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ABSTRACT The amount of data in real-time, such as time series and streaming data, available today
continues to grow. Being able to analyze this data the moment it arrives can bring an immense added
value. However, it also requires a lot of computational effort and new acceleration techniques. As a possible
solution to this problem, this paper proposes a hardware architecture for Typicality and Eccentricity Data
Analytic (TEDA) algorithm implemented on Field Programmable Gate Arrays (FPGA) for use in data
streaming anomaly detection. TEDA is based on a new approach to outlier detection in the data stream
context. The suggested design has a full parallel input of N elements and a 3-stage pipelined architecture
to reduce the critical path and thus optimize the throughput. In order to validate the proposals, results of
the occupation and throughput of the proposed hardware are presented. The design reached a speed of up
to 693x, compared to other software platforms, with a throughput of up to 10.96 MSPs (Mega Sample Per
second), using a small portion of the target FPGA resources. Besides, the bit accurate simulation results are
also presented. This work is a pioneer in the hardware implementation of the TEDA technique in FPGA.

The project aims to Xilinx Virtex-6 xc6vIx240t-1ff1156 as the target FPGA.

INDEX TERMS Data streaming, FPGA, anomaly detection, TEDA.

I. INTRODUCTION

Outlier detection or anomaly detection consists of detecting
rare events in a data set. When data is captured and pro-
cessed continuously in an online way they are considered
as data streams [1]. Due to the increasing number of sen-
sors in the most diverse areas and applications, streaming
data is currently generated from many different sources and
there is a huge rise in the availability of time-series data.
It is a central problem in many application areas such as
time-series forecasting, medical systems, industrial process
monitoring, telecommunications, sensors networks, internet
traffic and others [2], [3]. These systems provide users with
real-time information and continuously seek to extract knowl-
edge from structures of unified analysis from within massive
data flows. Time-series anomaly detection helps to moni-
tor the different metrics and parameters of industrial and
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corporate applications and services in real-time. It supervises
the time-series continuously and sends alerts for probable
risky events related to incidents instantly [4]. Consequently,
outlier detection of data streams is a prominent research area
in data mining [5], as well as an important task in various
industrial applications.

Industry 4.0 projects are an area where anomaly detection
has been increasingly applied to [3]. One of the challenges
of Industry 4.0 is the detection of production failures and
defects [6]. New technologies aim to add value and increase
process productivity, but face difficulties in performing com-
plex and massive-scale computing tasks due to the large
amount of data generated [7]. Many solutions presented in
the literature require a knowledge of full data set processes
and the systems for modelling and making a series of initial
assumptions. These, in most cases, are not applied [8], hence,
traditional anomaly detection techniques may not be an appli-
cable approach to detect anomalies in real-time streaming
data series [9].
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Typicality and Eccentricity Data Analytic (TEDA) algo-
rithm has been presented as a possible solution for anomaly
detection with streaming algorithms [10]-[12]. It is based
on a new approach of outlier detection in a data stream
context [13] and, for example, it can be applied with an
algorithm to detect autonomous behavior in an industrial
process operation. TEDA can be used as an alternative to
statistical framework for analyzing most data. It is based on
new metrics, all based on the similarity/proximity of data in
the data space, not in density or entropy, as per traditional
methods.

Real-time analysis stream data is critically dependent
on computational infrastructure. The huge accumulation of
real-time data to flow in a network, for example, can quickly
overload traditional computing systems due to the large
amount of data that originates from sensors and a requirement
for intensive processing and high performance. Therefore,
software-only approaches cannot keep up with the grow-
ing computational demands of real-time analysis, given the
barriers to reducing latency in large volumes. In addition,
as the number of nodes increases to handle the ever-growing
amounts of data, performance is not scaled linearly [14]-[16].

The ability to process massive data flows from different
sources at high speed is a critical problem. Some important
aspects need to be considered when choosing an anomaly
detection method, such as the computational effort required
to handle large streaming data. Since they are dynamic,
unknown and unlimited, the received information needs to
be stored and analyzed without compromising memory and
run-time. Handling this type of data requires three funda-
mentals, which are high-throughput, ultra-low-latency, and
low-power [14]-[19].

Thinking about the challenges presented, this work pro-
poses a specialized hardware architecture of TEDA in recon-
figurable computing using FPGAs for Real-Time Anomaly
Detection of Streaming Data. The development of the hard-
ware technique allows systems to be made even faster than
their software counterparts. This extends the possibilities of
use especially during situations where time constraints are at
their most severe. Reconfigurable computing is an emerging
area, and it provides the possibility of developing hardware
architectures customized to the algorithm. The main objective
is to fit hardware to the algorithm, and it is not to fit the
algorithm to hardware, unlike the traditional model where
the algorithm fits the instructions of the processor. In the
traditional model, complex algorithms with high degrees of
parallelization are inhibited in terms of computational per-
formance, as they often have to shape themselves sequen-
tially to the target hardware [20], [21]. The development of
a more specialized hardware architecture has been presented
as an exciting alternative for overcoming bottlenecks, mak-
ing it possible to create solutions for mass data processing
and, at the same time, consider ultra-low-latency, low-power,
high-throughput, security and ultra-reliable conditions [22],
[23], all-important requirements for increasing productivity
and quality in industry 4.0 processes.
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One of the motivations for this work is the possibility
of accelerating the TEDA algorithm for time-constrained
applications, massive data, and energy efficiency by using
a hardware-based implementation [24], [25]. All validation
and synthesis results were made using an FPGA Virtex 6
xc6vIx240t-1ff1156. The FPGA choice was because it has
high performance and flexible architecture.

This paper is organized as follows: This first section is
presented as an introduction to the work, explaining the
motivation behind it and major contributions. Section II dis-
cusses some related works and the state of the art. Section I1I
presents a theoretical foundation regarding the TEDA tech-
nique. Section IV presents the implementation description
details for the architecture proposed. Section V presents
the validation and synthesis results of the proposed hard-
ware, as well as comparisons with software implementations.
Finally, Section VI presents the conclusions regarding the
obtained results.

Il. RELATED WORK

Real-time anomaly detection in data streams has the potential
to be applied to many areas such as; preventive mainte-
nance, fault detection, fraud detection and signals monitoring.
These are concepts that can be used in different ranges of
the industry, among others these can include technology,
finance, medicine, security, energy, e-commerce, agriculture
and social media.

In the literature, there are some uses of the TEDA technique
for anomaly detection and even for classification. The article
presented in [26] shows a proposal for a new TEDA-based
anomaly detection algorithm. The proposed method com-
pares the accumulated proximity information of all sam-
ples against previous specific point pairs suspected of being
anomalies. The method/technique uses local spatial distri-
bution information about the vicinity of the suspect point.
In the journal, TEDA is compared to an approach using
traditional statistical methods, emphasizing that the set of
initial assumptions is different. TEDA is a generalization of
traditional statistics, although TEDA does not need the initial
assumptions. Besides, it has been shown that due to the recur-
sion feature, TEDA is computationally more efficient and
suitable for online and real-time applications. Other works
in the literature also present similar results and conclusions
[8], [10], [12], [27], [28]. The characteristics and advantages
of the TEDA algorithm presented in these references have
justified and motivated the choice of this algorithm, among
several anomaly detection algorithms, for the implementation
of the hardware architecture for streaming processes.

Another motivation for using the Algorithm TEDA in
hardware implementation is the possibility of paralleling it.
In the work shown in [11], a new algorithm is presented
with a parallel structure within big data processing classifi-
cation. The main feature of the proposed algorithm, called
TEDAC]lassBDp, is the processing of block data, where each
block uses the TEDAClass so that all blocks operate in
parallel. As with TEDAClIass, the proposed algorithm does
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not require information from previous data, and its operation
occurs recursively, online and in real-time. The parallel struc-
ture presented is very suitable for FPGA, its implementation
in hardware would improve the performance and efficiency
of the system in terms of latency, throughput and energy
consumption. This enables the use of the proposal in response
to problems where these restrictions may be limiting the
processing of large volumes of data.

As the amount of data that needs to be processed grows
exponentially, and autonomous systems become increasingly
important and necessary, the implementation of machine
learning, fault and anomaly detection and streaming algo-
rithms on hardware have been studied in the literature.
In work [29], an implementation of target and anomaly detec-
tion algorithms for real-time hyper-spectral imaging was
proposed on FPGA. The algorithms were implemented in
streaming fashion, similar to this work. The results obtained
from a Kintex-7 FPGA using fixed-point structure were
satisfactory for their application. However, they present an
occupied area much larger than our proposal, using twice as
many LUTs, almost 70 times more registers and 10 times the
number of multipliers. The outcome also shows a very low
throughput, with a processing time in the range of seconds.

The work [30] presented a study on the impact of Neu-
ral Network architectures compared to statistical methods
which are used in the implementation of an Electrocardio-
gram (ECG) anomaly detection algorithm on FPGA. The
fixed-point implementation contributes to reducing the num-
ber of required resources, however the design was created
with High-Level Synthesis (HLS), which, perchance, was
not able to optimize the FPGA resource consumption, when
regarding higher resource consumption compared with man-
ual optimization. In this work, only occupation and accuracy
results are analyzed, no throughput or time analyzes are
presented.

The implementation presented in [31] describes an accel-
erated FPGA architecture for anomaly detection based upon
a Neural Network in pipeline. The design has a 200MS/s
throughput and a 105ns latency likewise used in Radio Fre-
quency Signals. The work presents a high throughput and
ultra-low latency for inference, considerably faster than other
similar implementations. However because the proposed
hardware uses an NN-based algorithm, it needs a training
stage, which is hosted in a PC (heterogeneous architecture)
and this considerably limits the systems adaptability. As pre-
sented, the throughput and latency of the architecture are
1290ns (or 775KS/s) and 1285ns respectively, with both
their NN-weights and biases to be updated. This makes the
true throughput of the system, taking into consideration its
adaptability, almost 10 times lower than ours. Even though
all processing is done using 16-bit-fixed point with truncated
rounding. Fixed-point with low resolution allows the possibil-
ity of keeping everything on-chip although with considerable
impact on the weight system accuracy.

Concerning the TEDA algorithm, to date, no literature or
studies have been aimed at exploring the implementation of
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its hardware on FPGA. This paper proposes to accomplish
this feat in a pioneering manner.

Ill. BACKGROUND

TEDA was introduced by [32] as a statistical framework,
influenced by recursive density estimation algorithms. Unlike
algorithms that use data density as a measure of similarity,
TEDA uses concepts of typicity and eccentricity to infer
whether a given sample is normal or abnormal to the dataset.

The typicality of TEDA is the similarity of a given data
sample to the rest of the dataset samples to which it belongs.
Eccentricity, on the other hand, is the opposite of typicality,
which indicates how much a sample is dissociated from other
samples within its set. Therefore an outlier can be defined as a
sample with high eccentricity and low typicality, when taking
into consideration the established threshold for comparison.
It is important to note that for eccentricity and typicality
calculations no parameter or threshold is required.

To calculate the eccentricity of each sample, TEDA utilizes
the sum of the geometric distances between the analyzed
sample x; and the other samples in the set. Thus, the greater
the value, the greater the eccentricity of the sample, and
consequently, the lower its typicality. [26] proposed recur-
sively calculating the eccentricity. The eccentricity, £ can be
expressed as

_ 1 (g — x0T (1] —xx)
& (x) = e T Klo2T:

where k is the discretization instant; x; is an input set of N
elements in the k-th iteration, x; = [x,g x,? x/z{v 1; u§ is also
an N elements vector, equal to the average of x; at the k-th
iteration and [az]j(C is the variance of x; at the k-th iteration.
The calculation of [L§ and [GZ]Z are also done recursively,
using the following equation
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The typicality of a given sample xi, at the k-th itera-
tion, can be expressed as a complement to eccentricity, as
follows [26]

(x) = 1 — & (x). “

Besides, [26] also defined that normalized eccentricity can
be calculated as

&)
>

k
G (x) = Y e =1 k=2 )
i=1
To separate normal state data from abnormal state data,
it is necessary to define a comparison threshold. For anomaly
detection, the use of the mo [33] threshold is widespread,
however this principle must first assume the distributional
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behaviour of the analyzed data, such as the Gaussian dis-
tribution [26]. Chebyshev inequality can be used for any
data distribution, assuming that the probability that the data
samples are more than mo from the average is less than
or equal to 1/m2, where o is the standard deviation of the
data [34].

The condition that produces the selfsame results as Cheby-
shev’s inequality, discarding any assumptions about data and
its independence, can be expressed as

m? + 1
2k
where m corresponds to the comparison threshold [26].
For the hardware implementation, we have used the TEDA

algorithm as presented in Algorithm 1 in a 3-stage pipelined
architecture, based upon the equations presented above.

Sk > , m>0 6)

Algorithm 1 TEDA

Input: x;: k-th sample; m: threshold
Output: outlier: sample classification as abnormal or normal

1: begin

2: while receive x do

3 if k=1 then

4: ui <~ Xp;

5: [02];(‘ <~ 0;

6 else

7 update ui using equation 2;

8: update [02]’12 using equation 3;

9: update & (x) using equation 1;

10: update ¢ (x) using equation 5;
2

11: if ¢ (x) > ’"22'1 then

12: | outlier < true;

13: else

14: L outlier < false;

15: | k<—k+1;

The inputs of the Algorithm 1 are the data samples, xy,
and a comparison threshold, m. The output for each entry, xy,
is the indication of the sample’s classification as abnormal
(outlier = true) or normal (outlier = false).

IV. PROPOSED ARCHITECTURE

In this work, a TEDA FPGA proposal was implemented using
Register Transfer Level (RTL) such as the works presented in
[25], [35]-[38]. A design overview can be seen in Figure 1.
It has four different block structures: The MEAN module,
the VARIANCE module, the ECCENTRICITY module and
the OUTLIER module. The characteristics of the proposal
and modules description will be presented and discussed in
the following section.

A. ARCHITECTURE PROPOSAL OVERVIEW

The architecture was developed to pipeline the operations
presented in Algorithm 1. The MEAN module implements
the average described in Equation 2 and it is one clock
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cycle ahead of the VARIANCE module, which is responsible
for calculating the variance as presented in the equation 3;
The ECCENTRICITY module calculates the eccentricity as
presented in the equation 1 and it is one clock cycle delayed
to the VARIANCE module and two to the MEAN module;
The OUTLIER module is used to normalize the eccentricity
as in Equation 5 and to compare with the threshold, as shown
in Equation 6 and it operates at the same clock cycle as
ECCENTRICITY. Each module is detailed later in the fol-
lowing section.

3-stage pipelined architecture reduces the critical path and
thus optimizes the throughput. The critical path is reduced
through the placement of pipeline registers between the mod-
ules. The placements of the registers are, 1) at the output of
MEAN module, N registers illustrated as MREGn, and also
at the input of the VARIANCE module, N registers illustrated
as VREGIn, where N is the size of the input vector X, 2) at
the output of VARIANCE module, one register represented as
VREG], and at the input of ECCENTRICITY module, two
registers illustrated as EREG3, EREG4. A total of three clock
cycles are required to classify the input signal in outlier or
non-outlier. The first cycle is required to calculate the mean,
,uﬁ, (Equation 2), the second one to calculate the variance,
[oz]i,(Equation 3) whereas the third cycle is required to
calculate the eccentricity, (Equation 1) and ultimately classify
the sample in outlier or not-outlier. it causes a 3 clock cycle
delay, however, it decreases the critical path and consequently
improves throughput.

The implementation has the Algorithm 1 as reference.
The system receives the FPGA clock and the k-th sample
vector X; as inputs. The k-th iteration number is updated
from the increment of a counter and the m threshold is used
as a constant, stored in the OUTLIER module. As in the
algorithm line 7, the MEAN module calculates each single
element average of x; vector. It is possible to observe that
there are N MEAN blocks, where N is the vector size.
This block will be detailed in section IV-B. After this step,
moving to the next line (8), the calculation of variance is
done in the VARIANCE Module, this block is detailed in
the section IV-C. The ECCENTRICITY block has, as inputs,
the signals that left the block VARIANCE and k, referenced
at line 9 and detailed in subsection IV-D. The OUTLIER
block is detailed in subsection IV-E. It receives the ECCEN-
TRICITY, & (x), and calculates the normalized eccentricity
to compare against the threshold as presented in lines 10, 11
and 12.

B. MODULE I - MEAN

Each n-th MEAN module computes the average of each
individual n-th element vector x; acquired at run time. The
implementation is based on Equation 2 and it is detailed
in Figure 2. In addition to receiving the n-th element of vector
X as an input, the MEAN block uses a counter to define the
number of sample interactions, k. The implementation uses a
comparator block identified as in the Figure 2 as MCOMPn
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FIGURE 2. MEAN module.

which is used to verify if the system is in the first iteration
as Line 3 of Algorithm 1. The MMUX# is a multiplexer that
acts as a conditional evaluation, using as a selecting value,
the output of MCOMPrn comparator. The register MREGn
stores the vector n-th u elements (u). The p} value stored
in MREGn is multiplied with ]%1 in MMULT 17 and added
in MSUMn with the output of MMULT2#n that has as input
x,’j and the inverse value of k. Each n-th element of vector xy,
x;, requires a MEAN block. The MEAN module computes
every single element average of x; in parallel, regardless of
the size of the vector, thus enabling the processing of several
signals in parallel at the same clock.

C. MODULE II - VARIANCE
The VARIANCE module is illustrated in Figure 3. It com-
putes the variance of x; vector samples by receiving the xj
vector itself and its average, u’,ﬁ, which were calculated in the
previous MEAN blocks.

The VARIANCE module, akin to the MEAN module, uses
a comparator identified at the Figure 3 as VCOMP1 to verify
if the system is in the first iteration (Line 3 of Algorithm 1).
The VMUX1 is a multiplexer that also implements a condi-
tional evaluation to release the value of 0 in the register output
VREGI in the first iteration. The register VREG1 stores the
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variance value, [az]x , from the second iteration. The other
registers in the block, VREG2 register and the N VREGn
registers, are used to delay the iteration number k by one clock
cycle and the elements of x; respectively.

As demonstrated in Equation 3, the variance calculation
is done recursively. It is necessary to calculate ”xk — Ry ||2
and to do that, N subtractors (VSUB#r) and N multipliers
(VMULTI1_n) are used, as well an adder (VSUMI) with
N inputs. Each element of vector uj is subtracted from
its respective element in vector x; and the result of this
operation is multiplied by itself (squared) and then added to
the other results. The ||xk — Wy ||2 value is then multiplied
(at VMULT?2) by 1/k. It is then added at VSUM?2 adder
with the variance calculated in the previous iteration, [oz]x,
multiplied (VMULT3) by (k—1)/k. From the second iteration
on, this value passes through the VMUXI1 multiplexer to
the VREGI register, delivering the calculation of the vari-
ance value to the VARIANCE block output. The values of
||xk — Ry ”2 and 1/k are also delivered to the output of the
VARIANCE block to avoid redundant operations as they
will be implemented in the next block, the ECCENTRICITY
block.

D. MODULE III - ECCENTRICITY

The ECCENTRICITY module is a simpler block than those
previously presented. This is because it uses operations that
have already been performed in the VARIANCE block to
calculate eccentricity. The geometric distance ”xk — Ry ||2
(equivalent to (pu; — xk)T(ui — Xxg)) is stored in register
EREG3 and 1/k is stored in EREG4 register. As the ECCEN-
TRICITY module is the architectural design of Equation 1
(Algorithm 1 line 9), the variance value [Uz]z is multiplied
by k (EMULT1) and used to divise (EDIV1) the geometric
distance (uy —xk)T(;Li —xy). This operation output is added
to 1/k in the ESUMI adder, subsequently calculating the
eccentricity of the samples (&;(x)) and delivering them to the
ECCENTRICITY block output.

E. MODULE IV - OUTLIER
Finally, in the OUTLIER block, the samples are classified
as abnormal (outlier = true) or normal (outlier = false).
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FIGURE 4. ECCENTRICITY module.

The design module can be seen in Figure 5. To classify
the samples, the OUTLIER block normalizes eccentricity
by dividing (ODIV1) with a constant, as shown in Equa-
tion 5,. The comparative block (OCOMPI1, compares this
normalized eccentricity with a threshold as shown in the
Lines 11, 12, 13 and 14 of the Algorithm 1. The registers
OREG1 and OREG?2 are used to synchronize the iteration
number k, since as the modules act in pipeline, the operations
carried out in the OUTLIER block (as well as ECCENTRIC-
ITY module) are delayed by two clock cycles concerning the
system input.

F. PROCESSING TIME

To parallelize the input of data from the sensors, we use the
technique of data parallelization, as described in [39]. All N
main modules are identical operators processing, in parallel,
different portions of the input data. Each of the N input
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signals ([x,i x,% . x,](V ]) is processed independently. When the
number of input signals increases, this parallel structure can
be updated, keeping the OUTLIER and ECCENTRICITY
modules unchanged and changing the VSUMI adder of
the VARIANCE module. VSUM1 will perform a tree sum.
Exploring this type of parallelism justifies speed up compared
to other solutions. In sequential architectures, in cases where
the arrival rate or amount of date items exceeds the process-
ing rates of the sequential structure [39], input signals from
each sensor are processed one after the other increasing the
operator’s input queue.

The use of the pipeline technique allows the system to be
divided into consecutive operators. Each operator receives
the output data from the previous one. Because it’s a 3-step
pipeline design, the proposed architecture has an initial delay,
d, that can be expressed as

d=3x1 @)
where ¢, is the system critical path time.
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TABLE 1. Fault types [40].

Fault Description
f16 Positioner supply pressure drop
f17 Unexpected pressure change across the valve
f18 Fully or partly opened bypass valves
f19 Flow rate sensor fault

The circuit implemented for the TEDA algorithm has an
execution time which is determined by the system critical
path time, #.. After the initial delay, the execution time of the
proposed TEDA, t7gpa, can be expressed as

ITEDA = I¢ (3)

Therefore, in every f7gpy it is possible to obtain the output
of an inserted sample, that is, the sample classification of
abnormal or normal.

The throughput of the implementation, thrgp4, in samples
per second (SPS) can be expressed as

1

ITEDA

threpA = ©)
V. RESULTS

The hardware validation and synthesis results for the archi-
tecture proposed in this work are presented in this section.
The behavioural simulation results of Algorithm 1 are
first validated with their corresponding Python-based func-
tional models. Then, the RTL models are synthesized on
a Virtex 6 (xc6vIx240t-1ff1156) FPGA device. Validation
results were used to verify the hardware functionality, while
synthesis results allowed the system to be analyzed for impor-
tant parameters for the design of hardware architectures.
Analysing parameters such as hardware occupancy and pro-
cessing time whilst also considering factors such as through-
put and speedup. All cases were validated and synthesized on
floating-point.

A. VALIDATION RESULTS

To validate the hardware architecture of the TEDA algorithm,
we used the DAMADICS (Development and Application
of Methods of the Actuator Diagnosis in Industrial Control
Systems) benchmark dataset [40]. The benchmark provides
a real data set of the water evaporation process in a Polish
sugar factory. It is a plant with three actuators; a control valve,
which controls the flow of water in the pipes; a pneumatic
motor, which controls variable valve openings and a posi-
tioner. This dataset has faults at different times of the day on
specific days. There are four different fault types, as shown
in Table 1.

Artificial failures were introduced on specific days to plant
operation data. The dataset has a set of 19 faults in these 3
actuators. As a way to validate the architecture, actuator 1
failures were simulated. Table 2 shows a detailed description
of some introduced faults for actuator 1.

The behavioral results, after synthesis, are presented
in Figures 6, 7, 8 and 9. The hardware architecture was
designed with a floating point number format.
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Figures 6 and 7 show the results obtained for the fault
tabulated as item 1 in Table 2. Figure 6 illustrates the behavior
of two simulated input variables (x; = [)ck1 x,%]). It is possi-
ble to observe that a failure happens between the moments
k=58900 and £=59800. In Figure 7 it is possible to observe
that there is a sudden change in the behavior of the eccen-
tricity (black curve), surpassing the value of the comparison
threshold with m = 3 (red curve).

In Figures 8 and 9 it is possible to observe the results
obtained for the fault tabulated as item 7 in Table 2. Figures 6
and 7, Figures 8§ illustrate the behavior of two elements of
inputx; = [x,l x,?] and Figure 9 shows the eccentricity and the
threshold. The failure happens between moments k = 37700
and k = 38400. It is possible to observe that there is a
change of eccentricity (black curve), surpassing the value of
the comparison threshold (red curve) also to m = 3.

B. SYNTHESIS RESULTS

After validation of the implemented circuit, the hardware
synthesis was wielded to obtain the FPGA resource occu-
pation report, as well as the critical time information and
clock cycles used to calculate the proposed implementation
processing time.
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TABLE 2. List of artificial failures introduced to actuator 1 [40].

Item  Fault Sample Date Description

1 f18 58800-59800  Oct 30,2001  Partly opened bypass valve

2 f16 57275-57550  Nov 9, 2001 Positioner supply pressure drop

3 f18 58830-58930  Nov 9, 2001 Partly opened bypass valve

4 f18 58520-58625  Nov 9, 2001 Partly opened bypass valve

5 f18 54600-54700  Nov 17,2001  Partly opened bypass valve

6 f16 56670-56770  Nov 17,2001  Positioner supply pressure drop

7 f17 37780-38400  Nov 20,2001  Unexpected pressure drop across the valve
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FIGURE 8. Behavior of fault item 7 - input vector xy.
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FIGURE 9. Behavior of fault item 7 - normalized eccentricity ¢y (x) with
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1) HARDWARE OCCUPATION

Table 3 presents data related to the hardware occupation of
the circuit in the target FPGA for 5 scenarios, with a different
number of input sensors for each of them. The first col-
umn shows the number of input sensors, the second column
displays the number of multipliers used, the third column
displays the number of registers, and the fourth column shows
the number of logical cells used as LUT (nyyr) throughout
the circuit.

Analyzing the data presented in Table 3, it was identified
that even whilst using a floating-point resolution, only a small
portion of the resources were occupied from the target FPGA.
For the first scenario, these resources had a total of only 3%
from multipliers, less than 1% from registers, and about 7%
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TABLE 3. Hardware occupation.

Inputs  Multipliers Registers nLUT
2 27 (3%) 792 (< 1%) 11.586 (7%)
4 45 (5%) 911 (< 1%) 17.720 (11%)
8 81 (10%) 1189 (< 1%)  29.963 (19%)

16 153 (19%)
32 297 (36%)

1690 (< 1%)
2802 (< 1%)

54.439 (36%)
103.324 (68%)

TABLE 4. Processing time.

Inputs  Critical time Delay TEDA time  Throughput
2 91.2ns 273.6ns 91.2ns 10.96 MSPs
4 95.0ns 285.0ns 95.0ns 10.53 MSPs
8 93.8ns 281.4ns 93.8ns 10.65 MSPs
16 102.4 ns 307.2ns 102.4ns 9.76 MSPs
32 122.1ns 366.3 ns 122.1ns 8.19 MSPs

from logical cells, used as LUT. This demonstrates that the
proposed circuit, when used with a small number of input
sensors, could also be applied to low-cost FPGAs, where
the amount of available hardware resources are even smaller.
In addition, multiple TEDA modules could be applied in
parallel, for anomaly detection in the same dataset to further
reduce processing time.

2) SAMPLING RESULTS

The results for the operational processing time of the archi-
tecture are presented in Table 4. The first column indicates the
number of input sensors for each scenario, the second column
presents the circuit critical time, ., the third column shows
the initial delay, expressed by Equation 7, the fourth column,
the TEDA computation-time, expressed by Equation 8, and
the last column, the implementation throughput in samples
per second (SPS), expressed by Equation 9. The throughput
consists of the number of samples processed and classified
(as normal or outlier) by TEDA every second.

The data presented in Table 4 is quite expressive. The
circuit critical time, which also corresponds to the TEDA run-
time, was only 7. = 122.1ns in the worst scenario. Hence,
after the 366.3 ns delay, it is possible to get output for a
processed sample sorted every 122.1 ns, which guarantees a
throughput of 8.19 million sorted samples per second, for the
32 input sensors case. These results indicate the viability of
using the proposal presented in this work to manipulate large
data flows in real-time.

Another outcome of using the architecture was low con-
sumption systems. As presented in [41] there is a strong
dependency between operational clock frequency and the
dynamic power. Using the clock rate lower than the max-
imum theoretical operating frequency causes a decrease in
the dynamic power, making it possible to reduce energy
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consumption in applications where the processing speed is
not limited and/or there is a need for low energy consumption.

C. PLATFORMS COMPARISON

To date, no previous literature has been found to explore
TEDA hardware implementations. Thus, this paper presents,
for the first time, a proposal to implement the TEDA tech-
nique on FPGA. To verify the advantages of the hardware
application proposed here over implementations on other
software platforms, some comparisons of the FPGA process-
ing time with the processing time of other software imple-
mentations were made. Table 5 presents the results of the
comparisons made. The first column indicates the number of
input sensors, the second the hardware used, the third presents
the processing time required to obtain the classification of
each sample, and the fourth column, the speedup achieved by
the proposal presented in this paper.

The hardware implementation on FPGA proposed here has
been able to achieve speedups of up to 3.9 times faster when
compared to a C implementation on Intel Core i17-9750H CPU
in the first scenario and 19.9 times in the scenario with the
highest number of input sensors. For a CUDA implementa-
tion using the NVIDIA GeForce GTX 1660 GPU, a speedup
of 693 and 538 times was obtained for 2 and 32 sensors input
respectively.

Figure 10 presents a bar chart with processing time for this
FPGA proposal and the two other platforms compared in this
work, CPU (with C) and GPU (with CUDA) respectively.
The vertical axis is presented in a logarithm scale due to the
asymmetry between the CUDA processing time and the other
two implementations. The number of input sensors for the
5 simulated and synthesized different scenarios are presented
in the horizontal axis. Analysing the Figure is possible to
notice that the processing time with CUDA is much more
substantial than the others but it remains almost constant,
the C data presents an expressive growth with the increase
in the number of input sensors while the FPGA processing
time performs a slow augmentation.
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TABLE 5. Software implementations comparison.

Inputs  Platform Time Speedup

This work proposal on FPGA 91.2ns —

2 CPU (C) 354 ns 3.9%
GPU (CUDA) 63130 ns 693 x
This work proposal on FPGA 95.0ns —

4 CPU (C) 518 ns 5.5%
GPU (CUDA) 65625 ns 690
This work proposal on FPGA 93.8ns —

8 CPU (C) 696 ns 7.5x%
GPU (CUDA) 63027 ns 672X
This work proposal on FPGA ~ 102.4ns -

16 CPU (C) 1465 ns 15.6x
GPU (CUDA) 67658 ns 660 x
This work proposal on FPGA ~ 122.1ns —

32 CPU (C) 2432ns 19.9x
GPU (CUDA) 65757 ns 538X

Regarding the GPU implementation with CUDA, this hap-
pens because the process of copy between host and device
has an impact in small groups threads due to the system
bus bandwidth, latency and also because Single Instruction
Multiple data (SIMD) turns into a important constraint for
any innate different task [42]. An increase in the number
of sensors improves the relative performance of a CUDA
implementation as it is possible to handle more threads in
parallel, but there is a limit of 1024 threads per block on GPU
devices. Threads from different blocks share data through
global memory using different kernel invocations, adding
overhead [43]. All the CUDA scenarios used here for com-
parison were done in a single thread block.

The C implementation presents an expressive growth in the
processing time due to the sequential architecture of the CPUs
where augmenting the number of sensors has a significant
impact. The FPGA sensors inputs (n MEAN modules - )
are parallel, this makes it possible to increase the number of
sensors without losing a lot of performance and throughput.
Despite this, the tree sum in the VSUM1 adder (VARIANCE
module) causes a slight increase in the FPGA processing
time.
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Figure 11 illustrates the FPGA speedup relative to CPU
(with C) for different numbers of input sensors. It is possible
to observe that there is a tendency to increase the speedup of
the FPGA in relation to the CPU (C). Figure 12 illustrates
the FPGA speedup, this time in relation to the GPU (pro-
grammed in CUDA). As previously mentioned, the relative
performance of the GPU improves with the increase of the
sensors, since its processing time remains practically constant
and the processing time in the FPGA has a slight increase.
It is important to note that even with a small decrease in the
FPGA speedup in relation to the GPU, the processing time in
the FPGA is still much smaller in all studied cases, as can be
seen in Figure 10.

In an Industrial 4.0, or IoT environment, one of the most
challenging tasks is how to handle streaming data from a
large number of sensors. For example, there might be tens of
thousands of various sensors in a factory. Supposing sensors
that work with 50 samples/s (a sample each 20 ms), one
specialized hardware on FPGA (with 125 ns) can work with
about 20ms/125ns - 32 sensors &~ 160,000 - 32 sensors
~ 5,120,000 sensors. Other industrial sensors and devices
like speed meters and motors can demand a high sample
rate, which also justifies the specialized hardware solution.
Another important aspect is the latency because the data
anomaly detection can be associated with other algorithms

103150

(like machine learning). Spending a short time on TEDA
execution is essential to reduce the holy anomaly detection
system’s latency.

VI. CONCLUSION

This work presents a proposal for the implementation of
the hardware, TEDA data streaming anomaly detection tech-
nique. The hardware was implemented in RTL using a
floating-point format. Synthesis results were obtained for a
Xilinx Virtex 6 xc6vlx240t-1ff1156 FPGA. The proposed
implementation used a small portion of the target FPGA
resources, allowing the results to be obtained in a short-
ened processing time. The high speedups obtained, which
were compared with other software platforms, coupled with
the possibility of reducing power consumption by dimin-
ishing the clock frequency, reaffirms the importance of this
work. The tendered architecture has the feasibility to oper-
ate, in practical fault detection applications in real industrial
processes, with severe time constraints, and handling large
volumes of data, as well as systems with power restraint, such
as data streaming.
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