
is the l-1-th input data at position (x + h, y + w, z) within
the receptive field of kernel Wl . During training, each filter
convolutes all the input feature maps to output one feature
map. That is, for each output feature map, it is the sum of the
globally weighted addition of all input feature maps (‘‘2D full
conv.’’ in Fig. 2(a)) so that the local correlation among inputs
is ignored.

On the other hand, the 3D convolution makes use of filters
with dimension dl−1 × kl × kl × nl , where dl−1 < nl−1,
to calculate:

I xyzl =

dl−1∑
z=0

kl−1∑
h=0

kl−1∑
w=0

W xyz
l−1I

x+h,y+w,z+t
l−1 + bl (3)

where t is the temporal step on channel dimension. This
means channel dimension is added to the calculation so that
the filter swaps through the 3D space. Hence, each filer covers
a cubic region of input feature maps, and each output feature
map is the locally weighted addition of input feature maps.

To efficiently extract the temporal correlation across the
channel domain, our proposed SCP method replaces the
3D CNN with a much simpler pseudo 3D convolution.
As described in Fig. 2, the process is done in three steps: full
convolution, partial convolution, and then temporal residual
extraction. Full convolution is done the same as the 2D convo-
lution described in Eq. 1. We denote the output of the full 2D
convolution as ISl ∈ RM×N×nl−1 , where S is used to represent
the 2D convolution results.

Different from 2D convolution, the partial convolution
only uses partial input feature maps to obtain the output
feature maps. It means that each output feature map only
looks at a subset of input feature maps, which can reduce
the number of parameters and introduce local correlation of
feature maps for training. The partial convolution is described
in Eq. 4:I

xyzg
l =

kl−1∑
h=0

kl−1∑
w=0

∑
z∈zg

W
xyzg
l−1 I

x+h,y+w,zg
l−1

+bl, for g = 1, 2, . . . ,G

 (4)

Assuming we pack the input and output feature maps into
G groups. The g-th group of input only responds to the g-th
group of output I

h,w,zg
l , respectively. Let us denote the partial

convolution output as IPl ∈ RM×N×nl−1 , where P represents
the partial convolution. For the final output, a temporal resid-
ual ITl extraction is obtained by using ISl and IPl as shown
in Eq. 5.

ITl = 8l(ISl )− I
P
l (5)

In Eq. 5, the activation function 8(x) is only used on
the output of the full 2D convolution, ISl , to introduce the
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FIGURE 3. SCP scheme for processing video frames.

nonlinearity and the partial convolution, IPl , is directly sub-
tracted from the activated ISl . The activation function can be
added to ISl or I

P
l to ensure the nonlinear mapping so that the

model can extract nonlinear complex temporal information.
Otherwise, the simple sum between ISl and IPl only extracts
the linear relationship, that cannot learn meaningful features.
This design also has some similarity as the residual block
in [24] and [28] in the spatial domain. However, our design
reduces unnecessary activation layers (the connection of a
feature map to a nonlinear function is referred to as a nonlin-
ear mapping) on the shortcut connection and works as a mod-
ification of residual learning in the temporal domain rather
than the spatial domain. By using the proposed SCP scheme,
the spatial and temporal information is jointly extracted and
learned for video SR. For visual elaboration, Fig. 3 gives an
example of using SCP scheme to process 5 neighborhood
frames.

The full convolution (green boxes) extracts the global fea-
tures from 5 input frames and the partial convolution (yellow
boxes) extracts local features from each frame. Their differ-
ences (purple boxes) approximate the temporal correlations
between each frame to the other 4 frames. After concatenation
and another 1 × 1 convolution, we combine the temporal
and full convolution results to form spatial-temporal feature
maps to perform another SCP process to extract temporal
correlation between each spatial-temporal feature map to the
other 4 feature maps. This SCP based convolution can be
stacked in multiple layers to form deeper and more complex
spatial-temporal feature representation for video SR.

D. EFFICIENT RESIDUAL BLOCKS FOR SPATIAL-
TEMPORAL CONVOLUTION NEURAL NETWORKS
Different from image SR, the key for video SR is the long-
term feature extraction tomodel the temporal correlation. Our
proposed SCP scheme can be embedded into any image based

SRmodel to replace the regular convolution process for video
SR. Inspired by the recent works [25], [26] on their state-of-
the-art SR performance, we come up with the ST-CNNmodel
in Fig. 1 that uses back projection based residual blocks to
design a deep CNN structure for video SR. As mentioned in
Part 3.1, the ST-CNN model has three stages:
Feature Extraction: This is a pre-processing stage. For C

input LR frames XLR ∈ RH×W×C , it is important to extract
the spatial and temporal correlation as much as possible for
further reconstruction. Unlike image SR, the input is usually
one single Y-channel or RGB image, ST-CNN takes C frames
at once. We use two layers of the proposed SCP based convo-
lution layers to decompose frames into a bigger feature space
(first two yellow blocks in Fig. 1). It is equivalent to convolve
the frames with a set of filters to represent them in a sparser
space. From another perspective, the feature extraction can
also be regarded as a sampling process in the spatial and
temporal domains using different sampling frequencies. Like
3DWavelet transformation [49], the sampling process across
the spatial and time domains can increase the receptive fields
to generate more feature maps.

FIGURE 4. Example of back projection process.

Hierarchical Residual Update: The second stage is a
crucial part of the ST-CNN. Our modified ST-CNN is mod-
ular in back projection structure and each regular convolu-
tion is replaced by our proposed SCP based convolution.
The basic module is the back projection unit. It includes
two up-sampling back projection (UBP) units and a down-
sampling back projection (DBP) unit stacked in a hierarchical
order. Before introducing the proposed ST-CNNmodel, let us
revise the classic application of back projection in image SR.
Its process is shown in Fig. 4. The estimated HR image is
updated by calculating the LR residual between the original
LR and the down-sampled HR image. For a complete UBP,
we can describe the operations mathematically as,

IHR(t + 1) = IHR(t)− λ · H∗D∗
(
DHIHR(t)− ILR

)
(6)

where t is the iteration number, H and D are the blurring
and down-sampling operators. H∗ and D∗ are the inverse
operations to work as deblurring and up-sampling operators
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and λ is the weighting factor to control the number of residual
values for the update. In each iteration, SR image IHR(t) needs
to be down-sampled to the same size as the LR image ILR, and
to calculate the prediction residue.We then use the deblurring
and up-sampling operators to up-scale the LR residual back
to the desired resolution and add it back for the next iteration.
Not only the up-sampling process can be updated by Eq. 6,
DBP can also be updated as follows:

ILR(t + 1) = ILR(t)+ λ ·HD
(
D∗H∗ILR(t)− IHR

)
(7)

In this way, the output of UBP becomes the input of DBP.
The above is for image SR which is used in [25]. Our pro-
posed ST-CNN improves the structure by replacing the LR
and HR images with their feature maps as follows,

ISRl = 3l

(
ISRl
)
−8

(
WU

l ∗8
(
WD

l ∗ I
SR
l − I

LR
l−1

))
ILRl = 3l

(
ILRl

)
−8

(
WD

l ∗8
(
WU

l ∗ I
LR
l − I

SR
l−1

))
(8)

where 3 is the 1 × 1 weighting convolution, and ISRl is
the output of UBP and ILRl is the output of DBP at l-th
layer. To illustrate the details of our proposed residual block,
we compare the residual blocks among ResNet [28], DBPN
module and our modified ST-CNN module in Fig. 5.

FIGURE 5. Residual blocks comparison among ResNet, DBPN and our
approach.

In Fig. 5(3), the blue block represents the convolution
process that output LR feature maps, the green block repre-
sents the deconvolution process that outputs HR featuremaps,
the yellow block represents the partial convolution process on
the temporal domain and the gray block represents the 1× 1
convolution that works as weighting process. Compared to

the residual block in ResNet, our proposed residual block
has the same back projection process as the residual block
in DBPN that contains up-sampling and down-sampling pro-
cesses. Each block includes two shortcuts between the HR
and LR features to update the prediction residuals. The major
improvement of the residual blocks between the proposed
ST-CNN and DBPN include the following. 1. Embedding
the SCP process at each convolution/ deconvolution layer to
extract the temporal correlation (the up-sampling and down-
sampling SCP processes as shown in Fig. 4(3)): full con-
volution is followed by an activation layer to introduce the
nonlinear mapping, and then we concatenate the full convo-
lution and extract temporal results together as input for the
next layer. 2. Adding an extra 1 × 1 convolution to form
weights on the predicted HR residual on updating the HR
feature maps (the gray block in Fig. 5(3)): for the residual
block in ResNet, its task is to train a general image classifier
so it does not care for pixels differences. Simple shortcut can
help to avoid gradient vanishing when the model gets deeper.
In video SR, it is important to keep the fidelity of pixel based
reconstruction. As described in Eq. 6, the residual image for
back projection can be controlled by the weighting factor
which in our modified residual block, 1 × 1 convolution is
used to simulate the weighting factor which acts as an updat-
ing rate to avoid sudden change. It can also be considered as
an adaptive regression model that assigns weighting values
for minimizing the variance of the distribution of residuals.

Furthermore, to make full use of the residual of LR and HR
feature maps and to avoid gradient vanishing, skip connection
is used between UBP and DBP. There is a concatenation
layer to aggregate the previous outputs as input for the next
unit. For the l-th UBP (Eq. 9a), the input is a combination of
{ILRl−1, I

LR
l } and for l-th DBP (Eq. 9b), the input is a combi-

nation of {IHRl−1, I
HR
l }. We call this global connection because

it connects the intermediate outputs from the previous back
projection unit. Moreover, we also propose a local connec-
tion within each back projection unit. For the UBP or DBP
unit, the previous weighted output can also be shared across
different units to reuse the extracted features. We then have
the description of local and global connections as follows:

IHRl = 3l(IHRl )+3l−1(IHRl−1)︸ ︷︷ ︸
local

−8

WU
l ∗8

WD
l ∗ I

HR
l − {I

LR
l−1, I

LR
l }︸ ︷︷ ︸

global


 (9a)

ILRl+1 = 3l+1(ILRl+1)+3l (ILRl−1)︸ ︷︷ ︸
local

−8

WD
l+1 ∗8

WU
l+1∗ I

LR
l+1 − {I

HR
l−1, I

HR
l }︸ ︷︷ ︸

global


 (9b)

In Fig. 6, we show the connections between UBP and DBP.
There are four units in the order of UBP-DBP-UBP-DBP.

VOLUME 9, 2021 106055



Z.-S. Liu et al.: Efficient Video SR via Hierarchical Temporal Residual Networks

FIGURE 6. Global and local connection in ST-CNN model.

The global connections (red lines) are to enable the sharing of
the input features with different units. This global connection
connects the input and output of different units. The local
connections (blue lines) reuse the intermediate convolutional
results for computation. We call it a local connection because
it makes use of the local features across different units.

Final reconstruction. The last stage is to aggregate all
intermedia results together for generating the final SR frames.
Instead of outputting one SR frame from C (number of
frames) LR frames, ST-CNN outputs the same number of SR
frames as the number of input LR frames. This means that
for the same video sequence with U frames, it only needs
U/C forward computation. Instead of using SCP convolu-
tion, we use two full convolution layers to concatenate all the
outputs of the back projection units together and use theMean
Absolute Error (MAE) [24] to replace the Mean Square Error
(MSE) to calculate the SR loss as follows:

lossMAE =
1

N

∑N

i=1

∑C

j=1

∥∥∥YHR
i,j − I

SR
i,j

∥∥∥
1

(10)

where N is the number of batches, YHRi,j is the ground truth
HR frame and ISRi,j is the predicted SR frame.

E. SELF-ENSEMBLE ENHANCEMENT IN
TEMPORAL DOMAIN
Through the three stages of convolution, our ST-CNN model
can generate C SR frames at once. It is helpful for fast
implementation but when encountering videos with dynamic
motions or complicated patterns, this coarse SR can be less
accurate. To improve the SR quality, two simple approaches
can be used: frame overlapping and patch overlapping.

For frame overlapping, let us denote it as ST-CNN(F+).
We determine the frame step of video SR as Tf (Tf ≤ C). For
super-resolving challenging videos, Tf can be smaller than
the number of LR frames to overlap output SR frames. The
process is shown in Fig. 7.

Similarly, patch overlapping is also shown in Fig. 7. It is
used when the memory of GPU is not enough. Let us denote
it as ST-CNN(P+). The LR frames need to be split into over-
lapping patches and perform patch-based video SR by patch
step TP. This patch-based SR has been proven to be effective
in image SR in [25], [26]. In our experiments, we will show

FIGURE 7. Frame and patch overlapping for video SR enhancement.

that both frame overlapping and patch overlapping is very
useful for video SR.

IV. EXPERIMENTAL RESULTS
To verify the accuracy and efficiency of our proposed
video SR methods, we applied our model to different video
datasets, and present quantitative and qualitative results for
comparison.

A. DATASETS AND IMPLEMENTATION DETAILS
For the training process, we used the standard video
sequences1 the same as in [34]–[39]. For HR frames, based on
the up-sampling factor α, we used bicubic from MATLAB to
down-sampleHR framesα time to obtain LR frames. For both
LR and HR frames, we converted them into YUV color space
and used Y-channel data only because the Y-channel contains
enough information for video processing while U and V
channels contain color information that can simply be up-
sampled by Bicubic. The input LR patch was cropped from
the LR frames with size 32×32×C , whereC is the number of
adjacent frames. The HR patch has the size of 32α×32α×C .
To enlarge the training data, we cropped multiple overlapped
volumes (groups of adjacent frames) from training videos.
Eventually, we can generate around 400,000 training LR-HR
data pairs.

We tested our model on Set22 (Vid4: calendar, city, foliage
and walk) with recent state-of-the-art video SR methods:
VSRnet [36] (Video Super-Resolution with Convolutional
Neural Networks, first CNN based video SR), Bayesian [34]
(Bayesian based learning approach), VESPCN [37] (pixel
alignment network), BRCN [40] (3D CNN network),
SAN [39] (spatial alignment with optical flow network)
DF [38] (sub-pixel motion compensation network) and
TOFlow [51] (Optical flow compensation for joint video
denoising, deblurring and super-resolution). Meanwhile,
we also tested our ST-CNN network on 4K videos3

to show the visual quality. This dataset contains seven

11https://media.xiph.org/video/derf/
22https://people.csail.mit.edu/celiu/CVPR2011/
3http://ultravideo.cs.tut.fi/
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120fps sequences: Beauty, Bosphorus, HoneyBee, Jockey,
ReadySteadyGo, ShakeNDry and YachtRide.

B. NETWORK ARCHITECTURE
Our ST-CNN model uses SCP based convolution for the
first and second stages and uses the common full 2D con-
volution at the third stage. For video SR with up-sampling
factor α = 3, we used convolution/deconvolution layers with
7 × 7 filters, three striding and four padding. As for
up-sampling factor α = 4, we used convolution/
deconvolution layers with 8 × 8 filter, four striding and four
padding. To achieve fast video SR, we reduced the num-
ber of filters at deconvolution layers to 20 for up-sampling
and 40 for convolution layers for down-sampling. For other
feature extraction layers and concatenation layers, we used
filters of size 3 × 3. The design of these filters is based
on general intuition of preliminary experiments to tradeoff
between accuracy and efficiency.

We initialized the weights based on [27] and all con-
volution layers are followed by parametric rectified linear
units (PReLUs). We trained our model with learning rate
initialized to 0.0001 for all layers and decreased by 10 after
800,000 for a total of 1,000,000 iterations. For optimization,
we used Adam with momentum equals 0.9 and weight decay
equals 0.0001. All experiments were conducted using Caffe,
MATLAB R2016b on two NVIDIA GTX 1080 Ti GPUs.

C. ANALYSIS OF NETWORK STRUCTURE
In this section, let us discuss important parameters valuable
to achieve good structures and give some further analysis.

1) EFFECT OF THE SCP SCHEME
To prove the efficiency of the Spatial Convolution Pack-
ing (SCP) scheme, we ported it into other state-of-the-art
CNN models by replacing the conventional 2D convolution
layers for video SR, including VDSR [18], VSRnet [36],
VESPCN [37] and DBPN [25]. More specifically, for one
2D convolution layer with N filters in these CNN models,
we replaced them by N/2 filters for full convolution and
N/2 filters for partial convolution to ensure that the number
of filters remains the same for a fair comparison. We have
denoted the approaches using SCP based convolution as SCP
models. We tested the performance on Set2 video with an up-
sampling factor of 4 and then obtained TABLE 1. We have
named the modified versions as VDSR-SCP, VSRnet-SCP
and VESPCN-SCP for clarity. For VDSR, VSRnet, VESPCN
and DBPN, they were originally proposed for single image
SR. To modify them to VDSR-SCP, VSRnet-SCP, VESPCN-
SCP and DBPN-SCP, we consider each color channel as an
individual image so that RGB color images can be replaced
as 3 neighborhood frames. Hence, we can adopt the mod-
els to perform SCP based convolution. As for the proposed
ST-CNN, we also tested it without SCP and labelled it as
ST-CNN(−ve).

Table 1 shows the experimental results in PSNR. We can
see that using SCP always achieves better SR performance

TABLE 1. Results of PSNR (dB) and time (sec) by comparing CNN models
with and without SCP scheme on set2 of 4× SR.

in terms of PSNR and reduces the running times. It shows
that using the SCP can effectively extract the temporal infor-
mation for video SR. Because of replacing half of the full
convolution with the partial convolution, it is the reason for
saving computation time compared to the original versions.
Note also that VSRnet has 3 convolution layers while VDSR,
VESPCN and DBPN can be modeled up to 20 to 40 convolu-
tion layers. The improvement on PSNR also proves that using
a deeper CNNmodel, to some extent, can help to boost up the
performance of video SR.

2) EFFECT OF GLOBAL AND LOCAL CONNECTIONS
FOR ST-CNN MODEL
The main structure of our proposed STCNN model is built
based upon the back projection based residual blocks. The
main improvement compared to [25] and [26] comes from
global and local connections which allow to share the resid-
ual feature maps for reconstruction. Similarly, we tested the
ST-CNNmodel with and without global and local connection
on Set2 with an up-sampling factor of α = 4.

TABLE 2. PSNR (dB) and time (sec) comparison of the ST-CNN model with
and without global and local connections for video SR on set2 of 4× SR.

Table 2 shows the comparison of video SR performance
on ST-CNN model with and without global and local con-
nection (Noted that the ST-CNN used SCP scheme for
spatial-temporal convolution). For clarity, we name differ-
ent ST-CNN models as A, B, C and D to identify the use
of global and local connections as shown in TABLE 2.
For PSNR results of the SR, we can see that using global
and local connections (B, C, D in TABLE 2) can improve
the SR quality about 0.10∼0.17 dB. For the computation
times, we can see no significant increasing because the

VOLUME 9, 2021 106057



Z.-S. Liu et al.: Efficient Video SR via Hierarchical Temporal Residual Networks

local and global connections use 1 × 1 convolution layer as
a weighting matrix. When combining both global and local
connections (D in TABLE 2), it not only assists the residual
information to be used across the LR and HR feature maps,
but also alleviates the vanishing gradient problem to produce
improved features.

3) EFFECT OF NUMBER OF FRAMES AS INPUT FOR
ST-CNN TRAINING
In the proposed ST-CNN model, we input C LR frames and
output C SR frames to speed up the SR process. The value
of C affects how accurate and efficient video SR results we
can be achieved. To find the optimal value of C , we tested
ST-CNN model on Set2 videos with different motions for
comparison and with up-sampling factor α = 4. The results
are shown in Table 3.

TABLE 3. The PSNR (dB) and time (sec) by comparing ST-CNN model with
different value of C on set2 of 4× SR.

From the results, there is a tradeoff between PSNR and
running time. Generally, the more adjacent frames we super-
resolve at once; the faster implementation we can get because
for the same video sequence with U frames, ST-CNN needs
U/C times of computation, hence the larger C means fewer
iterations. However, as shown in Eq. (10), the more LR
frames we have to up-sample, the more missing pixels of
HR frames need to be predicted. The MAE calculation is an
average squared pixel differences between C SR frames and
HR frames. When C becomes too large, the model cannot
guarantee the quality for each SR frame.Meanwhile, largerC
means longer-term temporal dependency which may require
deeper and more complex networks for modelling. Consid-
ering the tradeoff between good SR quality and fast running
time, C = 5 is a good choice which gives the highest PSNR
and is the third fastest computation.

D. COMPARISON WITH STATE-OF-THE-ART METHODS
Let us select network architectures with the best performance
to compare our default ST-CNN, including:
• Bicubic: bicubic interpolation
• VSRnet [36]: first CNN based video SR with shallow
CNN structure.

• Bayesian [34]: Bayesian approach with fast running
time.

• VESPCN [37]: sub-pixel alignment network modified
from image SR with good performance.

• BRCN [44]: 3D model using bidirectional recurrent
structure.

FIGURE 8. PSNR vs time comparison on proposed methods with other
state-of-the-art methods onSet2 of 4× SR.

• DBPN [25]: state-of-the-art image SR approach
• SAN [39]: combination of spatial alignment and optical
flow together to train a network for video SR.

• DF [38]: sub-pixel motion compensation network for
better detail reveal.

• TOFlow [51]: Optical flow compensation for joint video
denosing, deblurring and super-resolution.

• TGA [57]: Video SR with Temporal Group Attention

For all these methods, we used their publicly available
codes or SR results from their respective publications. Among
them, the authors of VESPCN, BRCN, SAN and DF just
recently announced their results without any available codes
for comparison. We used the results on Set2 from their papers
for comparison. All results are shown in TABLE 4 with
up-sampling factors 3 and 4, in terms of PSNR (dB), SSIM,
NIQE [59], FLOPs (TMAC) and running time (s). PSNR
and SSIM are used to quantitatively evaluate data fidelity
of SR. Higher values indicate better reconstruction. NIQE
is a non-reference metric used for qualitative evaluation, and
lower values indicate better visual quality. FLOPs [60] were
calculated on Set2 dataset and running times were obtained
by running different methods on Set2 dataset using the same
machine.

From Table 4, we can see that our proposed methods can
achieve both the best running times and the highest PSNR
compared with state-of-the-art methods. It can be found that
TGA is one that is close to our approach on PSNR and FLOPs.
However, it costs more running time because it requires
global softmax normalization on the feature map which can
be time-consuming. On average, our ST-CNN model can
improve the SR quality by about 0.13∼3.00 dB in terms of
PSNR, while FLOPs are reduced by about 0.5∼0.7 TMAC
and the running time is reduced by about 0.3∼0.4 seconds.
For NIQE, our proposed method can outperform others by
about 0.1∼0.2. For ST-CNN(F+), we overlapped the output
SR frames by frame step Tf = 2 to achieve better PSNR
performance. For ST-CNN(P+), we extracted 120 × 120
patches from the LR frame as input and overlapped the patch
by patch step by Tp = 32. Because of the overlapping of
frames and patches, ST-CNN(F+) and ST-CNN(P+) can
generate smoother and more consistent spatial and temporal
changes, which shows the significant use of self-ensemble
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TABLE 4. Comparison of the proposed ST-CNN and other video SRs on Set2 dataset in terms of PSNR (dB), SSIM, NIQE, FLOPs (TMAC) and running
time (sec).

enhancement. The setting was determined by experiments.
The value of the step can also be modified based on videos
with different features and motions. To better visualize the
tradeoff between PSNR and running time, Fig. 8 gives a
diagram to show the performance of all methods. The left
upper corner represents the higher PSNR with less compu-
tation time. Our proposed methods (ST-CNN, ST-CNN(F+),
ST-CNN(P+)) can outperform other state-of-the-art methods
in PSNR or running time.

TABLE 5. The PSNR (dB) and time (sec) comparison between SAN and our
proposed methods on 4K videos by 4× up-sampling.

E. COMPARISON ON REAL-WORLD VIDEOS
In Set2 dataset, the video is of 720p format which becomes
less popular nowadays. To measure the practical performance
of our proposed methods on real-world videos, we did two
experiments: 1) 4× super-resolution tests on 4K videos. This
video dataset consists 7 videos in 2160p format. ShakeNDry
has 300 frames while the others have 600 frames. Since
SAN has proven to have good performance for Set2 dataset,
we only make a comparison with them. TABLE 5 shows

a comparison of the results on each video sequence. 2) Blind
video SR. We used the video clip from CamSeq01,4 which
is a sequence depicting a moving driving scene for object
recognition. We directly super-resolved the sequence without
knowing any priors. Fig. 10 shows the visualization results.

From Table 5, our proposed ST-CNN uses 0.37 seconds
less than that of SAN to achieve similar PSNR performance.
For videos with simple features or static motions, like Beauty,
HoneyBee and Jockey, the improvement of using ST-CNN
is obvious, while other videos with more dynamic motions
and complex features (Bosphorus, ShakeNDry, YachtRide)
can suffer from the many-to-many mechanism of ST-CNN.
We further proposed the ST-CNN(F+), which overlaps the
SR frames to compensate for the error in adjacent frames,
which gives good PSNR improvement. From TABLE 5,
the PSNR is improved significantly compared to ST-CNNand
it also outperforms SAN about 0.2 dB and reduces 0.16 s in
computation time.

F. ANALYSIS OF VIDEO SR ON VISUAL QUALITY
Besides quantitative comparison, we need to visualize the SR
results to appreciate the visual quality.We also tried to visual-
ize the intermediate featuremaps and trained filters to analyze
the representative ability of each convolution layer. For better
observation, we suggest readers to view the electronic version
of the figures for comparison.

1) VISUAL COMPARISON AMONG STATE-OF-THE-ART
SR METHOD
Generally, 4× video up-sampling is more useful for applica-
tions in real-time. In this section, we will show some visual
comparisons among our approaches and other SR approaches
as shown in Figs. 9 and 10. To show the visible differences
among different SR methods, we tested 4× up-sampling on
Set2. We used the results from VSRnet, Bayesian, DF and
SAN to make comparison, and please note that the authors
of BRCN have not released their codes and results yet.

44http://mi.eng.cam.ac.uk/research/projects/VideoRec/CamSeq01
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FIGURE 9. 4× up-sampling visual comparison among different video SR approaches in Set2.
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FIGURE 10. 4× up-sampling for 4K video SR and blind video SR.

Three video sequences (Foliage, Walk and City) are listed to
show the detailed results of SR. For each SR frame, the same
cropped regions (see the green windows on frames) of the
adjacent 4 frames are shown to indicate the SR performance
relating to the effect on motion changes.

On the Foliage image, we can see that the proposed
ST-CNN can achieve sharper and clearer tree branches

compared to other video SR approaches. As for theWalk and
City images, using our proposed method can also generate
much clearer details around the cradle and tower as compared
with other SR approaches.

Meanwhile, we also tested the SR performance on 4K
video sets and the real footage depicting the driving screen.
The results are shown in Fig. 10. Note that the test was also
done for 4× up-sampling. Bosphorus is one example from
the 4K video set. It is seen that our approach can enhance
the edge and texture regions (flag and ship) with pleasing
quality. Frame 0016E5_07959 and Frame 0016E5_08159 are
two examples from the CamSeq01 dataset. Without knowing
the 4× ground truth, we only show the visual comparison
among different approaches. We can see that our proposed
approach can achieve smoother and sharper patterns, like the
traffic light, car, bus, and pedestrian.

2) MOTION ANALYSIS OF VIDEO SR
For video SR, it is important to ensure that the super-resolved
SR frames contain consistent motions to provide smooth and
pleasing visual experiences.

To estimate the motion accuracy, we choose two crite-
ria: frame residues and optical flow loss for illustration.
We selected the Walk sequence from Vid4 test set to make
the evaluation. For the term ‘‘frame residues’’, it means that
we calculate the Euclidean distance between two adjacent
frames to estimate the average pixel loss. Larger losses indi-
cate larger differences between adjacent frames. Hence it can
roughly calculate the degree of motion changes. Only using
frame residues cannot fully show the motion smoothness.
Hence, we also used the optical flow field as another mea-
surement. Optical flow tries to calculate themotion difference
between two frames which are taken at times t and t+1t for
every pixel position. It is a 2D vector showing the displace-
ments of the pixel from frame t to t+1t . We used the public
package provided by [50] to estimate the optical flow. Then
we calculated the Endpoint error (Euclidean distance between
HR and SR optical flow) to measure the optical flow loss. The
frame residues and optical flow loss are shown in Table 6.

TABLE 6. Comparison among different video SR algorithms on motion
estimation.

From Table 6, we can find that our proposed ST-CNN
gives the lowest frame residues and Endpoint errors compared
with other video SR algorithms. It shows that ST-CNN can
generate SR frames with motions close to the ground truth.
To better demonstrate the motion compensation, we also
visualize the optical flow results by magnitude values
in Fig. 11. Ground truth means that the optical flow was
generated from the HR frames. Your attention is drawn on
the visual differences marked in black circles. Combining the
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FIGURE 11. Visualization of optical flow.

results in TABLE 6 and Fig. 11, we can see that using the
proposed ST-CNN can predict similar or more smooth optical
flow compared to other video SR algorithms. It indicates that
using the proposed ST-CNN can reconstruct the SR frames
with accurate motion compensation.

V. CONCLUSION
In this paper, we propose a spatial-temporal convolution
based CNN model for video SR. By using the Spatial Con-
volution Packing, our proposed ST-CNN model can jointly
extract both spatial and temporal features to achieve good
SR quality. Compared to the conventional 3D convolution
process, ST-CNN can avoid complex calculations and achieve
fast implementation. Meanwhile, we optimize the back pro-
jection and residual learning blocks to exploit deeper and
meaningful feature maps while using fewer filter coefficients.
Experimental results on various video datasets show the supe-
rior performance of the ST-CNN and its enhanced versions,
quantitatively and qualitatively. Results of testing 4K videos
also prove that our approach can handle various edge patterns
and motions in real-time. For analysis, we have visualized
critically the important parameters to demonstrate the useful-
ness of each convolution layer in ST-CNN. It is demanding
to achieve real-time video SR for videos with different reso-
lutions or motions. Executive Codes are available at [61].
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