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ABSTRACT Some of the researches on indoor positioning have been conducted, but there are still many
constraints on indoor positioning approaches. Among these approaches, ultra-wideband (UWB) provides
a fast and precise positioning performance but requires a sufficient infrastructure and a clear line-of-
sight (LOS) channel. However, inertial sensor-based pedestrian dead reckoning (PDR) operates without
infrastructure, but it requires position initialization and has error drift problems. In this study, we propose
a hybrid positioning system that fully combines UWB and PDR to overcome such constraints and improve
the positioning performance. This hybrid positioning system uses a Kalman filter (KF) based fusion method
that identifies non-line-of-sight (NLOS) environments and mitigates UWB errors through PDR. We also
evaluated the proposed system implemented using practical testbed devices at indoor environments classified
as LOS, weak NLOS, and hard NLOS. The evaluation results showed that the proposed system significantly
improves the positioning performance and alleviates the positioning constraints, as compared to the single
positioning system. Our system has been designed to be lightweight compared to the existing extended
KF-based convergence system, but is more robust to both weak and hard NLOS environments. Eventually,
it improved positioning performance by 35.5% than existing hybrid systems in the hard NLOS environments.

INDEX TERMS Indoor positioning, ultra-wideband (UWB), pedestrian dead-reckoning (PDR), Kalman
filter (KF) sensor fusion, and hybrid positioning.

I. INTRODUCTION
With the proliferation of the Internet of Things (IoT), vari-
ous location-based services (LBS) such as an indoor object
search, entertainment, advertising, and marketing have been
requested by users. Many users want LBS to be available in
both indoor and outdoor environments. However, most LBSs
are focused on outdoor services using a global navigation
satellite system (GNSS), such as GPS and Galileo.

The indoor positioning system (IPS) was designed to pro-
vide LBS in an indoor environment where the GNSS can-
not operate well owing to its weak signal. There are many
approaches to building an IPS, such as time-based posi-
tioning methods [1]–[4], radio fingerprinting [5]–[7], and
dead reckoning [8], [9]. Among these approaches, time-based
positioning achieves an accurate and precise positioning per-
formance. However, it requires a high-performance time-
resolution medium such as ultra-wideband (UWB) radio,
ultrasonic, and visible light. The extra requirements of this
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approach incur additional expenses. By contrast, fingerprint-
based positioning can build a low-cost IPS using a uni-
versal medium such as WiFi, BLE, and cellular networks.
However, it requires additional work, i.e., a fingerprint
learning (offline) phase to construct the received signal
strength (RSS) map, which is time-consuming and workload-
intensive. Dead reckoning-based positioning can build a sys-
temwithout additional infrastructure, while usingmultimodal
sensors such as accelerometers, gyroscopes, magnetometers,
and barometers. However, it requires a reference position and
needs to operate for a short run time because of accumu-
lated errors over time [10]. Because of the trade-off between
positioningmethods, some existing positioningmethods have
been combined complementarily to provide a higher position-
ing performance [11]. In this study, we use both UWB and
pedestrian dead reckoning (PDR) to produce robust continu-
ous positioning in an indoor environment where each position
is limited.

The UWB, defined in IEEE 802.15.4-2011 std. [12], sup-
ports an extremely accurate time-stamping and direct path
selection capability based on impulse radio with nanoscale
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time resolution. High-resolution time-stamping is used to
accurately measure the propagation time in time-based rang-
ing, and direct path selection is used to precisely classify the
shortest signal path corresponding to the distance between
UWB radios in a multipath environment. Owing to these
advantages, UWB can be applied to time-based positioning,
namely, time-of-arrival (TOA) and time-difference-of-arrival
(TDOA) [1]–[4]. The TOA-based UWB positioning system
determines the position of a tag device through trilateration
by employing the known positions of pre-deployed anchors
and the estimated distance between the tag and anchors.
Here, the distance between the tag and anchors is obtained
from a TOA estimation technique called two-way ranging
(TWR) [12]. The TOA estimation through TWR canmake the
IPS easier to implement without device-to-device synchro-
nization, compared to TDOA-based positioning systems [13].
Moreover, the UWB system has a fast position update rate
with sub-meter-level positioning accuracy and precision [14].
However, the UWB system requires an infrastructure consist-
ing of three or more anchors and a clear line-of-sight (LOS)
channel between the tag and anchor without any obstacles.
These requirements can be a limitation of UWB-based indoor
LBS. However, positioning with an IMU consisting of an
accelerometer, gyroscope, and magnetometer can estimate
the attitude and heading using its measured values. Thus,
it can be applied to dead reckoning of a flight and voyage. The
PDR system based on the MEMS IMU is an infrastructure-
free positioning method because it determines the position
based on the step length of the pedestrian and its heading.
Likewise, it is robust to external environmental factors such
as the non-line-of-sight (NLOS) radio channel. However,
the PDR requires an initial reference position because it is a
relative positioning method in which the position is updated
by adding displacement to the previous position. In addition,
it is expected to be operating for a short run time because of
drift error of distance and heading estimation accumulated as
time passes.

These UWB and PDR systems can be fused to improve
the positioning performance owing to their complementary
characteristics. The UWB/PDR hybrid system mitigates the
PDR drift based on the more accurate positioning results
obtained from UWB and reduces the NLOS-caused error of
the UWBwith a stable output from the PDR. Valuable studies
on UWB and PDR integration have been conducted. In [16],
the authors proposed a PDR aided UWB positioning method
to switch between two positioning systems. The position dif-
ference between the UWB and PDR is applied to its probabil-
ity distribution-based formula. In [17], the weighted average
was chosen as the fusion method. It mitigates the positioning
error of the UWB through the PDR. As a more advanced
approach, the authors of [18] proposed a new method using
the position difference with an extended Kalman filter (EKF).
These methods apply PDR as a substitute for UWB when
UWB positioning is unavailable. However, these methods
have difficulties determining whether the UWB channels are
classified as LOS or NLOS. Meanwhile, the EKF fusion

proposed in [19] recognizes abnormal UWB ranging based
on the Mahalanobis distance approach and controls its noise
covariance. It is effective for stabilizing the UWB rang-
ing performance against temporary NLOS errors. However,
outlier detection based on the Mahalanobis distance is lim-
ited in environments where the NLOS effect persists for
a specific time owing to walls and obstacles. In addition,
the unscented KF (UKF) based integration method has been
introduced to improve the linearization problem of the EKF
for indoor localization [20]. In [21], the residual-based NLOS
identification and Sage-Husa adaptive filtering based UKF
algorithm (ISR-UKF) are introduced. The ISR-UKF reduced
the positioning error by approximately 75% compared to
the UWB single positioning. In [22], another study shows the
application of EKF and UKF to the positioning environments
with multiple anchors to improve the accuracy and reduce the
complexity of the deployment.

This paper proposes an efficient hybrid positioning system
that is simpler than the EKF approach andmore robust against
weak NLOS environments such as a through-the-wall envi-
ronment. The remainder of this paper is organized as follows.
We describe the relevant techniques for UWB and PDR in
Section II. Sections III and IV present the proposed fusion
algorithm and the experimental results. Finally, we conclude
the paper in Section V.

II. BACKGROUND
A. TWO-WAY RANGING (TWR)
The TWR is a message-exchange procedure for estimating
the distance between UWB radios. It has the advantage of
observing the estimated distance on both tag and anchor sides
due to the message exchange. In this paper, the UWB system
uses TWR performing TOA estimation because the tag has to
obtain a position itself for integration with the PDR system.
Fig. 1 shows the TWR introduced in IEEE 802.15.8 std. and
IEEE 802.15.4-2011 std. [12], [15]. In Fig. 1, a tag device
and an anchor are illustrated as T and A, respectively. First,
the tag sends a ranging request message to the anchor and
stores T1 at the tag device as a TX timestamp. The anchor
receives a request message from the tag and stores T2 as an
RX timestamp. Next, the anchor sends a response message to
the tag after a reply time (Treply) and stores T3 at the anchor
device as a TX timestamp. Finally, the tag stores T4 after
obtaining the response message as an RX timestamp.

In this typical TWR, timestamps are obtained by capturing
the ranging marker designated in the UWB system. The
ranging marker specified in [12] is located at the start of the
first symbol of the PHY header of the frame. The round trip
time (RTT) of the ranging messages is measured using times-
tamps (T1, T2, T3, and T4) observed in the tag and anchor as
follows:

Tround = T4 − T1, (1)

Treply = T3 − T2, (2)

TRTT = Tround − Treply. (3)
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FIGURE 1. Two-way ranging (TWR).

In addition, the propagation time (Tp), that is, TOA of the
ranging message, can be estimated as follows:

Tp =
TRTT
2
. (4)

Therefore, the distance between the tag and anchor is
d = Tp × c, where c is the speed of light.

As shown in Fig. 1, the TWR based TOA estimation does
not demand time synchronization between tag and anchor
because Tround and Treply are observed independently at each
device. This advantage makes it easier to build positioning
systems. However, TWR based on single-sided RTT has a
weakness in that the TOA estimation error can be increased
by the longer TWR message processing time (Treply) because
of the hardware clock skew between the tag and anchor. Thus,
the double-sided TWR (DS-TWR) was devised to solve the
clock skew problem by measuring the RTT at each side of
the tag and anchor. The DS-TWR procedure is illustrated
in Fig. 2.

FIGURE 2. Double-sided TWR (DS-TWR).

In DS-TWR, the tag and anchor initiate a TWR message
exchange, which is the same as typical TWR obtaining RTT
on the tag side. After obtaining the first RTT, the tag sends
a second ranging message to the anchor for the second RTT.
Finally, the response of the anchor and second ranging mes-
sages of the tag are used to obtain the second RTT on the

anchor-side during this process. Thus, Tp of the DS-TWR is
measured by

Tp =
TroundT × TroundA − TreplyT × TreplyA
TroundT + TroundA + TreplyT + TreplyA

. (5)

In general, the TWR-based UWB positioning system
inevitably requires three or more anchors for the estimation
of the tag location. Indeed, to provide the navigation services
based on DS-TWR, each tag needs at least nine transfers
because DS-TWR performs three message exchanges with
three anchors. This operation requires a large on-air time
and battery power to obtain the position of each tag. One
of the commercial UWB manufacturers introduced a prac-
tical DS-TWR for its real-time location system (RTLS) ser-
vice [23], which improved the power consumption and on-air
time in TWR message exchanges.

FIGURE 3. Decawave TWR (DW-TWR).

Fig. 3 shows the RTT measurement operation of the
DW-TWR procedure. In this example, the tag initiates the
broadcasting of a poll message to anchors (A0 ∼ A2).
The anchors receiving a poll message from the tag then
send response messages sequentially after a predefined reply
time (TreplyT0, TreplyT1, and TreplyT2). Next, the tag receiving
response messages from the anchors sends a final message
to the anchors. Finally, the anchor receiving the final mes-
sage completes the ranging message exchange. As a result,
the propagation time TpN for anchor number N is calculated
by the stored timestamps as follows:

TpN =
TroundTN × TroundAN − TreplyTN × TreplyAN
TroundTN + TroundAN + TreplyTN + TreplyAN

, (6)

where N is 0, 1, and 2 in the example shown in Fig. 3.

B. NLOS IDENTIFICATION
The TOA estimation of the TWR is achieved using the prop-
agation time (Tp) in the direct path, which is the closest dis-
tance between the tag and anchor. However, during the NLOS
condition, the multipath propagation delay time is added to
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the TOA estimation owing to the direct pathweakening or dis-
appearance. An NLOS identification method is required to
mitigate positioning errors caused by the NLOS. In general,
IR-UWB technology is more advantageous than narrowband
communication for distinguishing the direct path and multi-
path signals and is analyzed as the channel impulse response
(CIR). The CIR is the basis for classifying the channel con-
ditions as an LOS or NLOS [2]. According to [23], the UWB
receiver can measure the received signal strength of the direct
path (FSL) and multipath (RSL) based on the observed CIR
of the preamble code in the PHY layer. The difference (GAP)
between FSL and RSL is small in the LOS channel. On the
other hand,GAP is increased by attenuated FSL due to obsta-
cles in the NLOS channel. Therefore, channel conditions can
be classified as NLOS or LOS using GAP [24]. In [25],
we proposed a new NLOS identification method applicable
to various NLOS environments, including through-the-wall
and curved corridor environments. Algorithm 1 denotes the
proposed identification method. We applied this identifica-
tion method to our proposed UWB/PDR hybrid positioning
system to mitigate the NLOS error.

Algorithm 1 NLOS Identification for the Proposed
Hybrid System
Input: FSL, RSL
Output: channel identification
Initialization: average RSL (ARSL) = −87.1 [dBm]
GAP = RSL − FSL; //gap between RSL and FSL
if GAP > 10 then

return NLOS
else

if ARSL < RSL then
return LOS

else
return NLOS

C. TRILATERATION
Trilateration is the process of determining an unknown posi-
tion with a mathematical calculation for estimating the rela-
tive position by applying a geometry of circles and spheres.
Fig. 4 shows anchors A0 ∼ A2 located in their known
positions (x0, y0) ∼ (x2, y2), whereas the distances d0 ∼ d2
between a tag and anchors are obtained using the TWR.
Here, the position of the tag (x, y) located at the intersection
between the circles is obtained by the following:

(x0 − x)2 + (y0 − y)2 = d02,
(x1 − x)2 + (y1 − y)2 = d12,

...

(xn − x)2 + (yn − y)2 = dn2.

(7)

However, it is challenging to determine the real tag location
with distances (d0, d1, . . . , dn) in an erroneous positioning

FIGURE 4. 2D localization using trilateration.

environment, because the positioning errors are added by the
UWB signal strength fluctuation.

For practical positioning, we applied the well-known least
squares (LS) method to solve (7). The LS method produces
an approximation of the exact intersection of three circles by
applying the form of a linear equation of aξ = b as follows:

a =


x1 − x0 y1 − y0
x2 − x0 y2 − y0
...

...

xn − x0 yn − y0

 , (8)

ξ =

[
x
y

]
, (9)

b =
1
2


x12 + y12 − d12 − (x02 + y02 − d02)
x22 + y22 − d22 − (x02 + y02 − d02)

...

xn2 + yn2 − dn2 − (x02 + y02 − d02)

 , (10)

Now, the tag location is estimated as

ξ = (aT a)−1aT b. (11)

D. PEDESTRIAN DEAD RECKONING (PDR)
The PDR is a relative positioning method that estimates a
new position based on pedestrian movement. The pedestrian
step should be detected at every step, and measurements of
the step length (SL) and heading are also required. Fig. 5
shows the PDR process for estimating a pedestrian’s position.
In Fig. 5, the pedestrian is walking from the initial position
(red triangle) to the current position (blue circle). A move-
ment trajectory consisting of SL and a heading is shown.

The current position is estimated as follows:{
xn = xn−1 + SL · − cos(ψ),
yn = yn−1 + SL · sin(ψ),

(12)
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FIGURE 5. Pedestrian dead reckoning.

where n is the step count, beginning from the initial position,
and SL and ψ are the step length and heading when a step is
detected, respectively.

In the first stage, the pedestrian walking is detected by
a step detection algorithm using acceleration obtained from
a waist-mounted IMU device. We used the peak detection
algorithm to count the peak of the acceleration while walk-
ing [20], [26]. This has an advantage in that it can be easily
applied to the building of a PDR. Second, an acceleration-
based SL estimation, also known as the Weinberg method,
is performed [27].

The SL is estimated through the acceleration created by the
waist bounce as follows:

SL = K × 4
√
Amax − Amin, (13)

where K is a constant for a unit conversion, such as the
feet or meters traveled. In addition, Amax and Amin are the
maximum and minimum accelerations measured in a single
stride, respectively.

The attitude heading reference system (AHRS) is a method
applying a built-in accelerometer, gyroscope, and magne-
tometer in the IMU to calculate the attitude and head-
ing expressed in Euler angles (φ, θ, ψ) [28]. The heading
described by the Euler angle yaw (ψ) is obtained fromAHRS
as follows:

MX = mx cos(θ)+ my sin(θ) sin(φ)+ mz sin(θ ) cos(φ),

(14)

MY = my cos(φ)− mz sin(φ), (15)

ψ = arctan(
MY

MX
), (16)

where mx , my, and mz are 3-axis magnetic field data from
the magnetometer. In addition, φ and θ are the roll and
pitch angles obtained from the accelerometer and gyroscope,
respectively.

FIGURE 6. Proposed NLOS identification based UWB/PDR hybrid system
(NI-hybrid system).

III. PROPOSED NLOS IDENTIFICATION BASED
UWB/PDR HYBRID SYSTEM
The proposed positioning system integrates both UWB and
PDR based on the KF sensor fusion method [29]. The KF
can provide estimates of tag positions, given the measure-
ments including noise observed over time. The KF consists
of two phases: prediction and correction. In the prediction
phase, the expected measurements for the system input are
calculated, and in the correction phase, the current position
is estimated from the predicted and actual measurements.
In this paper, to estimate the tag positions even in an NLOS
environment, the proposed method applies the NLOS identi-
fication algorithm to the measurement update stage of the KF.
Fig. 6 shows the operation procedure of the proposed NLOS
identification based UWB/PDR hybrid system (NI-hybrid
system). In Fig. 6, the PDR and UWB systems are linked
to the prediction and correction phases of the KF. When
the PDR system detects a new step k , the step length esti-
mation algorithm observes the step length (SLk ) for k by
applying (13). Next, the heading estimation process finds the
heading (ψk ) for k with (16). Finally, the SLk andψk obtained
are input into the KF prediction, also known as the time
update phase. Concurrently, the UWB system performs TWR
and then finds the tag location using trilateration. During
this process, the UWB system needs to count the number of
valid TWRs (NVAL

k ), which can estimate the distance between
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the tag and each anchor. If NVAL
k is greater than or equal to

three, the UWB system updates the UWB position (LUWBk )
from a previous UWB position (LUWBk−1 ) with the LS esti-
mation (9). Subsequently, the NLOS identification process
calculates the number of valid TWRs in the NLOS channel
(NNLOS

k ). Finally, the LUWBk , NVAL
k , and NNLOS

k obtained are
input into the KF correction, also known as the measurement
update phase. The proposed system follows the principle of
the discrete KF [29], such that the position is updated at each
step of the pedestrian. By operating both the prediction and
correction phases recursively, the proposed system provides
a combined positioning result.

For the KF prediction phase, we set the state equation for
the 2D current position (Xk =

[
xk yk

]T ) of the new step k as
follows:

Xk = AXk−1 + BUk + wk , (17)

where A and B are the set identity matrices, and wk is the
process noise. In addition, Uk is the system input vector,
which denotes the movement of the pedestrian at step k .

Uk =
[
SLk · − cos(ψk )
SLk · sin(ψk )

]
, (18)

For the correction phase, we set up the measurement pro-
cess using the UWB system as follows:

Zk = LUWBk = HXk + vk , (19)

where LUWBk =
[
uxk uyk

]T is the updated position of the
UWB system, H is set to the identity matrix, and vk denotes
the measurement noise.

In this study, the process noise covariance Q = diag
(σ 2
px , σ

2
py) of the PDR system model is considered fixed

because it is less affected by external factors such as radio
channel conditions. By contrast, the measurement noise
covariance R = diag(σ 2

ux , σ
2
uy), which is the error covariance

of the UWB system, is variable because of the NLOS effect.
We assume that the tag and anchor exposed to the NLOS

will have a nonstationary UWB signal. In this NLOS envi-
ronment, if NVAL

k < 3, the covariance matrix R will be large.
However, when all anchors are in the LOS condition, R will
be smaller. Therefore, the updated Rk can be expressed as
depending on the weight factorWk as follows:

Wk =


NNLOS
k
NVAL
k

, if NVAL
k ≥ 3

1, if NVAL
k < 3

(20)

Rk = Rmin ·
(
Rmax
Rmin

)Wk

for 0 ≤ Wk ≤ 1, (21)

where Rmin and Rmax are the minimum and maximum the
values of R, respectively, NVAL

k is the number of valid TWRs,
and NNLOS

k is the number of anchors in the NLOS channel.
In addition, if NVAL

k < 3, Wk is set to 1, regardless of
NNLOS
k . Algorithm 2 describes the procedure for the NLOS

identification KF (NI-KF) fusion.

Algorithm 2 NLOS Identification KF (NI-KF) Fusion

Input: SLk , ψk ,NVAL
k ,NNLOS

k ,LUWBk
Output: X̂k
Initialization: R0 = Rmin, X̂0 = LUWBk
for k = 0 : n do

Func Prediction(SLk , ψk , X̂k−1,Pk−1):

Uk =
[
SLk · − cos(ψk ) SLk · sin(ψk )

]T
X̂−k = AX̂k−1 + BUk
P−k = APk−1AT + Q

return X̂−k ,P
−

k

Func Correction(NVAL
k ,NNLOS

k ,LUWBk ,
X̂−k ,P

−

k ):

if NVAL
k ≥ 3 then

Wk =
NNLOS
k
NVAL
k

else
Wk = 1

Rk = Rmin ·
(
Rmax
Rmin

)Wk

Zk = LUWBk

Kk = P−k H
T (HP−k H

T
+ Rk )−1

X̂k = X̂−k + Kk (Zk − HX̂
−

k )
Pk = P−k − KkHP

−

k

return X̂k ,Pk

IV. PERFORMANCE EVALUATION
A. EXPERIMENTAL SETUP
In this section, we introduce our testbed for the performance
evaluation of the proposed UWB/PDR positioning system.
The testbed consists of a tag as the positioning target and
anchors deployed in the experimental area. The tag device we
developed in this study has functions of the UWB and PDR
positioning and consists of five parts, as shown in Fig. 7. The
parts of the tag device are (A) UWB module (DWM1000),
(B) IMU module (EBIMU-9DOF), (C) Bluetooth module
(FB155BC), and (D) and (E) microcontroller units (MCU)
(STM32F105 and STM32F407, respectively). In our tag
device, the sub-controller (D) controls (A) to perform the
TWR and report the results of the TWR to the main con-
troller (E). Next, (E) drives the NI-KF fusion algorithm with
the UWB system of (D) and the PDR system (B). The user
can access internal data through (C). The anchors used in
this study are EVB1000 devices developed by Decawave, and
include only the UWB system, such as (A) and (D), of the
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FIGURE 7. The tag device of the UWB/PDR hybrid system.

tag device. In this evaluation, we configured the parameters
of each system as follows:

1) PDR SYSTEM
The accelerometer has a sensitivity of 16 g, a gyroscope has
a sensitivity of 2000◦s, the sensitivity of the magnetometer is
0.6 uT, the sampling frequency is 50 Hz, a step length factor
K of 0.75 is applied, and the heading offset from the earth
frame is 20◦.

2) UWB SYSTEM
A total of three channels are used, the pulse repetition
frequency (PRF) is 16 MHz, the data rate is 110 Kbps,
the preamble length is 1024, the preamble code is 5, and a
TWR duration of 280 ms is applied.

FIGURE 8. The experiment area with reference points and azimuth.

The experimental area chosen for testing was a general
indoor NLOS environment. Fig. 8 shows the experimental
area consisting of a laboratory, corridor, and furniture, as well
as the deployment of UWB anchors. In this figure, there

TABLE 1. Coordinates (x, y) [m] of the reference points.

are three types of reference points. The red triangle P0 is
the origin of a 2D coordinate system, the blue rectangles
A0 ∼ A3 are pre-installed UWB anchors, and the green cir-
cles P1 ∼ P16 are waypoints on the path of a moving tar-
get. Table 1 lists the coordinates of these reference points.
The tag is held at the user’s chest height of 1.4 m, and the
anchors are deployed at the height of 1.8 m. The relative
height difference of 0.4 m between the tag and anchor is
ignored in this evaluation because it does not almost affect
the 2D LS-based positioning performance [30]. In addition,
to match the azimuth angle with the 2D coordinate system,
a bias with a heading offset of 20◦ is added when obtaining
the heading yaw.

Fig. 9 shows the overall experimental environment with
pre-deployed anchors. Each sub-figure was taken on specific
waypoints in the experiment area. Fig. 9 (a) shows area P4,
whereas Fig. 9 (b) shows area P13 in the laboratory and
corridor.

FIGURE 9. The experiment area and anchor deployment: (a) laboratory
(A0 and A3) and (b) laboratory (A1 and A2), and corridor.

B. EXPERIMENTAL SCENARIOS
In this experiment, we considered two scenarios. The first
scenario is in a weak NLOS environment caused by obstacles
such as furniture or the human body, which are frequently
observed in various situations and result in a relatively small
error. The second scenario is in a hard NLOS area, such as
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with concrete walls and compartments. In general, when the
tag moves to the hard NLOS area where UWB anchors are
not installed, the positioning performance is more severe. The
experimental area shown in Fig. 8, is divided into a laboratory
and corridor by walls and furniture. The UWB anchors were
placed only in the laboratory. In other words, the weak NLOS
scenario was built in the laboratory, whereas the hard NLOS
scenario was formed in the corridor.

In addition, we created different paths for each scenario
and compared our proposed positioning with existing posi-
tioning techniques. In each path, the mobile tag departs
from the first waypoint, passes through the next waypoints
one by one directly, and then arrives at the last waypoint.
Table 2 lists the waypoints for each path used in the scenario.
Existing positioning methods can be divided into two types.
The first is the non-fusion method such as UWB and PDR.
The second is a fusion method using KF or EKF. For the
KF-based fusion methods, a typical KF and proposed NI-KF
could be used. The operations of the prediction and correction
phases in hybrid-1 using typical KF are the same as the
proposed one using NI-KF. However, there is no method to
update the measurement noise covariance in KF fusion based
on NLOS identification. The EKF-based fusion presented
in [18] and [19] are labeled hybrid-2 and hybrid-3,
respectively.

TABLE 2. Waypoints of each trajectory used in the scenario.

C. PERFORMANCE EVALUATION
For the positioning performance evaluation, we show a 2D
trajectory, cumulative distribution function (CDF), box plot,
and root mean square error (RMSE). The CDF, box plot, and
RMSE were drawn based on the positioning error for each
method. On each blue box in the box plot, the central red
line indicates the median of the positioning error, and the
bottom and top edges of the box indicate errors of 25% and
75%, respectively. The whiskers outside the box extend to the
maximum and minimum error points not considered outliers,
and the outliers are plotted individually using the red plus
symbol.

The parameters of the hybrid-2 and hybrid-3 are the same
as in [18] and [19], and NI-hybrid is configured as follows:Q
and Rmin are the identity matrices, and Rmax is diag(103, 103).
In addition, the hybrid-1 uses Q and R of the identity matrix.

1) WEAK NLOS ENVIRONMENT
Figs. 10, 11, 12, and Table 3 indicate positioning perfor-
mances for each method under the weak NLOS environment.

TABLE 3. RMSE [m] for positioning methods in weak NLOS environment.

In the first square 1 scenario, the fusion-algorithm-based
positioning systems (hybrid-1, hybrid-2, hybrid-3, and
NI-hybrid) achieved a similar performance with an accuracy
of approximately 0.25 m in terms of positioning error, and
the positioning performance showed improvement compared
to single positioning technology (UWB and PDR). Among
these algorithms, the UWB approach without any sensor
fusions has the lowest performance with a wide distribution
of errors. By contrast, NI-hybrid has no outliers and the
smallest RMSE. The next scenarios are square 2 and a zigzag
showing an extended path from square 1. Along these longer
paths, the accumulated PDR errors are observed, and UWB
positioning has an outlier owing to the weak NLOS along
their trajectories. By contrast, all fusion-based positioning
methods effectively mitigate the drawbacks of UWB and
PDR. In particular, NI-hybrid and hybrid-3 have a better
accuracy and precision compared to hybrid-1 and hybrid-2.

As a result, the proposed NI-hybrid system has a similar
performance to the existing EKF-based fusion system in a
weak NLOS environment. Nevertheless, NI-KF is advanta-
geous for systemswith less computing power becausemost of
the system matrices are determined as identity matrices, and
the matrix dimension is small. In addition, it does not undergo
a linearization step such as with a Jacobian approach.

2) HARD NLOS ENVIRONMENT
Figs. 13, 14, 15, and table 4 indicate positioning perfor-
mances for each method under the hard NLOS conditions.
Three scenarios, clockwise 1, clockwise 2, and counterclock-
wise, are used for this environment. In our testbed used for the
hard NLOS conditions, all paths include a laboratory where
anchors are placed and a corridor where they are not. Thus,
note that the through-the-wall situation caused by the object
penetration feature of UWB the curves at the halfway point
of each path.

Along each trajectory, the PDR represents a similar drift
error over all paths as a weak NLOS. However, the UWB
shows worse positioning errors around the center of the cor-
ridor and door owing to the hard NLOS. By contrast, from
coordinates of approximately (2, 1.5) to (4, 1.5) and from
(10, 1.5) to (12, 1.5), a temporary recovery of the UWB
channel is occasionally observed.

The hybrid-1 approach mitigates UWB outliers by using
PDR positioning and improves the performance, although
its measurement noise model does not correspond to the
through-the-wall situation. As a result, unstable UWB signals
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FIGURE 10. Positioning performances for each method in square
1 scenario: (a) positioning trajectories, (b) CDF of positioning error,
(c) box plot of positioning error.

FIGURE 11. Positioning performances for each method in square
2 scenario: (a) positioning trajectories, (b) CDF of positioning error, and
(c) box plot of positioning error.
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FIGURE 12. Positioning performances for each method in zigzag scenario:
(a) positioning trajectories, (b) CDF of positioning error, and (c) box plot
of positioning error.

FIGURE 13. Positioning performances for each method in clockwise
1 scenario: (a) positioning trajectories, (b) CDF of positioning error, and
(c) box plot of positioning error.
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FIGURE 14. Positioning performances for each method in clockwise
2 scenario: (a) positioning trajectories, (b) CDF of positioning error, and
(c) box plot of positioning error.

FIGURE 15. Positioning performances for each method in
counterclockwise scenario: (a) positioning trajectories, (b) CDF of
positioning error, and (c) box plot of positioning error.
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TABLE 4. RMSE [m] for positioning methods in the hard NLOS
environment.

are observed along the trajectory. The hybrid-2 mitigates
UWB errors at the beginning of the corridor, whereas some
of them remained at each trajectory because of the persistent
NLOS environments. It is clear that the hybrid-2 has a limita-
tion in its application to hardNLOS environments owing to its
reduced positioning performance. The hybrid-3 improves the
positioning performance compared to hybrid-1 and hybrid-2
because it provides robustness under situations where UWB
cannot update its position. However, outliers of the UWB
were still observed in the trajectories. Under these scenarios,
the TWR was successfully applied in the corridor, despite
the anchor being installed behind the wall. That is, the UWB
updates its position with higher errors observed in a hard
NLOS channel. The observed error distribution under this
scenario creates curves in the CDF and extends the whiskers
in the box plot. The result of hybrid-3 shows the limitations
of its system model, which is similar to the results of a KF
without the NLOS identification approach.

NI-hybrid fuses PDR and UWB by evaluating the stability
of the UWB through NLOS identification. In the corridor,
the UWB fluctuations observed around each door and central
area were alleviated by the PDR, and the drift of the PDR
was calibrated using a temporary recovery of the UWB link.
This calibration is observed from (2, 1.5) to (4, 1.5) and
from (8, 1.5) to (10, 1.5) coordinates located in the corridor.
Therefore, we conclude that NI-hybrid effectively mitigates
the NLOS errors caused by the through-the-wall condition.
This improvement is illustrated in the CDFs with enhanced
slopes and box plots with the smallest boxes and shortest
whiskers. Indeed, the average RMSE of the NI-hybrid is
0.4266 m, which is a 36.5% improvement in the positioning
performance over 0.672 m for the hybrid-3.

V. CONCLUSION
In this paper, we proposed a UWB and PDR hybrid position-
ing system using an NLOS identification-based KF sensor
fusion method. The proposed method was compared with
existing hybrid methods in two experimental environments
(weak NLOS and hard NLOS). In a weak NLOS environ-
ment, the proposed approach and the hybrid-3-based posi-
tioning systems show better performances than the others.
Even in a hard NLOS environment, the proposed method
shows an improvement in the RMSE of 36.5% compared
to the existing system based on an EKF. The experimen-
tal results show that the proposed positioning system is
robust to NLOS errors occurring at indoor environments.

Moreover, our NI-hybrid system is lightweight compared to
complex algorithms such as hybrid-2 and hybrid-3. It is clear
that the NLOS environment has significantly degraded UWB
positioning systems. We are considering using deep learning
to enhance the NLOS identification performance of the pro-
posed system in the future.
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