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ABSTRACT Electronic text stylometry is concerned with analyzing the writing styles of input electronic
texts to extract information about their authors. For example, such extracted data could be the authors’
identity or other aspects, such as their gender and age group. This survey paper presents the following
contributions: 1) A description of all stylometry problems in probability terms, under a unified notation.
2) A survey of data representation (or feature extraction) methods. 3) A comprehensive evaluation of 23, 760
feature extraction methods followed by a thorough discussion of the results. This extensive evaluation is
critical since the known data representation methods are often not evaluated under the same unified testbed.

INDEX TERMS Author identification, author verification, authorship analysis, text analysis, text cat-
egorization, forensics, natural language processing, feature extraction, supervised/unsupervised learning,
classification.

I. INTRODUCTION
Improving solvers of stylometry problems is essential for
enhancing various application domains, such as forensics,
privacy (or anti-forensics), active-authentication [1]–[3], the
detection of compromised accounts [4], recommender sys-
tems [5], deception detection, market analysis, and medical
diagnosis [6], [7]. Author identification can also be accurately
performed on program source codes [8], [9] as well as com-
piled binaries [10]. Enhancing such application domains is
growing increasingly more interesting thanks to the availabil-
ity of large amounts of textual data via the Internet.

Fundamentally, electronic text stylometry problems aim at
inferring information about authors of input electronic texts.
Such inferred information could be the identity of the authors,
their genders, age groups, personality types, or even the
diagnosis of specific illnesses [6], [7], [11]–[15]. A common
taxonomy of electronic text stylometry problem solvers that
is often followed by the literature is as follows:

• Author Attribution (AA): given a set of texts whose
authors are known beforehand, find a classification
model that predicts which of the known authors is also
the author of the input test texts whose authors are not
known. The target classification label, in this case, is the
identity of the author.
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• Author Clustering (AC): given a set of texts whose
authors are not known, cluster the texts such that each
cluster only contains texts written by only one author.
The target classification label, in this case, is cluster
identifiers.

• Author Verification (AV): given a pair of texts (or a pair
of text sets such that texts within each set are written by
one author) predict whether the texts are written by the
same author. The target classification label, in this case,
is either ‘‘yes, the first text is written by the same author
as the second text’’ or ‘‘no, the first text is written by
someone else other than that of the second text.’’

• Author Profiling (AP): given a set of texts, identify the
profile attributes of its author (regardless of who its
author is). Examples of profile attributes are gender (i.e.,
male or female) and age group (e.g., 10s, 20s, and 30s).
The target classification label is ‘‘male’’ or ‘‘female in
the case of gender detection, and ‘‘10s’’, ‘‘20s’’, and
‘‘30s’’ in the case of age-group detection.

• Author Diarization (AD): given a single text whose
authors are unknown, cluster its parts such that each
cluster only has parts written by a single author. The tar-
get classification label, in this case, is cluster identifiers.

The same list of stylometry problem categories could also
be presented from the perspective of the information that
is intended to be inferred and the problem assumptions as
follows:
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TABLE 1. Contingency table of stylometry problems.

• Target information: authors’ identities (AA, AC, AD,
AV) or their profile attributes (AP).

• Problem assumptions: Is it assumed that the classifica-
tion model is expected to handle situations where the
actual author of the input test text is not represented in
the learning set? If so, the problem is referred to as an
open-set problem. Otherwise, the problem is referred to
as a closed-set problem.
For example, AV problems expect their solvers to tell
whether the first text is written by someone other than
the known author. This expectation increases the diffi-
culty of the problem as the model is not only expected
to model authors represented in the learning set but also
any other author.
Other open-set problems are AC and AD as they are
expected to handle the situation where a text, or a text
part, is written by someone else other than those of the
known texts or text parts.
On the other hand, AA and AP are strictly closed-set
problems since AA expects that the correct author label
to a given test text to be that of one of the known texts
in the learning set. Similarly, the AP problem (based on
the current state of the literature) assumes that the target
profile attribute is necessarily one that is known in the
learning set.

The significance of enhancing solvers of AV problems, rel-
ative to other stylometry problems, can be further appreciated
thanks to their following properties:
• AV problems are known as the fundamental problem of
stylometry because the other stylometry problems can be
decomposed into a set of AV problems [6], [16]–[19].

• Due to the open-set nature of AV problems and their
solvers, they have a broader application domain than the
closed-set stylometry problems.

In other words, enhancing the performance of AV problem
solvers is highly important when the objective is identifying
authors in realistic problem domains where input test texts
may be written by previously unseen authors [19]–[22].

Table 1 summarizes the categories of all stylometry prob-
lems from the perspective of the target information that they
seek to infer and their problem assumptions.

While this paper focuses on stylometric methods for iden-
tifying authors of electronic texts, it might be important
to draw attention to the fact that non-stylometric meth-
ods also exist. For example, if sufficient access is obtained
on the messaging infrastructure (e.g., the network) that an
author used to publish their works, one can use determin-
istic methods to track the text’s source, ultimately leading
to its author. Gaining access to such infrastructure can be

achieved by having legitimate administrative privileges or
illegitimately using malware, back-doors, or compromised
network tunnels. What sets the stylometric methods apart
from non-stylometric ones is that the former can be executed
without requiring access to the underlying messaging infras-
tructure. Because of this, stylometric author identification
methods can be applicable in cases where the non-stylometric
methods fail to apply, such as when obtaining adequate access
to the messaging infrastructures is not feasible. Additionally,
in scenarios where author identification problems are solv-
able by stylometric and non-stylometric methods, the stylo-
metric techniques can still be used to provide further evidence
to increase confidence in the solution to the author identifi-
cation problem.

The focus of this paper is to survey author identification
methods. Due to the diverse nature of the problems, and
the uncertainty associated with the relative contribution of
many of the feature extraction methods, we found it useful
to include the following:

• An objective definition of the fundamental stylometry
problems in probability terms using a common notation.

• A generalized definition of many of the feature extrac-
tion methods and evaluating their implementation in a
common testing bed. To the best of our knowledge, this
is the first time such diverse feature extraction methods
are assessed under the same testing bed. This gives us a
closer look at how they relate to each other in terms of
their performance.

This paper is structured as follows: Section II presents
some of the most significant challenges that face today’s
state of electronic text stylometry. Section III defines sev-
eral fundamental classification problems that can be used to
model all stylometry problem solvers. Section IV presents
a comprehensive definition of text representation methods,
as commonly used in the literature, in addition to our general-
izations. Section V defines some of the stylometry problems
and introduces several notable stylometry problem solvers.
Section VI discusses the critical drawbacks of current meth-
ods. Section VII presents our evaluation methodology of the
extensive set of feature extraction functions, followed by the
evaluation results in Section VIII. Section IX offers infor-
mation about evaluation reproducibility. Section X presents
discussions on possible future research directions. SectionXI
draws the concluding remarks.

II. CHALLENGES
Some of the most significant challenges that face electronic
text stylometry problems are identifying and enhancing exist-
ing methods’ classification accuracy. Namely:

• Optimization of algorithms: most of the proposed sty-
lometry algorithms, including state-of-the-art methods,
often contain parameters that are, at least, not ade-
quately discussed or evaluated. This may naively reduce
the space of parameters, which restricts our ability
to achieve more accurate stylometry problem solvers.
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Therefore, it is critical to question the various aspects
of state-of-the-art stylometry problem solver methods to
identify such parameters and alternative variants.

• Cross-domain stylometry: author identification problem
solvers tend to classify a pair of texts written under
distinct domains (e.g., distinct topics or genres) to be
written by different authors, even when they are not.
Similarly, texts that fall under the same domain are more
likely to be classified to be written by the same author
due to their domain similarity, even when they are not.
This issue is a critical limitation of accurately solving
AV problems in Big Data scenarios where cross-domain
texts are not uncommon.

• Generalization of existing data representation tech-
niques: many methods of representing electronic texts
(or feature extraction methods) are proposed; how-
ever, the current state of the literature on stylometry
lacks good generalizations for such methods. This may
effectively reduce our ability to identify novel variants
of existing stylometry methods and feature extraction
functions.

• Software availability: There is a lack of available and
extensive software that implements the many existing
stylometry methods and feature extraction functions.
There is often a tremendous need to re-develop the many
proposed techniques or procedures. Because of the sheer
amount of effort required to develop such functions, it is
expected that most of the methods are not adequately
evaluated. As a result, the actual value of the numerous
independent contributions relative to each other is often
not sufficiently known.

This survey paper moves towards addressing the last two
challenges, namely: generalizing existing data representation
methods and releasing our extensive feature extraction library
under a premising open-source license.

III. FUNDAMENTAL CLASSIFICATION PROBLEMS
This section introduces fundamental classification problems
and their solvers that are relevant to solving all stylometry
problems.

The literature tackles the following fundamental sty-
lometry problems: Single-domain Closed-set Classifi-
cation (SCC), Single-domain Open-set Classification
(SOC), Multi-domain Closed-set Classification (MCC), or
Multi-domain Open-set Classification (MOC) problems.
These are detailed in this section. Figure 1 visualizes this
taxonomy. In reality, it is possible for hybrid problems to
exist, for which we give examples in later sections.

The following sections will present formal definitions of
SCC, MCC, SOC, and MOC.

A. NOTATION
This section defines the notation that will be followed
throughout this paper.

FIGURE 1. A categorization of fundamental stylometry problems.

• Let I be the index set of all texts, IL ⊂ I be that of the
learning samples, and IT ⊆ I \ IL be that of the testing
samples.

• LetD be the index set of all classification domains (e.g.,
topics and genres).

• Let Q be the index set of all classification tasks (e.g.,
author identification, gender identification, and age-
group identification).

• For any (i, d, q) ∈ I ×D ×Q:
– xi,d is a text that is written in domain d . A text’s

domain could be defined based on its topic, genre,
or time of authorship.

– xi,d is the vector-representation of the text xi,d . For
example, if a text xi,d to be represented based on
the frequency of patterns (e.g., sequences of words),
then each component of the vector xi,d represents
the frequency of a specific pattern.

– yi,q is the classification label of text xi under task
q. For example, if the task is AA, AV, or AC,
the labels represent author identifiers. On the other
hand, if the task is AP for gender detection, then
yi,q ∈ {male, female}.

• fex is a function that represents texts as dim dimensional
vectors in Rdim:

fex : {xi,d : i ∈ I, d ∈ D} → Rdimxi,d 7→ xi,d (1)

• Xd = {xi,d : i ∈ I} is the set of all samples in domain
d , Xd,L = {xi,d : i ∈ IL} is that of the learning set,
Xd,T = {xi,d : i ∈ IT } is that of the testing set, and
Xd,yi,q = {xj,d : j ∈ I, yj,d = yi,d } is the set of all
samples that are associated with the classification label
yi,q in domain d . Additionally, Xd , Xd,L , Xd,T and Xd,yi,q
are random variables that take values in sets Xd , Xd,L ,
Xd,T and Xd,yi,q , respectively.

• For any classification task q ∈ Q:
– Yq = {yi,q : i ∈ I} is the set of labels of the

samples under classification task q, and Yq is a
random variable that takes values in Yq.
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– YL,q = {yi,q : i ∈ IL} is the set of labels of the
learning samples under classification task q, and
YL,q is a random variable that takes values in YL,q.

– YT ,q = {yi,q : i ∈ IT } is that of the testing samples,
and YT ,q is a random variable that takes values in
YT ,q.

• zb→d is a Domain Adaptation (DA) function that trans-
forms represented texts in domain b into their expected
representation in domain d , which estimates their value
should they have been written by a process with the
same classification label. More formally, let Zb→d =

{zb→d (xi,b) : xi,b ∈ Xb}, and Zb→d be a random
variable that takes values in the set Zb→d , such that the
following joint probability density functions (PDFs) are
equivalent:

fZb→d ,Yq = fXd ,Yq (2)

B. SINGLE-DOMAIN CLOSED-SET CLASSIFICATION (SCC)
For any classification task q ∈ Q, any domain d ∈ D, and for
any vector-represented testing text xi,d ∈ Xd,T , classification
models aim to predict yi,q by finding the prediction ŷi,q as
follows:

ŷi,q = argmax
y∈YT ,q

Pr(YT ,q = y|Xd,T = xi,d ) (3)

However, what identifies a classification model as an SCC
is its input and its assumptions that are used to estimate the
probabilities in (3) as listed below.
Input 1: Target classification task is q, for some q ∈ Q.
Input 2: The set of learning samples Xd,L from domain d .
Input 3: For any learning sample xi,d ∈ Xd,L , its cor-

responding classification label yi,q under task q is given as
input.
Input 4: The set of testing samples Xd,T under the

domain d .
Assumption 1: For any input sample xi,d ∈ Xd,T , its

classification label yi,q ∈ YL,q. In other words, YT ,q ⊆ YL,q.
Assumption 2: All input samples of the learning set belong

to the same domain d as those of the testing set.
Assumption 1 signifies that, for any test text, there exists a

sample text in the learning set that has the same classification
label as that of the test text.

Assumption 2 signifies that all learning and testing samples
belong to only one domain.

Therefore, for any task q ∈ Q, any label y ∈ YT ,q, and any
represented text xi,d ∈ XT , Assumptions 1 and 2 imply that:

Pr(YT ,q = y|Xd,T = xi,d ) = Pr(YL,q = y|Xd,L = xi,d )+ ε

(4)

where ε is an irreducible error term. This means that by using
the learning set, we can estimate Pr(YT ,q = y|Xd,T = xi,d )
and use it as a reliable estimator for Pr(YL,q = y|Xd,L = xi,d )
as follows:

ŷi,q = argmax
y∈YT ,q

Pr(YT ,q = y|Xb,T = xi,b)

= argmax
y∈YL,q

Pr(YL,q = y
∣∣Xd,L = xi,b)+ ε (5)

C. MULTI-DOMAIN CLOSED-SET CLASSIFICATION (MCC)
MCC problem solvers are identical to those of SCC except
for dropping Assumption 2. In other words, the testing set
Xb,T falls under domain b, where b 6= d (recall that the
learning set is Xd,L which falls under domain d). Due to this,
the following assumption:

Pr(YT ,q = y|Xb,T = xi,b) = Pr(YL,q = y|Xd,L = xi,b)+ εb,d

often results in an error term εb,d that is too large. Our
evaluations indicate that the error can be large enough to
degrade the classification accuracy down to random chance
guessing.
To address this problem, MCC assumes the following:
Assumption 3: There exists function zb→d such that, for

any xi,b ∈ Xb,T and any y ∈ YT ,q,

Pr(YT ,q = y|Xb,T = xi,b)

= Pr
(
YL,q = y

∣∣Xd,L = zb→d (xi,b)
)
+ εzb→d

where εzb→d < εb,d .
Therefore, MCC problem solvers can be modeled as

follows:

ŷi,q = argmax
y∈YT ,q

Pr(YT ,q = y|Xb,T = xi,b)

= argmax
y∈YL,q

Pr
(
YL,q = y

∣∣Xd,L = zb→d (xi,b)
)
+εzb→d (6)

The Hybrid SCC-MCC problem solvers can be described
by modifying the probability:

Pr
(
YL,q = y

∣∣Xd,L = zb→d (xi,b)
)

to be conditioned on more events. For example, if the training
set contains three learning sets, two of which are from distinct
domains d1 and d2, then the following probability can be used
instead:

Pr

YL,q = y


Xb,L = xi,b,
Xd1,L = zb→d1 (xi,b),
Xd2,L = zb→d2 (xi,b)

 .
The same concept can be applied to other probability terms

to describe hybrids of different problem types, such as SOC
and MOC. However, we omit such details for brevity.

D. SINGLE-DOMAIN OPEN-SET CLASSIFICATION (SOC)
Similar to SCC, SOC problems also take Inputs 1, 2, 3, and 4,
and also follow Assumption 2. However, the SOC problems
differ from SCC problems in that the former do not seek to
identify the actual labels, but rather to test whether a pair of
sets (possibly, each composed of a single represented text)
share the same target classification label under the same task
(regardless of the values of such labels).
Since all represented texts in this section fall under the

same domain d , and since all classification labels belong to
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the same classification task q, domain and classification task
indices will be omitted for the sake of simplifying the notation
in this section.

Formally, let Xyi,1 ⊆ Xyi , and Xyj,2 ⊆ Xyj be two subsets
that contain represented texts that correspond to classification
labels yi and yj, respectively, such thatXyi,1∪Xyj,2 ∈ XT , and
Xyi,1 ∩ Xyj,2 = ∅ (to avoid the possibility of the existence
of trivial solutions by simply finding identical represented
texts). Then, the SOC problem at hand is to infer whether
yi = yj. This can be answered in probability terms as follows:

Yes, yi = yj if Pr(YT ,1 = YT ,2|XT ,1 = Xyi,1,

XT ,2 = Xyj,2) > t
No, yi 6= yj otherwise

(7)

where YT ,1 and YT ,2 are independent random variables that
take values in YT , XT ,1, and XT ,2 are independent random
variables that take values in XT , and t is a threshold. If the
objective is to maximize the classification accuracy, then
t = 0.5 is optimum.
Similar to the SCC problems, we estimate the probability in

(7) by analyzing the learning samples and their corresponding
labels, with the assumption that this probability is equivalent
to the following probability:

Pr(Y1 = Y2|XL,1 = Xyi,1,XL,2 = Xyj,2)+ ε (8)

where Y1 and Y2 are independent random variables that take
values in Y , and XL,1 and XL,2 are random variables that take
values in XL , such that ε is adequately small. Therefore, (7)
can be estimated as follows:

Yes, yi = yj if Pr(Y1 = Y2|XL,1 = Xyi,1,

XL,2 = Xyj,2) > 0.5
No, yi 6= yj otherwise

(9)

However, since SOC problems do not assume that
YT ⊆ YL , it is important to ensure that, when the probability
function in (9) is being estimated, the probability function
only identifies what generally makes represented texts of dis-
tinct labels differ from each other, without being too specific
to labels of the learning set.

In fact, it is common for SOC evaluation datasets (e.g.,
such as those of PAN [23]–[25]) to strictly define YT ∩YL =
∅. This ensures that SOC models are not rewarded for being
SCC models that simply generalize for specific labels of
the learning set, as opposed to generalizing for any label,
including those unseen in YL).

To demonstrate how to estimate the probability in (9),
such that it generalizes to problems of the testing set, and
without over-fitting samples of the learning set, consider the
following hypothetical example of four subsets of represented
texts that are obtained from the learning set Xy1,1 ⊆ Xy1 ,
Xy2,2 ⊆ Xy2 , Xy3,3 ⊆ Xy3 , and Xy4,4 ⊆ Xy4 , where we know
beforehand that y1 = y2, y3 = y4, but y1 6= y3. Additionally,
let Xy1,1, Xy2,2, Xy3,3, and Xy4,4 be random variables that take
values in the subsets, respectively. Furthermore, suppose that
their PDFs visualize as presented in Figure 2.

FIGURE 2. Hypothetical examples of the PDFs fXy1,1
, fXy2,2

, fXy3,3
and fXy4,4

.

Then an example of an over-fitting generalization would
be to state ‘‘if the corresponding PDF of two subsets are
centered nearby 0.3 or 0.5, then the pair share the same
label, otherwise they do not’’. Such generalizations over-fit
the specific learning subsets in XL as the subsets repre-
sent authors with their represented texts centered around 0.3
and 0.5.

On the other hand, a more robust generalization that is less
likely to over-fit than the previous one is to state estimate
the probability in (9) is by measuring the intersection area
between the various PDF pairs as depicted in Figure 2. In this
hypothetical example, subset pairs that share the same classi-
fication label, regardless of the value of the label, also share
an intersection area greater than 0.5.

Worth noting that the SOC problems are often referred to
in the literature as a fundamental problem of stylometry [6].

E. MULTI-DOMAIN OPEN-SET CLASSIFICATION (MOC)
MOC problem solvers are identical to those of the SOC
except for further dropping one more assumption, namely
Assumption 2. This significantly increases the difficulty of
the solver, as texts of the learning set could be in a different
domain than those of the testing set. As a result, the proba-
bility in (7) cannot be directly estimated from the probability
in (9) as found from the learning set. This is because there is
a domain mismatch between samples of the learning set and
samples of the testing set.

Since all classification labels belong to the same classifi-
cation task q, classification task indices will be omitted to
simplify the notation in this section.

Formally, let Xb,yi,1 ⊆ Xb,yi and Xb,yj,2 ⊆ Xb,yj be
two subsets that contain represented texts that correspond to
classification labels yi and yj, respectively, such that Xb,yi,1 ∪

Xb,yj,2 ∈ Xb,T , and Xb,yi,1 ∩ Xb,yj,2 = ∅. Then, similar to
SOC problems, the MOC problem at hand is to infer whether
yi = yj. However, unlike SOC problems, MOC problems are
composed of represented texts that fall under domain b, where
b 6= d (recall that the learning set falls under domain d).
Therefore, estimating (7) by (9) would often result in an

error term that is too large due to the domain mismatch
between learning and testing sets. For example, does the
intersection area threshold 0.5 that applies to domain d also
applies to domain b?
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FIGURE 3. Hypothetical examples of the PDFs fXd ,y1,1
, fXb,y2,2

and

fXb,y3,3
, before applying the DA function zb→d .

To extend the generalizations that are found from the learn-
ing set (e.g., the PDFs intersection area threshold), Assump-
tion 3 is followed (similar to MCC) as follows:

Yes, yi = yj if Pr(Yq,1 = Yq,2|Xd,L,1 = Zb→d,yi,1,

Xd,L,2 = Zb→d,yj,2) > 0.5
No, yi 6= yj otherwise

(10)

where Zb→d,yi,1 = {zb→d (xl,b) : xl,b ∈ Xb,yi,1} and
Zb→d,yj,2 = {zb→d (xl,b) : xl,b ∈ Xb,yj,2}.
To visualize this transformation by the DA function, con-

sider the following hypothetical example of the following
subsets of represented texts Xd,y1,1 ⊆ Xd,y1 (note that its
domain is d), Xb,y2,2 ⊆ Xb,y2 and Xb,y3,3 ⊆ Xb,y3 (note that
the domain of the latter subsets is b), where we know before-
hand that y1 = y3, but y1 6= y2. Additionally, let Xd,y1,1,
Xb,y2,2 and Xb,y3,3 be random variables that take values in
the subsets, respectively. Then, the intersection areas of the
PDFs, before theDA transformation function zb→d is applied,
is depicted in the hypothetical example in Figure 3.
Note that in the example in Figure 3, the intersection area

between the PDFs fXd,yi,1 and fXd,y2,2 is greater than 0.5, even
though they do not share the same classification label (i.e.,
y1 6= y2). On the other hand, the intersection area between the
PDFs fXd,yi,1 and fXd,y2,3 is less than 0.5, although they share
the same classification label (i.e., y1 = y3). This is possibly
because the represented texts fall under distinct domains d
and b.
On the other hand, Figure 4 depicts the PDFs of this

example, except for applying the DA transformation function
zb→d , accordingly. It can be seen from this example that once
the transformation is used, the intersection area is greater than
0.5 between the PDFs that share the same classification label,
while less than 0.5 when the intersecting PDFs do not share
the same classification label.

In this hypothetical example, the implementation of the DA
function zb→d assumed that the effect of the domain variation
from d to b is comprised of an increase in the mean and
the variance of the PDFs. In other words, if the PDF fXd,yi
follows the normal distribution N (µ, σ 2), then fXb,yi follows
the normal distribution N (const1 + µ,const2 + σ 2).
As a result, for the DA transformation function, zb→d ,

to undo the effect of the domain variation, by representing

FIGURE 4. Hypothetical examples of the PDFs fXd ,y1,1
, fXb,y2,2

and

fXb,y3,3
, after applying the DA function zb→d .

samples in the domain b in the domain d of the learning set,
it adjusts the distribution of the samples in Xb, such that their
mean and variance are reduced by the constants const1 and
const2, respectively.

The probabilistic models introduced in this section are used
to define the stylometry problems objectively in probability
terms. These models help in classifying any encountered sty-
lometry problems. The solvers, on the other hand, are there-
fore estimations of these probability models. This estimation
can be done either directly or indirectly. Indeed, while some
solvers like NLP-based solvers may not directly attempt to
estimate the probabilities or the density functions introduced
in this section, such solvers indirectly imply the existence of
such probabilities. Other solvers maymake use of, say, kernel
density estimation methods to find such density functions.
The fact that a solver can offer answers to stylometry prob-
lems implies that such probabilities or density functions were
indirectly defined.

IV. DATA REPRESENTATION METHODS
The following sections will present various feature extrac-
tion methods, such as richness-based and rewrite rules fea-
ture extraction methods, as well as n-gram-based ones.
Frequency-based features (e.g., distribution of Part of Speech
(POS) tags) are treated as special cases of n-grams for when
n = 1. Additionally, other variants of n-grams, such as
syntactic n-grams, are treated as special cases of our gener-
alized view of n-gram-based methods, namely: the at least
l-frequent dir-directed k-skipped n-grams. In other words,
the use of dependency trees in syntactic n-grams is treated as
a different direction for the sliding window of n-grams. In this
context, classical n-grams assume that the direction is spatial.

A. VOCABULARY RICHNESS
For any text xi,d , vocabulary richness measures [18] aim to
quantify the vocabulary diversity of input text xi,d to solve
stylometry problems. Examples of such measures are:

• Type-token ratio: the ratio of the total number of unique
tokens to the total number of tokens:

uniq(Ni,tokens)/Ni,tokens (11)
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where Ni,tokens and uniq(Ni,tokens) are the total number
of tokens and the total number of unique tokens in text
xi,d , respectively. A token is a general term that could
refer, for example, to a word, a number, or a punctuation
mark.

• Hapax legomena: the total number of words that occur
once in xi,d which we denote by Ni,words1

• Hapax dislegomena: the total number of words that
occur twice in xi,d which we denote by Ni,words2 .

However, the measures above are sensitive to the size of
xi,d (i.e., the scores change as a function of the length of text
xi,d ). To minimize this, Yule’sK [26] and Honore’s R [27] are
functions that aim to stabilize the measures, as defined below:

Ki =
104(

∑
∞

w=1 w
2Ni,wordsw − Ni,tokens)

N 2
i,tokens

(12)

where Ki is Yule’s K measure for text xi,d , and Nwordsw is the
total number of words in xi,d that occur exactlywmany times.

Ri =
100 log(Ni,tokens)

1− Ni,words1/Ni,tokens
(13)

where Ri is Honore’s R measure for text xi,d .

1) RELATION TO OUR NOTATION
For any text xi,d , xi,d = fex(xi,d ) such that xi,d [1] is a number
that reflects type-token ratio, Hapax legomena, Hapax disle-
gomena, Yule’sK , or Honore’s R. In other words, xi,d is a one
dimensional real vector.

2) DISCUSSION
The underlying assumption of vocabulary richness-based fea-
ture extractions methods is that texts of identical labels gen-
erally tend to maintain sufficiently similar richness values.
In contrast, texts of varying target classification labels tend
typically to keep enough different richness values.

However, such assumption is often false as the richness
methods are heavily and systematically dependent on the
length of input texts, and Yule’s K and Honore’s R that
attempt to stabilize them have questionable results [18]. For
example, [28] shows that Yule’s K is ineffective for identify-
ing authors.

B. CLASSICAL n-GRAMS
The classical n-grams (or just n-grams as commonly referred
to in the literature) is probably the most common data rep-
resentation method applied in the literature of stylometry
problems.

Only three parameters define the space of patterns that
any implementation of classical n-grams can explore. The
parameters are gram, n, and the length of the input text xi,d ,
len(xi,d ), which are defined as follows:
Gram: this parameter defines the most fundamental unit

of the processed text. For example, if grams are defined to
be words, then the most basic unit of any text is considered
to be words (i.e., strings of text that are separated by word

separators, such as whitespace characters and punctuation
marks). For any text xi,d , let xi,d [g] be the gth gram in text
xi,d . Below is a list of common definitions of grams in the
literature:

• Characters: this definition of grams is among the most
fundamental gram definitions by which input texts are
considered to be constructed by arrays of characters.
In this case, xi,d [g] denotes the gth character in text xi,d .
Example text: suppose xi,d = ‘‘Can I see? the boy said.
Yes. Of course you can.’’ (from The Road by Cormac
McCarthy).
Example grams: xi,d [1] = ‘‘C’’, xi,d [2] = ‘‘a’’,
xi,d [3] = ‘‘n’’, xi,d [4] = ‘‘ ’’, . . ., xi,d [48] = ‘‘.’’, where
‘‘ ’’ represents a space.

• Letters: input texts are considered as arrays of letters.
In this case, xi,d [g] denotes the gth letter in text xi,d .
Example grams: xi,d [1] = ‘‘C’’, xi,d [2] = ‘‘a’’,
xi,d [3] = ‘‘n’’, xi,d [4] = ‘‘I’’, . . ., xi,d [34] = ‘‘n’’. Note
that non-letter characters (e.g., whitespace characters
and punctuation marks) are ignored.

• Punctuation marks: input texts are considered as arrays
of punctuation marks, ignoring any other types of char-
acters. In this case, xi,d [g] denotes the gth punctuation
mark in text xi,d .
Example grams: xi,d [1] = ‘‘?’’, xi,d [2] = ‘‘.’’, . . .,
xi,d [4] = ‘‘.’’.

• Words: input texts are considered as arrays of words,
i.e., strings of characters that are separated by word
separators.1 In this case, xi,d [g] denotes the gth word in
text xi,d .
Example grams: xi,d [1] = ‘‘Can’’, xi,d [2] = ‘‘I’’,
xi,d [3] = ‘‘see’’, . . ., xi,d [11] = ‘‘can’’.

• Word shapes: input texts are considered as arrays of
word shapes. Word shapes could be defined based on
their characters cases (i.e., upper/lower cases) and type
(e.g., letter/number) by which the word ‘‘Apple’’ has
the shape ‘‘Sssss’’, and ‘‘x86’’ has the shape ‘‘sDD’’,
where S, s, and D represent an upper case letter, a lower
case letter, and a digit, respectively. In this case, xi,d [g]
denotes the shape of the gth word in text xi,d .
Example grams: xi,d [1] = ‘‘Sss’’, xi,d [2] = ‘‘S’’,
xi,d [3] = ‘‘sss’’, . . ., xi,d [11] = ‘‘sss’’.

• Function words: input texts are considered as arrays of
function words, which are words that are used for gram-
matical proposes to join other words, such as ‘‘and’’,
‘‘at’’, and ‘‘for’’, ignoring any other types of words.
In this case, xi,d [g] denotes the gth function word in text
xi,d .
Linguists traditionally identify function words on a per-
language basis. Alternatively, since function words also
happen to occur more frequently than content words, it is
also possible to identify them heuristically by choosing
the most frequent words in a given corpus (i.e., the most

1Examples of word separators are paragraph start, punctuation marks, and
whitespace.
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FIGURE 5. POS tags for the sentence ‘‘the quick fox jumped over the lazy
dog’’ as identified by Stanford’s statistical sentence parser, where DT, JJ,
NN, VBD, and IN denote that the tagged word is a determiner, adjective,
noun, past tense verb and preposition, respectively.

FIGURE 6. Dependency-based parse tree for the sentence ‘‘the quick fox
jumped over the lazy dog’’ as identified by Stanford’s statistical sentence
parser.

frequent words in a corpus are likely to contain function
words mostly).
Example grams: xi,d [1] = ‘‘Can’’, xi,d [2] = ‘‘I’’,
xi,d [3] = ‘‘the’’, . . ., xi,d [5] = ‘‘can’’. Note that
non-function words, such as ‘‘see’’ are ignored.

• POS tags: input texts are considered as arrays of word
POS tags. In this case, xi,d [g] denotes the POS tag of the
gth word in text xi,d . An example is presented in Figure 5.
Example grams: xi,d [1] = DT, xi,d [2] = JJ, xi,d [3] =
NN, . . ., xi,d [8] = NN, where DT, JJ, and NN are POS
tags of corresponding words as tagged by Stanford’s
sentence parser.2 The tags are defined as per the Penn
treebank.

• Dependency relation: input texts are considered as
arrays of word dependency relation types. In this case,
xi,d [g] denotes the dependency relation of the gth word in
text xi,d towards its parent as per the dependency-based
parse tree of the sentence the gth word exists in.
An example of such dependency relation is presented
in Figure 6.
Example grams: xi,d [1] = det, xi,d [2] = amod,
xi,d [3] = nsubj, . . ., xi,d [8] = nmod, where det,
amod, nsubj and nmod are dependency relations.

• Application-specific patterns: input texts are consid-
ered as arrays of application-specific patterns (e.g., for-
matting codes). In this case, xi,d [g] denotes the gth

application-specific pattern in text xi,d . The intuition is
that texts that correspond to different labels are more
likely to differ in their use of application-specific pat-
terns than texts that correspond to the same labels.
Example text: suppose xi,d = ‘‘[b][i]This[/i][/b] is a
formatted text using [u]BB code[/u]’’.
Example grams: xi,d [1] = ‘‘[b]’’, xi,d [2] = ‘‘[i]’’,
xi,d [3] = ‘‘[/i]’’, xi,d [4] = ‘‘[/b]’’, . . ., xi,d [6] = ‘‘[/u]’’.

• Typos: input texts are considered as arrays of typos,
where xi,d [g] denotes the gth typo in text xi,d .
Example text: suppose xi,d = ‘‘Cna I see? teh byo siad.
Yse. Of cuorse yuo cna’’.
Example grams: xi,d [1] = ‘‘Cna’’, xi,d [2] =

‘‘teh’’, xi,d [3] = ‘‘byo’’, xi,d [4] = ‘‘siad’’, . . .,
xi,d [8] = ‘‘cna’’.

2http://nlp.stanford.edu:8080/parser/index.jsp

FIGURE 7. n-grams’ sliding window for an example sentence where n = 3
and grams are words.

• Compound grams: theoretically, a gram could be
defined as a tuple of multiple grams. Compound grams
have the ability to capture the joint distribution of parts
of texts taking specific gram values at the same time. For
example, how many times was the word ‘‘saw’’ used as
a noun? The following are examples of some compound
grams that are made by two other grams:

– Word-POS tag pairs: input texts are considered as
arrays of word-POS tag pairs.
Example grams: xi,d [1] = ‘‘The’’-DT, xi,d [2] =
‘‘quick’’-JJ, xi,d [3] = ‘‘fox’’-NN, . . ., xi,d [8] =
‘‘dog’’-NN.

– Word-dependency relation pairs: input texts are
considered as arrays of word-dependency relation
pairs.
Example grams: xi,d [1] = ‘‘The’’-det, xi,d [2] =
‘‘quick’’-amod, xi,d [3] = ‘‘fox’’-nsubj, . . .,
xi,d [8] = ‘‘dog’’-nmod.

n: this parameter defines the width of the sliding window
in the unit of grams. For example, if n = 3 and grams
are words, then the sliding window width is three words as
presented in Figure 7. It can be seen that the sliding window
of a classical n-grams implementation moves spatially over
the input texts.

len(xi,d ): this parameter is the length of the text xi,d in
grams. For example, if grams are words, then len(xi,d ) = 8
for the example text in Figure 7.

Then, all patterns (which, in this case, are sequences of
n many grams; i.e., n-grams) can be found by any classical
n-grams implementation. Let ngi[j] denote the jth sequence
of grams found by the searching algorithm from the input
text xi,d .

As an example, if n = 3 and grams are words, then all
the found n-grams in the sentence ‘‘the quick fox jumped
over the lazy dog’’ are: ngi[1] = (the, quick, fox), ngi[2] =
(quick, fox, jumped), ngi[3] = (fox, jumped, over), ngi[4] =
(jumped, over, the), ngi[5] = (over, the, lazy), and ngi[6] =
(the, lazy, dog).

1) RELATION TO OUR NOTATION
For any text xi,d , xi,d = fex(xi,d ) such that, for any 1 ≤ j ≤
len(xi,d )−n + 1, xi,d [j] is a number that uniquely identifies
ngi[j]. To save space and reduce noisy features, n-grams that
occur less than l many times can be discarded, where l ∈ N.

VOLUME 9, 2021 101131



M. Khonji et al.: Authorship Identification of Electronic Texts

Alternatively, xi,d [j] can be defined as the frequency
of ngi[j] in text xi,d . To facilitate meaningful comparison
between representations of different texts, the jth component
has to refer to the frequency of a specific n-gram consis-
tently. This leads us to the problem of agreeing on the order
of n-grams, which is usually addressed by agreeing on an
arbitrarily-ordered list of n-grams as found in some refer-
ence corpus (e.g., the learning set XL). The order itself is
not important; however, being consistent with the order is.
Similar to the previous case, n-grams that occur less than l
many times in reference texts can be discarded to preserve
space and reduce noise.

2) DISCUSSION
Despite the simplicity of n-grams, their use often leads
to the highest gains in classification accuracy relative to
other data representationmethods. Additionally, since finding
n-grams is mostly language-independent (depending on how
we define the grams), most n-grams implementations can be
applied to any language.

On the other hand, n-grams assume that only patterns made
of adjacent grams are helpful patterns. This is usually true
(especially with natural languages); however, it is not always
true. This is often a limitation that is found in n-grams as
they can only locate those patterns that are made of adjacent
n-grams. Hence, other data representations are proposed in
the literature, some of which are variations of n-grams.

C. k-SKIP n-GRAMS
k-skip n-grams aim at generalizing classical n-grams such
that grams within an n-gram need no longer be adjacent to
each other in text xi,d . This is accomplished by permitting up
to k many skips between each pair of adjacent grams in an
n-gram as presented in Algorithm 1, where k is a tuple with
n−1 elements and k[j] denotes the jth element of the tuple k.
For example, if k = 2, n = 3, and grams are words, then the
found k-skip n-grams in the sentence ‘‘the quick fox jumped
over the lazy dog’’ are: kngi[1] = (the, quick, fox), kngi[2] =
(the, fox, jumped), kngi[3] = (the, jumped, over), . . .,
kngi[25] = (over, the, lazy), kngi[26] = (over, lazy, dog),
kngi[27] = (over, the, dog), and kngi[28] = (the, lazy, dog).

Algorithm 1 Pattern Search by k-Skip n-Grams

for all k ∈ {0, . . . , k}n−1, such that 0 ≤
∑n−1

j=1 k[j] ≤ k
and n+

∑n−1
j=1 k[j] ≤ len(xi,d ) do

for all j ∈ {1, . . . , len(xi,d )−
(
n+

∑n−1
j=1 k[j]

)
+1} do

kngi[j] =
(
xi,d [j], xi,d

[
j+1+k[1]

]
, xi,d

[
j+2+

k[1]+ k[2]
]
, . . . , xi,d

[
j+ n− 1+

∑n−1
j=1 k[j]

])
end for

end for

Note that the skips are only used to add an amount of
tolerance (up to k skips) regarding the grams adjacencywithin

an n-gram; that is, depending on the value of k , the grams in
a sequence need no longer be necessarily adjacent to each
other. However, such skips are not encoded in the identified
n-grams.

1) RELATION TO OUR NOTATION
Since the skips are not encoded in k-skip n-grams, their
structure is identical to that of the classical n-grams.

2) DISCUSSION
The advantage of k-skip n-grams is that they can identify pat-
terns of grams that are not adjacent to each other (in addition
to identifying those that are adjacent). In other words, k is
a parameter that introduces a degree of tolerance by which
patterns that are made of non-adjacent grams are identified.

The total number of patterns with exactly s skips that k-skip
n-grams identify are:{

len(xi,d )−n+ 1 if n = 1(n−2+s
n−2

)(
len(xi,d )− (n+ s)+ 1

)
if n > 1

(14)

where
(n−2+s
n−2

)
is a binomial coefficient.

However, since k-skip n-grams identify all patterns with
all s ∈ {0, 1, . . . , k}, the total number of patterns that k-skip
n-grams find are:len(xi,d )−n+ 1 if n = 1∑k

s=0

((n− 2+ s
n− 2

)(
len(xi,d )− (n+ s)+ 1

))
if n > 1

(15)

Therefore, the disadvantage is that this degree of tolerance
is limited by up to only k skips. Addressing this limita-
tion by choosing larger k values can be computationally too
demanding to be feasible. This is because the total number
of identified gram sequences explodes combinatorically as a
function of k , as shown in (14) and (15).

D. SYNTACTIC n-GRAMS
Classical n-grams identify gram sequences based on their
order of appearance in their source texts. I.e., n-grams are
made of spatially adjacent grams.

However, syntactic n-grams propose to read the grams
based on the grams order in syntactic representations of their
source texts. I.e., grams in syntactic n-grams no longer need
to be spatially adjacent in their source texts but rather adjacent
in the syntactic tree representation of their source texts.

For example, to identify syntactic n-grams from the text
‘‘the quick fox jumped over the lazy dog’’, we perform the
following steps in order:

1) Represent the input sentence into a syntactically
parsed tree. The most commonly suggested syntac-
tic tree representation for syntactic n-grams is the
dependency-based parse trees [29]. Figure 6 presents
such a dependency-based parse tree for the example
sentence.
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FIGURE 8. Constituency-based parse tree for the sentence ‘‘the quick fox
jumped over the lazy dog’’ as identified by Stanford’s statistical sentence
parser.

2) Then, identify n-grams such that their grams are adja-
cent in the parsed tree. This can often lead to n-grams
that contain grams that are not spatially adjacent.

For example, when n = 2 and grams are words, all
found syntactic n-grams in the sentence above are found by
recursively walking down the dependency tree in Figure 6
from its root as follows: sngi[1] = (jumped, fox), sngi[2] =
(fox, quick), sngi[3] = (fox, the), sngi[4] = (jumped, dog),
sngi[5] = (dog, lazy), sngi[6] = (dog, the), and sngi[7] =
(dog, over).

Similarly, when n = 3, then all found syntactic n-
grams for the dependency tree in Figure 6 are: sngi[1] =
(jumped, fox, quick), sngi[2] = (jumped, fox, the), sngi[3] =
(jumped, dog, over), sngi[4] = (jumped, dog, the), and
sngi[5] = (jumped, dog, lazy).
Note that for this specific example dependency-based tree,

no syntactic n-grams exist for n > 3.
Alternatively, one can substitute the dependency-based tree

by a constituency-based tree [29] as presented in Figure 8.
In this case when a constituency-based tree is constructed
from the example sentence, examples of syntactic n-grams
when n = 3 and grams are words are: sngi[1] = (S,NP,DT),
sngi[2] = (NP,DT,The), sngi[3] = (NP, JJ, quick),
sngi[4] = (NP,NN, fox), sngi[5] = (S,NP, JJ), sngi[6] =
(S,NP,NN), sngi[7] = (S,VP,VBD), and sngi[8] =
(VP,VBD, jumped).

1) RELATION TO OUR NOTATION
Similar to k-skip n-grams, syntactic n-grams do not encode
the skips in their n-grams, they maintain the same vector
space representation as both k-skip n-grams and classical
n-grams.

2) DISCUSSION
The advantage of syntactic n-grams from the perspective of
stylometry analysis is that they can identify patterns that are
not necessarily spatially adjacent while keeping the number
of identified patterns relatively small (i.e., avoids the com-
binatoric explosion of the number of patterns that k-skip
n-grams face).

However, for stylometry analysis, their disadvantages are
that, unlike classical and k-skip n-grams, syntactic n-grams

might not identify some spatially adjacent gram sequences.
This is because syntactic n-grams strictly walk over syn-
tactic trees, resulting in missing some potentially important
(for stylometry analysis) spatially-adjacent gram sequences.
To address this, one may use syntactic n-grams to comple-
ment classical or k-skip n-grams.

Additionally, syntactic n-grams require sentence parsers,
which are language-dependent. This can limit the applica-
bility of syntactic n-grams to only languages with sentence
parsers.

E. A GENERALIZATION OF n-GRAM-BASED METHODS
All n-gram-based feature extraction methods (i.e., classi-
cal, skip, and syntactic n-grams) can be modeled as special
cases of at least l-frequent dir-directed k-skip n-grams,
where:

• dir is the movement direction of the sliding window,
as depicted in Figure 7. In classical n-grams, the direc-
tion is spatial, while in syntactic n-grams, the direction is
either a dependency-based tree or a constituency-based
tree. For brevity, we will refer to these directions as
spatial, deptree, and constree, respectively.

• l specifies the minimum number of times a given
sequence of grams must occur. For example, if l = 5,
only those sequences that occur five times or greater will
represent text samples.

• k , n, and grams are as defined in previous sections.

F. REWRITE RULES
From the perspective of generative grammars, texts can be
generated by applying rewrite rules in a particular order.
In the context of feature extraction in electronic text stylom-
etry, the objective is to identify rewrite rules that could have
generated input texts.

The use of rewrite rules in the literature of electronic text
stylometry is restricted to Context-Free Grammars (CFGs)
found by constituency-based parse trees.

For example, Figure 8 depicts a constituency-based tree of
the sentence ‘‘The quick fox jumped over the lazy dog’’ from
which the following example rewrite rules are found: S →
NP + VP, NP → DT + JJ + NN, DT → The, JJ → quick,
and NN→ fox.

To reduce the amount of irrelevant information available
by the terminal nodes (e.g., content words), rewrite rules that
lead to terminal nodes could be removed.

Alternatively, it is possible to substitute such terminal
nodes with other values to decide which information is kept
and which is discarded. For example, if we represent the
terminal nodes by their word shapes, then the rewrite rules
for the example sentence will include S → NP + VP,
NP → DT + JJ + NN, DT → Ccc, JJ → ccccc,
and NN→ ccc.

Note how terminal nodes ‘‘The’’ and ‘‘quick’’ are sub-
stituted by their corresponding shapes ‘‘Ccc’’ and ‘‘ccccc’’,
respectively.
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1) RELATION TO OUR NOTATION
For any text xi,d , xi,d = fex(xi,d ) such that, for any j, xi,d [j] is
a number that uniquely identifies a specific rewrite rule that
was used to generate some part of xi,d . To save space and
reduce noisy features, rewrite rules that occur less than l many
times can be discarded, where l ∈ N.
Alternatively, xi,d [j] can be defined as the frequency of the

rewrite rule uniquely identified by j.
Similar to previous features, to conveniently facilitate

meaningful comparisons between representations of different
input texts, the jth component of any such vector representa-
tion should consistently refer to the frequency of the same
rewrite rule.

2) DISCUSSION
The advantages of rewrite rules as features is that they can
capture syntactic structures in text xi,d , especially when con-
sidering discarding irrelevant information that exists in ter-
minal nodes (by discarding them, or by substituting them by
other values, such as word shapes, word lengths, and function
words).

However, they share similar disadvantages with syntactic
n-grams as they both rely on language-dependent sentence
parsers.

G. RAW TEXT
While currently uncommon in the domain of stylometry prob-
lems, some stylometry-problem solvers expect as input raw
texts to construct language models for the problem labels
(e.g., authors).

Such stylometry methods are primarily inspired by the
work of Tomàš Mikolov et al. on the construction of lan-
guage models via Recurrent Neural Networks (RNNs) [30].
A notable example of a stylometry problem solver that ana-
lyzes raw text is the work of Douglas Bagnall [31], where
raw texts were analyzed to construct language models, using
RNNs, on a per-author basis to estimate the likelihood of
each of such language models generating streams of letters
that match the questioned test texts. To avoid constructing
models that over-fit the training texts, specific information
was removed from the input texts at a pre-processing stage
(e.g., replacing all numbers with a placeholder).

1) RELATION TO OUR NOTATION
If xi,d is a raw text and xi,d is a vector representing it (i.e.,
xi,d = fex(xi,d )), then, for any j ∈ {1, . . . , len(xi,d )} (recall
that len(xi,d ) is the length of text xi,d in the unit of grams),
conventional data representation methods define the jth com-
ponent xi,d [j] to have a value that represents the frequency of
a specific pattern j (e.g., some string) as measured across the
input text xi,d as a whole.
However, the raw text representation method can be

thought of as a special case of fex where the jth component
xi,d [j] has a value that uniquely represents the jth character

in the text xi,d , such that len(xi,d ) is the total number of
characters in xi,d .

For example, if xi,d = ‘‘the quick fox jumped over the lazy
dog’’, then xi,d = (116, 104, . . . , 103) where each compo-
nent represents a unique decimal value of the corresponding
character in the input text xi,d .

2) DISCUSSION
The raw text representation method can allow the classifica-
tion algorithm to learn useful high-level features on its own,
and learn a classification model based on such features. This
can be advantageous as it will enable to identify high-level
features that are counter-intuitive to humans but useful for
the classification task at hand.

On the other hand, as computational time and space con-
straints exist in practice, such algorithms may miss some
useful high-level features that are easily identified by the
intuition of humans.

V. STYLOMETRY PROBLEMS AND SOLVERS
The problems can be defined as follows:

• Solvers of AA and AP problems are special cases of
SCC if no domain variation exists between learning
and testing samples and MCC if domains are allowed
to vary among the learning and testing sets. The only
distinction between AA and AP is that AA defines the
targeted labels set Yq as the set of author identities,
while AP defines it as the set of author profile attributes.
For example, in the case of age-group detection,
Yq = {10s, 20s, . . .}.

• Solvers of AV problems [32] are special cases of SOC if
no domain variation exists among the analyzed samples,
and MOC if otherwise. The targeted label set Yq is
defined as the set of author identities.

• Solvers of AC and AD problems are special cases of
SOC if no domain variation exists among learning and
testing samples, and MOC if domains are allowed to
vary among the learning and testing sets. This is because
such problems can be decomposed into multiple binary
SOC and MOC problems. Both AC and AD define the
targeted labels set Yq as the set of author identities. The
only distinction between AC and AD is that AC clusters
text files, while AD clusters text parts (e.g., paragraphs).

Since the stylometry methods are not necessarily limited to
specific data representation methods, the subsections below
abstract the data representation stage by using the function
fex as defined in Section III. I.e., for any text in domain d ,
xi,d , its represented form is referred to by xi,d = fex(xi,d ),
without specifying the specific representation.

The following points describe what is generally performed
when solving stylometry problems:

• Use the stylometry problem-solver whose assumptions
are most in line with the current problem’s assump-
tions. For example, if a stylometry problem assumes a
closed-set (e.g., SCC, MCC), then using a solver for
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closed-set scenarios will be more effective than a solver
for open-sets (e.g., SOC, MOC). Open-set problem
solvers can solve closed-set problems. However, they
almost always tend to be less accurate than closed-set
problem solvers because they ignore that the correct
label is confined within the label’s set of the training
set. On the other hand, applying closed-set problem
solvers on open-set stylometry problems will guarantee
an incorrect answer if the correct label is not in the
training set.

• Pre-process the involved texts to reduce the classifi-
cation error of the stylometry problem solvers at later
stages. For example, suppose it is known that the actual
quantity of numbers in texts does not convey information
about texts’ authors. In that case, numbers could be
deleted or replaced with a placeholder. Fundamentally,
this pre-processing, where parts of texts are deleted or
replaced by placeholders, could be considered a form of
domain adaptation by data selection [33].

• If the stylometry problem solver requires texts to be rep-
resented as vectors, feature extraction methods, as sur-
veyed in this paper, could be used to represent the texts as
vectors, such that each vector’s component is a feature’s
value for the text that the vector represents. Such text
vectorization is also applicable to deep neural networks
that process raw texts. The feature extraction methods
can be supplied as input to the models alongside the
pre-processed raw texts.

• If the involved texts fall under distinct domains,
then domain adaptation methods could minimize the
domain variation effect. Fundamentally, domain adap-
tation methods could be applied at every stage, such
as pre-processing texts, text vectorization (or feature
extraction), and the training phase of stylometry prob-
lem solver models.

A. GENERAL-PURPOSE LEARNING ALGORITHMS
Support Vector Machines (SVMs) are generally regarded
among the most accurate general-purpose learning algo-
rithms for solving SCC problems [18]. Examples of the use
of such models in the literature are [34]–[37].

Decision trees are commonly used to solve SCC problems
[38]–[40]. However, recently, decision trees were also used
to solve AV problems (a special case of SOC problems) [41].

Similarly, Artificial Neural Networks (ANNs) are used to
solve SCC problems [38], [42]–[45]. An interesting aspect
of some ANN-based models is their ability to define the
feature extraction function, fex, during the learning process.
In other words, the learning algorithm optimizes the decision
boundaries and optimizes the definition of its fex implemen-
tation. Consequently, the need for a manually-crafted fex
implementation is removed. Instead, raw texts are fed into
the model.

B. COMMON n-GRAMS
Keselj et al. proposed an estimation of SCC in [46] as follows:

1) Texts are represented by the frequency of some chosen
classical n-grams. The chosen n-grams are those that at
least occur in a single text sample for L many times.
In other words, using our notation, for any xi,d ∈ X ,
xi,d is a multi-dimensional real vector such that xi,d [j]
represents the frequency of the jth chosen n-gram. If for
some xi,d ∈ X the jth n-gram does not exist, then
xi,d [j] = 0 is assumed.

2) A distance function cng : X × X → [0,∞) between
two samples xi,d , xj,d ∈ X is proposed as follows:

cng(xi,d , xj,d ) =
∑

c∈{1,2,...}

(
2(xi,d [c]− xj,d [c])
xi,d [c]+ xj,d [c]

)2

3) Then, for any disputed text xi ∈ XT , the SCC estima-
tion of its true target classification label yi,q, namely
ŷi,q, is found as follows:

ŷi,q = yj,q

where yj,q is the true target classification label of the
text sample xj,d that is found as follows:

xj,d = argmin
xi,d∈XL

cng(xa, xi,d )

In other words, the author of the testing text sample
xi,d is assumed to be the same author of the learning
text sample xj,d that achieves the lowest cng(xi,d , xj,d )
value against the testing text sample xi,d relative to the
other texts in XL .

Common n-grams (CNG) advantage is their independence
from the language of learning and testing text samples. This
makes CNG also applicable for programming languages.
A significantly simplified CNG variant is proposed in [47]
by which the value cng(xi,d , xj,d ) is simply substituted by the
quantity of the L-most frequent common n-grams between
inputs xi,d and, xj,d .

C. COMPRESSION
For any samples xi,d , xj,d ∈ X Keogh et al. propose in [48]
the following similarity measurement function:

cdm(xi,d , xj,d ) =
B(xi,d ||xj,d )
B(xi,d )+ B(xj,d )

where B : X → [0,∞) is a function that returns total number
of bits after compressing its input using some compression
algorithm (e.g., GZIP, and RAR) and xi,d ||xj,d is the concate-
nation of texts xi,d and xj,d .
Another compression-based similarity measurement func-

tion is proposed by Cilibrasi et al. in [49] as follows:

ncd(xi,d , xj,d ) =
B(xi,d ||xj,d )−min(B(xi,d ), B(xj,d ))

max(B(xi,d ), B(xj,d ))

Similar to common n-grams, for any testing sample xi,d ∈
XT , such functions can be used to solve SCC problems by
finding the estimation ŷi,q as follows:

ŷi,q = yj,q
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where yj,q is the true target classification label of sample xj,d
that is found as follows:

xj,d = argmin
xi,d∈XL

cdm(xi,d , xi,d )

or by substituting the cdm function by ncd.

D. BURROWS DELTA
Burrows delta [50] and its variants are among the most
successful stylometry distance measures (often used to find
estimations of solvers of SCC problems). Fundamentally
Burrows delta is the distance function1B : X×X → [0,∞)
such that the distance is smaller when the input texts are more
similar to one another.

Additionally, let zscore(xi,d [c]) =
xi,d [c]−µc

σc
be the z-score

of frequency xi,d [c], µc be the frequency mean of feature (or
component) c, and σc be the standard deviation of feature c.
Then, for any two represented texts xi,d , xj,d ∈ X , Burrows

delta is defined by the Manhattan distance as follows:

1B(xi,d , xj,d ) =
∑

c∈{1,2,...}

∣∣ zscore(xi,d [c])− zscore(xj,d [c])
∣∣

Variations of Burrows delta essentially substitute the Man-
hattan distance with other distance measures.

E. UNMASKING
Koppel and Seidman propose the unmasking algorithm as an
estimated solver to the AV problem [32]. For any xi,d , xj,d ∈
XT , the unmasking algorithm aims to answer whether yi,q =
yj,q (recall that yi,q is the classification label of the represented
text xi,d , under classification task q).

Intuitively, the unmasking algorithm assumes that texts
written by the same authors are harder to separate (or classify
as different authors) than texts written by different authors.
More specifically, the unmasking algorithm solves the AV
problem as follows:

1) As stated in Section V, the AV problem assumes that,
for any xi,d , xj,d ∈ XT , xi,d , and xj,d are collections of
texts such that texts within each collection are written
by the same author. If there is only one text in each text
collection xi,d , and xj,d , then the unmasking method
creates a collection of multiple texts by splitting each
text into multiple parts. Therefore, input texts should
be large enough to allow for the text parts to be large
enough for subsequent analysis [37].

2) Text parts in xi,d and xj,d are assumed to correspond
to target classification labels yi,q and yj,q, respectively,
such that yi,q 6= yj,q.

3) Using ten-fold cross-validation, SVM models are
trained and tested to predict the class labels of the text
parts in xi,d and xj,d based on their assumed clusters yi,q
and yj,q, respectively. Such ten-fold cross-validation
is repeated multiple times, such as, at each attempt,
a given number of the strongest features are removed.
This results in degrading the classification accuracy as
the strongest features are removed. When the accuracy

of such ten-fold cross-validation evaluations is plotted
as a function of each feature removal step, a classifica-
tion degradation curve is found.

4) If the degradation curve is sufficiently steep, it is
assumed that yi,q = yj,q, otherwise yi,q 6= yj,q is
assumed.

F. IMPOSTORS
Koppel et al. [51] propose the impostors algorithm to estimate
a solver of the SOC problem. Intuitively, the impostors algo-
rithm is an ensemble of randomized text similarity measure-
ment functions that assume that input texts are written by the
same authors if their similarity towards themselves is higher
than their similarity towards other texts of other authors.

More specifically, for any test samples xi,d , xj,d ∈ XT ,
the impostors algorithm aims to answer whether yi,q = yj,q
by the following steps:

1) A score is initialized: s← 0.
2) A random subset of texts that fall under the domains of

xi,d , and xj,d are obtained. We refer to this collection
of texts as the in-domain texts. With relation to our
notation, this random subset can be perceived as a
samples subset of the learning set XL whose target
classification labels are different than yi,q, and yj,q (but
their irrelevant classification task labels match as they
are in the same domains as the testing samples).

3) Let sim : X × X → R be some similarity distance
function that returns a larger score the more similar its
texts are, and a smaller score the less similar its input
texts are. Then, the impostors algorithm finds the most
similar in-domain text to xi,d , and xj,d . Let mi,d , and
mj,d be the most similar in-domain texts to xi,d , and
xj,d , respectively.

4) The score is then updated as follows:

s←s+


1
r

if

(
sim(xi,d , xj,d )2 >

sim(xi,d ,mi,d )× sim(xj,d ,mj,d )

)
0 otherwise

(16)

where r ≥ 1. Note that the function sim compares the
input texts from the perspective of a random subset of
vector components (or features).
Other similar score aggregation methods have also
been successfully evaluated in the literature, such as the
following as adopted by Khonji and Iraqi [52]:

s← s+
sim(xi,d , xj,d )2

sim(xi,d ,mi,d )× sim(xj,d ,mj,d )
(17)

5) Steps 2, 3, and 4 are repeated r times. If score s is
greater than some threshold (which is to be found in the
training phase), then yi,q = yj,q is assumed; otherwise,
yi,q 6= yj,q is assumed.

The most notable contribution of this method is its attempt
at normalizing the score of its similarity measure (i.e., sim
function) based on in-domain texts, beyond simply analyzing
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the input questioned texts, which proved itself to be highly
effective at solving AV problems, even when the similarity
measure, sim, is defined to be as simple as the min-max
distance measure (which cannot weigh the importance of
features individually).

VI. KEY DRAWBACKS OF EXISTING SOLVERS
The following are common drawbacks for all stylometry
problem solvers:

• Lack of knowledge about what the solver is truly solv-
ing. A solver is trained to solve, say, an author attribution
problem. However, the solver has no property that makes
it an author attribution model instead of a topic classifi-
cation model. Usually, stylometry problem solvers are,
in part, topic classification models. The reason is that the
distribution of writing styles is not entirely independent
of the topic. Currently, there are two typical methods to
minimize this drawback: the use of feature sets with low
topic information, such as the distribution of function
words, and the use of topic-controlled datasets. How-
ever, none of the methods are adequate, as the former
often also results in degraded classification accuracy,
and the latter is often too difficult to obtain in reality.

• Vulnerability against adversarial attacks. Style obfusca-
tion and imitation performed by untrained individuals
can degrade the classification accuracy of stylometry
problem-solvers down to random chance guessing and
below random chance guessing, respectively [53].

• Degraded accuracy against cross-domain stylometry
problems. The classification accuracy of the solvers
degrades significantly when given texts that fall under
a domain other than the domain of texts that they
were trained on. This is specifically a challenge for
open-set problem scenarios (i.e., MOC) due to insuffi-
cient domain adaptation techniques.

The following are solver-specific drawbacks:

• Extrinsic AV problem solvers, such as the Impostors
method, require external datasets that represent texts
that fall in the same domain as those of the questioned
texts. Obtaining in-domain texts is an open research
problem at the moment. Currently, used methods are
mainly rough estimations of the in-domain samples and
can be expensive to obtain. For example, an approach
that is commonly used with the Impostors method is
to query a search engine over the Internet to get web
pages with related texts, followed by using heuristics to
extract the text from the web page. The result is often
a very noisy text set, possibly with code snippets. One
of the main factors that cause the Impostors method to
be among the slowest AV solvers is that it analyzes such
noisy in-domain samples multiple times (depending on
the chosen parameters).

• Simple distance measures, such as common n-grams,
compression-based distances, and Burrows delta, are
among the fastest in terms of their run-time speed.

However, while the cost-accuracy trade-off of such mea-
sures can be attractive, they are no longer among the best
performing in terms of their classification accuracy.

• AV problem solvers based on neural network lan-
guage models are among the computationally demand-
ing solvers in this domain. For every unknown text,
the neural network is trained to learn a language model
for the text.

VII. FEATURES EVALUATION METHODOLOGY
In Section IV-E, we generalized many feature extraction
methods (i.e., special cases of the fex function) as special
cases of the at least l-frequent dir-directed k-skip n-grams.
This generalization simplified our implementation of the
many features while simultaneously allowing the identifica-
tion of previously unevaluated features.

One of the critical gaps in the literature’s current state is
the lack of joint evaluation of the many feature extraction
methods. While the features are evaluated in isolation, it is
unknown how they compare against the other features. This
is because the evaluations follow non-unified testing beds.
For example, they may be using different testing datasets and
different evaluation methodologies.

Another issue is that most of the existing evaluations
derive conclusions without performing statistical significance
tests. Therefore, even within their isolated testing beds, it is
unknown whether their outcomes are due to a systematic
difference in the evaluated methods as opposed to sampling
noise due to random chance.

Additionally, many of the developed methods are often
inaccessible to the community. This results in slowing down
the pace of research as different research groups would need
to re-implement the methods.

Our goal in this evaluation is to:

• Evaluate the many feature extraction methods under a
unified testing bed using multiple datasets. This way,
we can compare their performance jointly.

• Perform statistical significance tests to objectively iden-
tify the probability of having observed evaluation out-
comes arise under the null hypothesis (i.e., the p value).
This is necessary to derive any conclusions from the
evaluation results.

• Permit the reproducibility of this evaluation and the re-
usability of our developed tools by releasing all our
associated evaluated datasets and tools openly under a
permissible open source license. Additionally, our tools
are implemented by a friendly programming language
(e.g., Python).

A. EVALUATED fex IMPLEMENTATIONS
This evaluation implements many fex implementations as a
special case of at least l-frequent dir-directed k-skipped
n-grams by exhaustively varying its parameters as follows:

• All l ∈ {1, 2, . . . , 99}.
• All dir ∈ {spatial,deptree}.
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TABLE 2. Tested variables.

• All k ∈ {0, 1, 2, 3}.
• All n ∈ {1, 2, 3}.
• All gram ∈ { dep, funcword, pos-dep, pos,
word-dep, word-pos, wordlen,
wordshape-word, wordshape, word}.

This resulted in a total number of 99× 2× 4× 3× 10 =
23, 760 unique implementations of the features extraction
function fex. Table 2 lists the tested variable and their values.

B. EVALUATION PROBLEMS
The evaluation problems follow the SCC scenario. Recall that
SCC stylometry problems are those where the target labels
of testing samples are guaranteed to exist in the set of target
labels of the learning samples while simultaneously assuming
that learning and testing samples are drawn from the same
domain.

We used the following text datasets to create SCC
problems:
• S24: ProblemC of the PAN author identification compe-
tition. This is an author identification scenario, and the
set of labels are author identifiers. Since this dataset is
composed of 24 text files, we refer to it by S24.

• S1000: This is a reduced version of the one used in
[54]. This dataset is composed of a set of IMDb reviews
as authored by some of the ‘‘prolific’’ users of IMDb
[54]. Initially, this dataset is composed of 62, 000 text
files in total. However, we reduced the dataset down
to 1, 000 files by eight authors due to the exhaustive
nature of our evaluation and its associated computa-
tional constraints. The selection of this reduced subset
was uniformly random. The reason for this reduction is
because our assessment of the parameters of the feature
extraction functions is exhaustive, and performing this
with larger datasets was not computationally feasible.

Various statistics of the datasets S24 and S1000 are pre-
sented in Table 3.

For each dataset, the SCC problems are constructed as
follows:
• Two third of the text files are used as the learning set.
This learning set, along with the corresponding target
classification label of each file (i.e., the author identifier

TABLE 3. Datasets statistics.

of each file), is fed into a Random Forest (RF) classifica-
tion learning algorithm. The output of this RF learning
algorithm is an SCC classification model.

• The remaining one-third of the text files are used as test-
ing samples. Target classification labels of these testing
are predicted by the RF model that is trained earlier. The
prediction output of this RF model is logged for future
analysis as detailed in Section VII-C.

To more efficiently utilize the datasets S24 and S1000,
we repeat the steps above by using 3-fold cross-validation.
This enables us to effectively test against all the text files in a
given dataset while simultaneously ensuring that the learned
RF models (in each fold) are never trained by any text in the
testing fold.

Note that due to the size of S1000, it became computa-
tionally infeasible for us to evaluate fex implementations for
when l = 1 due to the sheer amount of identified patterns.
Therefore, for S1000, we evaluate implementations of fex
for all l ∈ {2, 3, . . . , 99}. Note how l 6= 1 implies that the
patterns that occur only once will be discarded (only those
that occur more than once will be considered). This ensures
that we will not identify too many patterns that cannot fit in
memory. This also means that we evaluate 98× 2× 4× 3×
10 = 23, 520 fex implementations on the S1000 dataset. This
limitation does not affect S24 as the dataset is considerably
smaller. Therefore we evaluate all of the 23, 760 distinct fex
implementations on S24.

C. EVALUATION METRICS
Let fexi and fexj be any two distinct implementations of fea-
ture extraction functions.We represent the evaluation datasets
once by using fexi and another by using fexj. This gives us two
different representations of the datasets.

Additionally, let RFi and RFj be two distinct RF classifica-
tion models. By feeding the testing samples to the classifica-
tion models RFi and RFj, we obtain their prediction outputs
Oi and Oj, respectively.
To evaluate the effectiveness of the feature extraction func-

tions fexi and fexj, we measure the following:

• The accuracy of their classification models RFi and RFj,
respectively. More specifically, for any i, the accuracy of
Oi is measured as follows:

acc
i
=

∑
o∈Oi

{
1 if prediction o is correct
0 otherwise

total number of problems
(18)
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TABLE 4. Statistical significance levels.

• The statistical significance of the difference in the mea-
sured accuracy of the models RFi and RFj, namely acci
and accj, respectively. This is to identify whether the
observed differences are statistically significant. Specif-
ically, we define the following hypothesis:

– H0: the differences between acci and accj are due
to random noise. This is also referred to as the null
hypothesis.

– H1: the differences between acci and accj are
because of a significant difference in the feature
extraction methods fexi and fexj. Since the classi-
fication models RFi and RFj differ only by their
implementation of the feature extraction functions,
any systematic difference has to be because of the
selection of the feature extraction functions. This is
also referred to as the alternative hypothesis.

Then, wemeasure the probability that the observed abso-
lute difference of the accuracy, namely | acci− accj |,
or greater absolute differences, can arise under hypoth-
esis H0. We refer to this probability as the p value.

To measure the p value, we have to identify the distribution
of absolute accuracy differences under the null hypothesisH0.
We adopt the statistical significance naming convention from
[24] as presented in Table 4.

VIII. FEATURES EVALUATION RESULTS
This evaluation aims to identify properties of the feature
extraction functions that correspond to the increase in clas-
sification accuracy. Since this evaluation tests many feature
extraction functions that are special cases of the at least
l-frequent dir-directed k-skipped n-grams, the properties
that we evaluate their effects on the classification accuracy
are l, dir, k , n, and grams.

Additionally, since the at least l-frequent dir-directed
k-skipped n-grams is a generalization of the following pre-
viously known feature extraction methods:

1) Distribution of grams.
2) Distribution of n-grams: This is a generalization of

grams by which the frequency of n sequences of adja-
cent grams are measured.

3) Distribution of k-skipped n-grams: This is a general-
ization of n-grams where skips up to k are tolerated.
Therefore n sequences of grams need no longer be
adjacent and can have up to k skips between them.

4) Distribution of syntactic n-grams: This is a generaliza-
tion over n-grams where we are no longer limited to
scan a text for gram sequences spatially but rather scan
a text by following a syntactic path.

We also take this opportunity to attempt to answer the
following questions: do the various generalizations above
benefit the accuracy of stylometry problem solvers? Do they
enable the stylometry problem solvers to identify more accu-
rate classification models? If yes, then which of the general-
izations benefit the accuracy of stylometry solvers?

We find answering these questions of importance as those
generalizations are used in the literature of stylometry prob-
lems while never being jointly evaluated yet.

A. INDEPENDENT PARAMETERS EVALUATION
As discussed in Sections VII-A and VII-B, a total number
of 23, 760 distinct feature extraction functions are imple-
mented and used to represent texts of the evaluation datasets.
This process results in 23, 760 distinct representations of the
evaluation datasets. Then, for each of the distinct represen-
tations of the evaluation datasets, the RFs algorithm is used
to construct AA classification models, and their classification
accuracy is measured.

The process above results in 23, 760 classification accu-
racy measurements, each of which represents the accuracy
that was achieved when using a specific feature extraction
function to represent the evaluation datasets. Since the num-
ber of parameters that define the feature extraction functions
is 5, one would need 6 dimensions to represent the com-
plete results in a single figure. However, due to significant
challenges in representing items in 4, or higher dimensional
spaces, this subsection will present the accuracy measure-
ments independently for each parameter. A joint analysis will
be presented in later sections.

Specifically, each figure in this section represents empir-
ical commutative density functions (ECDFs) of the classifi-
cation accuracy measurements, such that each ECDF corre-
sponds to a specific value of a specific parameter that defines
feature extraction functions. In other words, the horizontal
axis represents the classification accuracy measurement val-
ues, and the vertical axis represents commutative probability
values. For example, suppose the parameter is the definition
of a gram. In that case, an ECDF curve is presented for
when grams are defined to be words, another ECDF curve
is presented for when grams are POS tags, and so on with the
rest of the evaluated gram definitions.

Such ECDFs can be used to observe the distribution of
classification accuracy measurements from the perspective
of various values of a specific feature extraction function
parameter. For example, one could identify which parameter
values allow for the existence of the highest classification
accuracy values.

1) PARAMETER l
Figure 9 presents the classification accuracy of each of the
23, 760 RF classification models on dataset S24 from the
perspective of parameter l. The figure shows 99 curves, each
of which is the ECDF of the many classification accuracies of
all of the RF classificationmodels that share the same value of
the parameter l. In other words, each of the ECDFs represents
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FIGURE 9. The ECDFs of classification accuracy from the perspective of
the parameter l (for all l ∈ {1, 2, . . . , 99} against the S24 problems set).

FIGURE 10. The ECDFs of classification accuracy from the perspective of
the parameter l (for all l ∈ {1, 2, . . . , 99} against the S1000 problems set).

the accuracy of 23, 760/99 = 240 RF many classification
models.

Similar to Figure 9, Figure 10 represents the same, except
for evaluations on the dataset S1000. Note that the ECDFs
in Figure 10 are considerably smoother than those in Fig-
ure 9. This is because the dataset S1000 is composed of
1, 000 SCC author identification problems (which means
that the classification accuracy measurements take values in
{

0
1,000 ,

1
1,000 , . . . ,

1,000
1,000 }), whereas the dataset S24 is com-

posed of only 24 of such problems (which means that
the classification accuracy measurements take values in
{
0
24 ,

1
24 , . . . ,

24
24 }, which is only 24 possible values and there-

fore the approximately 24 stair steps).
We can see from the ECDFs in Figures 9 and 10 that the

evaluations on both of the datasets, S24 and S1000, agree
that the selection of lower values of l can allow for the
identification of more accurate classification models.

Specifically, Tables 5 and 6 list the highest classification
accuracy for each l ∈ {1, 2, . . . , 4}, along with their corre-
sponding pair-wise p values (note that l = 1 is not evaluated
on the dataset S1000 for the reason given in Section VII-B).

It can be seen from Tables 5 and 6 that both of the datasets
agree in that lower values of l can allow for higher classi-
fication accuracy levels. However, due to the small size of
S24, none of the differences in the accuracy levels in Table 5
are statistically significant (p ≥ 0.05). However, thanks to
the larger size of the dataset S1000, Table 6 can show that the
increase in the classification accuracy with l ∈ {2, 3}, relative
to l = 4, is statistically highly significant (p < 0.001).

TABLE 5. p values of the most accurate methods from the perspective of
the parameter l . To save space, only l ∈ {1, 2, 3, 4} is shown
(S24 problems set).

TABLE 6. p values of the most accurate methods from the perspective of
the parameter l . To save space, only l ∈ {2, 3, 4} is shown
(S1000 problems set).

However, it is essential to note that the parameter l is, fun-
damentally, a features selection parameter. I.e., larger values
of l will cause more features to be eliminated, and smaller
values of l will present more features to the learning algo-
rithm. The fundamental question here is whether the learning
algorithm can identify and use robust features while ignoring
harmful (or useless) features.

2) PARAMETER dir

When the parameter n = 1, the dir parameter is irrelevant.
This is because dir determines the direction by which mul-
tiple grams are identified to form a single n-gram. For such
cases when dir is irrelevant, we denote them by ‘‘N/A’’.

Figures 11 and 12 presents the ECDFs of the classification
accuracy levels from the perspective of values of the parame-
ter dir as evaluated on datasets S24 and S1000, respectively.

It can be seen that both Figures 11 and 12, on datasets
S24 and S1000, agree that higher classification accuracy
levels can be achieved when dir = spatial than when
dir = deptree. Additionally, Tables 7 and 8 show that
such differences are statistically significant in dataset S24
(p = 0.023) and statistically highly significant in dataset
S1000 (p < 0.001).

It can also be seen that Figures 11 and 12 disagree on
the effectiveness of dir = N/A. Figure 11 suggests that
dir = spatial can allow for the identification classi-
fiers that are more accurate than those identified by the case
when dir = N/A, while Figure 12 indicates the opposite.
However, Table 7 shows that the observation from Figure 11
is not statistically significant, while Table 8 shows that the
observation from Figure 12 is statistically significant.

Additionally, since the parameter dir is one of the
parameters that are responsible for generalizing n-grams,
k-skip n-grams, and syntactic n-gramswith dependency trees,
we can extend the findings for the parameter dir to answer
some of Section VIII’s questions.

We know that n-grams and k-skip n-grams follow
the spatial direction, while syntactic n-grams with
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FIGURE 11. The ECDFs of classification accuracy from the perspective of
the sliding window movement direction of n-grams (S24 problems set).

FIGURE 12. The ECDFs of classification accuracy from the perspective of
the sliding window movement direction of n-grams (S1000 problems set).

TABLE 7. p values of the most accurate methods from the perspective of
the sliding window movement direction of n-grams (S24 problems set).

TABLE 8. p values of the most accurate methods from the perspective of
the sliding window movement direction of n-grams (S1000 problems set).

dependency trees follow the deptree direction. Therefore,
having both of the datasets, S24 and S1000, agree that more
accurate classification models can be identified with dir =
spatial than with dir = deptree is an indication that
n-grams or k-skip n-grams are superior to syntactic n-grams
with dependency trees concerning their ability in identifying
features that result in higher classification accuracy.

3) PARAMETER k
While Figures 13 and 14 do not show a clear pattern, it can
be seen that lower values of k allow for achieving equal or
higher degrees of classification accuracy than the case when
k is larger. Specifically, maximum accuracy is achieved in
dataset S24 when k ∈ {0, 1}, and the same achieved in dataset
S1000 when k = 0. However, as shown in Tables 9 and 10,

FIGURE 13. The ECDFs of classification accuracy from the perspective of
the parameter k (S24 problems set).

FIGURE 14. The ECDFs of classification accuracy from the perspective of
the parameter k (S1000 problems set).

TABLE 9. p values of the most accurate methods from the perspective of
the parameter k (S24 problems set).

TABLE 10. p values of the most accurate methods from the perspective
of the parameter k (S1000 problems set).

none of this is statistically significant in dataset S24, while
the superiority of k = 0 over k > 0 is statistically significant
in dataset S1000.

The only exception to this trend is with dataset
S1000 where k = 1 can lead to lower classification accuracy
than k ∈ {2, 3}. However, only the difference between k = 1
and k = 2 is statistically significant (p = 0.046), while the
difference between k = 1 and k = 3 is not (p = 0.0549).
Worth noting that when k = 0, k-skipped n-grams are iden-

tical to n-grams. Therefore the superiority of the classifiers
when k = 0 suggests that n-grams can identify features that
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FIGURE 15. The ECDFs of classification accuracy from the perspective of
the parameter n (S24 problems set).

FIGURE 16. The ECDFs of classification accuracy from the perspective of
the parameter n (S1000 problems set).

TABLE 11. p values of the most accurate methods from the perspective
of the parameter n (S24 problems set).

lead to higher classification accuracy levels than can k-skip
n-grams.

4) PARAMETER n
Figures 15 and 16 suggest that both datasets S24 and
S1000 agree that bi-grams (i.e., n = 2) can identify of more
accurate classification models than tri-grams (i.e., n = 3).
While Table 11 shows that this observation is not statistically
significant on dataset S24 (p = 0.3147), Table 12 shows that
this is statistically significant in dataset S1000 (p = 0.003).
However, figures 15 and 16 disagree on the effectiveness

of bi-grams over uni-grams (i.e., n = 1). Figure 15 suggests
that bi-grams are also superior to uni-grams. However, this is
not statistically significant on dataset S24. On the other hand,
Figure 16 indicates the opposite while also showing statistical
significance on dataset S1000.

5) PARAMETER GRAM
Figures 17 and 18 agree that the gram with the lowest upper
bound limit on its accuracy is the wordlen gram (acc =
0.67 in dataset S24 and acc = 0.54 in dataset S1000). Despite
the small size of the dataset S24, our experiments show that
the inferiority of wordlen against pos (the best performing

TABLE 12. p values of the most accurate methods from the perspective
of the parameter n (S1000 problems set).

FIGURE 17. The ECDFs of classification accuracy from the perspective of
grams (S24 problems set).

gram in S24) is statistically significant (p = 0.036). Interest-
ingly, dataset S1000 shows that the inferiority of the gram
wordlen against all other grams to be statistically highly
significant (p ≤ 0.001).
Figure 17 suggests that the gram that leads to the highest

classification accuracy is pos, followed by word. However,
dataset S24 (due to its size) cannot demonstrate statistical
significance of any of the differences between the grams. The
only exception where dataset S24 can show a statistically
significant difference is concerning wordlen, as discussed
earlier.

On the other hand, Figure 18 suggests that the gram that
results in the highest classification accuracy is word-dep,
followed closely by word-pos. Both of the grams have led
to the same maximum classification accuracy of acc = 0.85.
The pattern that can be seen here is that generally, among

both of the datasets, POS tag-based grams (pos in dataset
S24 and pos-word in dataset S1000) tend to score one of
the highest classification accuracy levels. Additionally, pos
is the gram that allows for the second-highest classification
accuracy levels in dataset S1000 with a statistically insignif-
icant difference in accuracy against that of word-pos (p =
0.0619).

B. DEPENDENT PARAMETERS EVALUATION
Section VIII-A presented the evaluation results from the per-
spective of the parameters l, dir, k , n, and grams, indepen-
dently. This section aims to evaluate the features jointly by
presenting clusters of the feature extraction methods, solely
based on their classification accuracy, to answer some of
the questions in Section VIII, specifically concerning the
directions spatial and deptree.
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FIGURE 18. The ECDFs of classification accuracy from the perspective of
grams (S1000 problems set).

To study the feature extraction methods, we first need to
identify two clusters of such feature extraction methods: most
accurate methods and least accurate methods. We identify the
cluster of the most accurate feature extraction methods by
following a principled approach as follows:

1) Obtain the most accurate feature extraction methods.
In other words, all feature extraction methods that can
achieve the maximum classification are identified.

2) Then, the list of the most accurate feature extrac-
tion methods is compared against all other feature
extraction methods to identify other feature extraction
methods that are similar enough to the most accurate
methods. To identify such similar features in a prin-
cipled manner, we perform pair-wise statistical signif-
icance tests between the most accurate methods and
every other method in order to compute their p values.
A feature extraction method is then considered to be
similar enough if its difference in accuracy, against
the most accurate ones, is not shown to be statistically
significant (p > 0.05).

A similar approach is followed to identify the cluster of
the least accurate feature extraction methods. In this case,
the pair-wise statistical significance tests are performed
against the least accurate feature extraction methods.

C. PARAMETERS EVALUATION RESULTS
By observing the list of the most accurate feature extraction
methods, it can be seen that:

• The list is highly dominated by the spatial direc-
tion and the absence of the deptree direction. This
suggests that syntactic n-grams with dependency trees
are considerably limited in identifying accurate patterns
to solve stylometry problems, such as the SCC author
identification problem at hand.

• Feature extraction methods in the list also present small
values of the parameter l. Feature extraction methods
with small l suggest that they relatively identify reliable
patterns that help the learning algorithm (RF) identify

accurate classification models. However, this observa-
tion may differ depending on the noise presented in the
dataset at hand, which in turn affects the degree bywhich
noisy features are discarded.

• Values of the parameter k seem to be relatively diverse
and not dominated by k = 0. This implies that k-skip n-
grams as features are a step forward in identifying classi-
fication patterns that allow for more accurate stylometry
problem solvers. Similarly, values of the parameter n are
pretty diverse, which suggests the use of n-grams as a
framework for identifying patterns that are suitable for
solving stylometry problems.

• However, it is evident that in both of the datasets
S24 and S1000, that k = 0 is dominant among the
most accurate methods (acc = 0.9167 in S24, and
acc ∈ {0.853, 0.851, 0.837} in S1000). This suggests
that classical n-grams, without the addition of k-skips
as a parameter, have a slight edge. However, this is only
shown to be statistically significant in the dataset S1000.

By observing the list of the least accurate feature extraction
methods, it can be seen that the majority of the least accurate
methods use the directiondeptree. It is unclear whether the
low classification accuracy is due to the direction parameter
or whether it is due to the high values of l (which we have
established earlier in Section VIII-A that larger values of l
generally correspond to lower classification accuracy).

To isolate the effect of parameter l, we observe only the
least accurate feature extraction methods that have small
values of l (specifically, l ≤ 5). Interestingly, the resultant
filtered cluster of the least accurate feature extraction meth-
ods contains only those following the direction deptree.
The only exception to this is only three features on the dataset
S1000.

Therefore, it can be concluded that the distribution of uni
grams, n-grams, and their generalization k-skip n-grams are
effective feature extraction methods that allow to identify the
most accurate SCC author identification models. However,
syntactic n-gramswith dependency trees identify features that
lack considerably compared to the previous feature extraction
methods.

IX. EVALUATION REPRODUCIBILITY
The feature extraction Pythonmodule is released in the repos-
itory https://gitlab.com/mmaakh/fextractor.git. The evalua-
tion code (whichmakes use of themodulefextractor.py)
is released in the repository https://gitlab.com/mmaakh/
stylometry-survey-evaluation.git. This repository contains
two sub-directories: evaluation contains the code to generate
the evaluation model outputs, and visualization contains the
code to translate the model outputs into the figures and tables
that are presented in Section VIII. The dependencies are
Python,3 Scikit-learn,4 CoreNLP,5 and Matplotlib.6

3https://python.org/
4http://scikit-learn.org/
5https://stanfordnlp.github.io/CoreNLP/
6http://matplotlib.org/
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X. FUTURE DIRECTIONS
This section presents our thoughts about promising future
research directions to address key challenges facing stylom-
etry problem solvers.

A. IMPROVE OUR UNDERSTANDING OF THE SOLVERS
The best performing stylometry problem solvers are cur-
rently trained to maximize an optimization objective, such as
the accuracy of the labels that they predict. However, there
is almost no systematic component within the solvers that
ensures that they are solving the problem that we think they
are solving.

For example, an author attribution solver could be par-
tially a topic detection model. Unless controlled datasets are
used, or unless models are manually analyzed, it is unknown
whether the solver is a style classifier, a topic classifier, or a
mixture of both.

Future work may investigate the existence of algorithms
with internals that ensure us that there is a systematic pressure
on the model to be, say, an author attribution model. This is
different than hoping that a generic learning algorithm would
find the right model by analyzing some dataset, especially
when the dataset is not controlled.

Historically, solvers used to analyze texts represented by a
limited feature set, such as the distribution of their function
words, to ensure that the solver is indeed analyzing texts’
writing styles independent of their topics. However, such an
approach is not ideal, as the distribution of function words
in a given text contains some information about its topic.
Additionally, such solvers tend to suffer degraded accuracy
compared to state-of-the-art solvers.

A potentially promising approach could be via indirect
training, by which a model is trained to solve a different
problem than the target problem, such that the solver of the
former problem is known beforehand to have knowledge of
the solution of the target problem necessarily. The solver
of the target problem is then extracted from the solver of
the former problem. For example, Radford et al. found that,
by training a large enough byte-level LSTM model for a
month to solve the text review generation problem using a
dataset comprised of millions of Amazon reviews, the model
had indirectly also learned a state of art sentiment analyzer
[56]. In other words, the review generator was learned in
a supervised manner, while the indirectly learned sentiment
analyzer within the review generator was learned in an unsu-
pervised way. Similar effects are observed with other large
neural networks as their hidden neurons tend to indirectly
learn solvers of intermediate problems related to solving the
target problem.

It would be interesting to evaluate a similar setup with
stylometry-problem solvers to learn a writing style detector
in an unsupervised manner indirectly. For example, a large
enough recurrent model that is trained for solving the text
summarization problem would possibly also indirectly learn
to identify portions of texts that concern topics discussed in

the input texts (so that the summarizer model considers them
for inclusion in its output summary), and parts of texts that
concern the writing style of its author (so that it excludes
it from its summary). This may imply the existence of an
indirectly-learned topic-style classifier, in an unsupervised
manner, within such text summarization models.

Suppose the text summarization model is accurate for its
purpose (summarizing texts). In that case, it should follow
that its intermediately-learned style detection is accurate also
(so that it avoids including the irrelevant information about
writing styles in its summaries). Therefore, if a stylometry
problem solver used this intermediately-learned style detec-
tor, we may have an additional reason to believe that it is
indeed deciding based on writing styles. In other words,
it might be possible to evaluate the correctness of such a
solver not only based on its performance against some eval-
uation sets but also based on the performance of the text
summarization model.

B. IMPROVE SOLVERS’ ROBUSTNESS AGAINST
ADVERSARIAL ATTACKS
Stylometry problem solvers are generally weak against adver-
sarial attacks, such as obfuscation or imitation attacks,
by which classification accuracy approaches random chance
guessing (with obfuscation attacks) and below random
chance guessing (with imitation attacks).

Future work may explore the feasibility of training stylom-
etry problem solvers using Generative Adversarial Network
(GAN) frameworks, by which a stylometry problem solver
is not only trained to predict the correct label for the given
problems but also trained not to be fooled by another com-
peting model that is also being trained with it, except for
having the opposing task of fooling the solver (for example,
by manipulating input texts to imitate other authors).

If successful, such an approach would have the benefit of
producing stylometry problem solvers that are systematically
constructed to have increased robustness against adversarial
attacks in an unsupervised manner.

C. REDUCE SOLVERS’ RUN-TIME
Currently, some of the most accurate AV solvers rely on
obtaining language models for authors by training deep neu-
ral networks, which also makes some of the slowest problem
solvers due to the expensive training time that such deep
neural networks require. This significantly limits their appli-
cability to scenarios with large numbers of candidate authors.

An interesting future workmight be to analyze the internals
of many such expensively-trained deep neural network lan-
guage models to possibly identify common functions, such
as high-level feature-extraction functions, that the networks
aim to learn.

Once the common functions are identified, investigate
methods to re-use them in the training phase of the future
deep neural network language models so that the common
functions are not re-learned for every language model from
scratch every time a new unknown text is analyzed.
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This could be taken one step further by implementing the
surveyed feature extraction methods as differentiable func-
tions. This could allow us to re-use them in future neural
networks without losing the end-to-end differentiability of
the network’s error function. Since the differentiable feature
extraction functions are optimized beforehand, future neural
networks that make use of them would only require optimiz-
ing the network’s weights, excluding those of the functions.

XI. CONCLUSION
This paper introduced electronic text stylometry problems
under a unified notation in probability terms, their importance
in enhancing various upper-layer applications, the key chal-
lenges currently faced in this field, the critical limitations of
stylometry problem solvers, and suggestions for future direc-
tions to solve them. Such challenges include optimizing the
stylometry problem solvers to maximize their classification
accuracy and performing accurate stylometry analysis across
distinct domains. The challenges also include the generaliza-
tion of existing data representation methods to enhance our
understanding.

This paper has also addressed a critical challenge by gen-
eralizing many feature extraction functions as special cases
of the at least l-frequent dir-directed k-skipped n-grams,
as well as presenting an extensive evaluation of over tens
of thousands of feature-extraction functions, which evaluated
them under the same unified testing bed. This allowed us to
perform the first comparisons between previously proposed
feature extraction functions in the literature (e.g., comparing
syntactic n-grams against k-skipped n-grams) and to intro-
duce novel definitions of grams (e.g., compound grams).
Interestingly, despite the diversity of the set of the feature
extraction functions, classical n-gram-based functions proved
to be superior among the more sophisticated variants (i.e.,
syntactic n-grams with dependency trees and k-skipped n-
grams). Our future work will focus on using transfer learning
to reduce solvers’ run-time and tackle multi-domain author-
ship identification by reusing a model trained in a particular
domain as a starting point for author identification in another
domain.
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