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ABSTRACT A Grid-Local Probability Road Map (PRM) method was proposed for the path planning of
manipulators in dynamic environments. Based on the idea of boundary discretization, a double-grid model
was built to obtain a mapping from dynamic obstacles to configuration space. The collision detection was
simplified as a data indexing process to improve its efficiency. Times of collision detections were reduced
by employing local programming strategies and the stratified sampling method. Moreover, the validity of
sampling was increased. Taking the PUMA560 manipulator as a research object, the simulation experiments
show that the time consumption of the proposed simplified collision-detection algorithm is about 14% of
that of the standard one, and the stratified sampling is beneficial to the generation of probability maps
compared with simple random sampling method. The simulation experiment of the static path planning
shows that the proposed algorithm consumes an average of 10ms, which is superior to the comparison
algorithm and has high efficiency and real-time performance. The simulation experiment of the dynamic
path planning shows that the proposed algorithm consumes an average of 7ms per step, which is better than
the comparison algorithm. The proposed algorithm can adjust the global path in real time to avoid obstacles
as the environment changes. The algorithm mentioned has been proved to be efficient.

INDEX TERMS Dynamic environment, double grid model, probability road map, path planning.

I. INTRODUCTION
Robot path planning [1] is to plan a path from the begin-
ning to the ending, and can safely avoid the obstacles in
the environment. Compared with static environments, path
planning in dynamic environments requires higher real-time
performance of algorithms [2]. For the dynamic path plan-
ning of multi-degree-of-freedom (DOF) manipulators, larger
workspace and a large number of online collision detection
become a bottleneck that limit the efficiency of the planning
algorithms [3]. Consequently, scholars have done a lot of
researches on spatial description methods and planning algo-
rithms. As for the spatial description method, Lozano-Perez
proposed a method to construct a mapping of obstacles in
the configuration space by solving the limit of joint angle of
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multi-DOF manipulators [4]. Due to the complexity of map-
ping function, thismethod is difficult to be applied in practice.
Newman proposed an analytical method, which regarded
obstacles as a combination of features such as points, lines
and planes, mapped these features to the configuration space
through the analytical method, and obtained the mapping
of obstacles in the configuration space through union [5].
However, only the mapping method of 2-DOF manipulators
is discussed in the article, which is difficult to be applied to
multi-DOF manipulators. As for planning algorithms, PRM
algorithm [6], which was generated in the 1990s, is not lim-
ited by the spatial dimension and is widely used to solve the
path planning problem of multi-DOFmanipulators. However,
it is difficult to apply in the dynamic environment since prob-
ability road maps take a long time to construct and cannot be
reused. Leven proposed an extended PRM algorithm, which
constructed the probability mapwithout obstacles firstly, then
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added obstacles and adjusted the probability map to obtain
a non-collision path in the query stage [7]. Bohlin proposed
a planning algorithm suitable for dynamic environments,
which constructed a probability map in the environment con-
taining only static obstacles, and quickly updated the proba-
bility map combined with the lazy evaluation mechanism [8]
to obtain a new path after the introduction of dynamic obsta-
cles. However, these two methods still describe the dynamic
environments in a narrow sense and do not involve the move-
ment of obstacles or the transient occlusion of the starting
and ending point. To sum up, firstly, a mapping method from
obstacles to configuration space is complex and difficult to be
applied to multi-DOF manipulators. Secondly, it is difficult
for PRM algorithm to be used in dynamic environments and
the object of some improved PRMalgorithms proposed is still
a narrow dynamic environment.

Based on the idea of boundary discretization [9], a grid
mapping model was built to realize a rapid update of envi-
ronmental maps. Introducing local programming idea [10]
into PRM algorithm, a local PRM algorithm was proposed
combining with the simplified collision-detection algorithm,
which can break through the limitation that the standard PRM
algorithm can only be used in a static space, and realize
its path planning in a dynamic space. In the Section II,
a mapping method from obstacles to configuration space is
described, and a derived simplified collision-detection algo-
rithm is proposed. In the Section III, the obstacle description,
the sampling method and the proposed local PRM algorithm
are described. In the Section IV, the mapping model, the
collision-detection algorithm, the sampling method and the
Grid-Local PRM algorithm are verified respectively by sim-
ulation experiments.

II. GRID MAPPING MODEL
A. DOUBLE GRID MODEL
Due to obstacles moving in real time, the changing spatial
position cannot be quickly calculated by a complex continu-
ous model, which makes online computing unavailable [11].
Consequently, instead of the continuous modeling method,
we discretize the task space and configuration space, and
propose a dynamic modeling method based on boundary
points.

The task space is uniformly discretized, and the index is
denoted as i. The i-th grid center vector tcenteri and its isotropic
equivalent radius tradiusi are as follows.

tcenteri =

(
tmin + (i−

1
2
)
(tmax − tmin)

nt

)
tradiusi =

1
2
(tmax − tmin)

nt

(1)

where nt is the coefficient matrix about the division of task
space, and tmin, tmax are the boundary matrixes for the task
space.

Similarly, the configuration space is uniformly discretized,
and the index is denoted as j. The j-th grid center vector ccenterj

FIGURE 1. Diagram of a linkage.

and its isotropic equivalent radius cradiusj are as follows.
ccenterj =

(
cmin + (j−

1
2
)
(cmax − cmin)

nc

)
cradiusj =

1
2
(cmax − cmin)

nc

(2)

where nc is the coefficient matrix about the division of con-
figuration space, and cmin, cmax are the boundary matrixes for
the configuration space.

B. MATHEMATICAL MAPPING MODEL
To solve the mapping relationship between the grid ti and
the grid cj, starting from the kinematics of the manipula-
tors, a relative transformation matrix [12] of each linkage
of the manipulators in the standard D-H coordinates can be
expressed as follows.

n−1
n T =


cθn −sθn 0 an−1

sθncαn−1 cθncαn−1 −sαn−1 −sαn−1dn
sθnsαn−1 cθnsαn−1 cαn−1 cαn−1dn

0 0 0 1

 (3)

where a is a coefficient representing the translation of the x-
axis, α is a coefficient representing the rotation of the x-axis,
d is a coefficient representing the translation of the z-axis, θ
is a coefficient representing the rotation of the z-axis, s stands
for short form for cosine function, and c stands for short form
for sine function.

For a n-DOF manipulator with given a joint configuration,
some coefficients such as a, α and d being all given, the
transformation matrix (see Eq. (3)) can be expressed by the
matrix function of the joint angle, as shown in Eq. (4).

n−1
n T = n−1

n f (θ1, θ2, · · · , θn) (4)

As for a linkage l shown in Fig. 1, giving any configuration
(θ1, θ2, . . . , θn), from Eq. (4), a recursive relation between the
left endpoint xl−1 and the right endpoint xl is as follows.

xl = l−1
l T · xl−1 = l−1

l f (θ1, θ2, · · · , θl) · xl−1 (5)

Suppose that the origin of the base coordinate system is
x0 = (0, 0, 0, 1)T. According to Eq. (5), the relationship
between origins of each joint coordinate system and origin
of the base coordinate system can be obtained, as shown in
Eq. (6).

xl = l−1
l f (θ1, θ2, · · · , θl) · xl−1
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FIGURE 2. Diagram of two-linkage interference.

=
l−1
l f (θ1, θ2, · · · , θl) ·

l−2
l−1f (θ1, θ2, · · · , θl−1) · xl−2

= · · ·

=

l∏
k=1

k−1
k f (θ1, θ2, · · · , θk ) · x0 (6)

According to the theorem of segment with fixed ratio [13],
any point sl in the linkage l can be expressed by the left
endpoint xl−1 and the right endpoint xl , as shown in Eq. (7).

sl = λl(xl − xl−1)+ xl−1 (7)

From Eq. (6) and Eq. (7), we can infer the following.

sl =
l−1∏
k=1

k−1
k f (θ1, θ2, · · · , θk ) · x0

+λl

l∏
k=1

k−1
k f (θ1, θ2, · · · , θk ) · x0

−λl

l−1∏
k=1

k−1
k f (θ1, θ2, · · · , θk ) · x0 (8)

where λ is a coefficient with interval (0,1), representing the
position of point in the linkage.
As shown in Fig. 2, in addition to the collision between

themanipulator and grid elements, the self-interference of the
manipulator should also be considered [14]. For two adjacent
linkages, the interference can be prevented by controlling the
limit range of joint angle. Therefore, we only need to study
the interference between non-adjacent linkages about the
self-interference of manipulator. Combined with the previous
linkage model, the shortest distance between two linkages is
as follows.

min da,b = Lmin − (ra + rb) (9)

where ra is the envelope radius of the linkage a, rb is that of
the linkage b, and Lmin is the shortest distance between the
shafts of the manipulator in a configuration θ .∣∣∣slccenterj

∣∣∣ is defined as the Euclidean distance from any
point in the linkage l to the center of the grid cj in a con-
figuration space.

The collision detection between the grid ti and the grid cj
can be described as a nonlinear optimization problem [15],
as shown in Eq. (10).

min f (x)
x = (λ1, λ2, · · · , λn, θ1, θ2, · · · , θn)

f (x) = min(
∣∣∣s1ccenterj

∣∣∣ , ∣∣∣s2ccenterj

∣∣∣ , · · · , ∣∣∣snccenterj

∣∣∣)
s.t.

0 ≤ λ1, λ2, · · · , λn ≤ 1
ccenterj − cradiusj < θ1, θ2, · · · , θn ≤ ccenterj + cradiusj

n∏
k=1

min dk−1k > 0


(10)

By using Differential Evolution (DE) algorithm [16] to
achieve the optimal solutionmin f (x) of the problem shown in
Eq. (10), the mapping function colji(θ1, θ2, · · · , θn) between
ti and cj can be constructed, as shown in Eq. (11), where 1 is
the collision state and 0 is the non-collision state.

colji(θ1, θ2, · · · , θn)

=

{
1, min f (x) ≤ max(tradiusi )+ rl
0, else

(11)

where rl is the envelope radius of the linkage l.

III. DYNAMIC PATH PLANNING
A. DYNAMIC OBSTACLES
The motion of dynamic obstacles can be regarded as a rigid
body motion, which can be decomposed into translational
motion and rotational one. Let the rotation matrix be M and
the translation vector be v, as shown in Eq. (12) and Eq. (13).
A point collected from the surface of dynamic obstacle is
fixedwith it andmoves together with it. At time t , the position
of the point is recorded as p = (p1, p2, p3, . . . , pN )T; At the
t + 1 moment after movement, the point position is recorded
as p′ = (p′1, p

′

2, p
′

3, . . . , p
′
N )

T. Its calculation formula is shown
in Eq. (14).

M =

r11 r12 r13r21 r22 r23
r31 r32 r33

 (12)

v =

pxpy
pz

 (13)

p′ = Mp+ v (14)

B. COLLISION DETECTION
Based on the proposed obstacles model, the sequences of
grids occupied in the task space can be obtained in real time,
denoted as Listobs = (i1, i2, i3, . . . , iN ). Thus, the mapping
state occupyj,[i1,i2,i3,··· ,iN ] of the grid j under the influence of
Listobs can be retrieved, abbreviated as occupyj, as shown
in Eq. (15). The sequences of the grids occupied in the task

101188 VOLUME 9, 2021



Y. Liu et al.: Research on Dynamic Path Planning of Manipulators Based on Grid-Local PRM Method

space can be obtained by traversing each j.

occupyj =
iN∑
k=i1

coljk (15)

Based on the proposed mapping relationship between
configuration space and task space, a simplified collision-
detection method is proposed.

For any given configuration θ = (θ1, θ2, . . . , θn)T, using
the proposed model, the high-dimensional index Hid of any
grid occupied in configuration space is shown in Eq. (16). The
single-dimensional index Oid of that is shown in Eq. (17).

Hidk =
nkcceil(θk − c

k
min)

ckmax − c
k
min

(16)

Oid = Hid1 +
n∑

k=2

{(
nk−1c

)k−1
(Hidk − 1)

}
(17)

The collision state between the configuration θ and the
obstacles can be represented by isnonfree(θ), shown in
Eq. (18). That is, the collision detection is transformed into
looking up database.

isnonfree(θ) =

{
1, occupyOid > 0
0, else

(18)

C. LOCAL PRM ALGORITHM
Note that xstart is the global starting point, xgoal is the global
goal point, xcurrent is the current position, x1→ x2 is the path
segment connecting x1 and x2, and the back-end endpoint of
each path segment is a sub-goal point, marked as xsub.
In global path planning, there are usually two assump-

tions [17]: (1) the starting point and the ending point can-
not be blocked by obstacles; (2) the ending point cannot
be blocked by obstacles. In a dynamic environment, if the
starting and the ending points are blocked by obstacles, and
the manipulator is not at these positions, then the algorithms
should be solvable. It is clear that this assumption is invalid.

As shown in Fig. 3, a lazy collision-detection strategy [18]
is introduced in this article. There is no collision detection
in the construction of probability maps or in the path query
phases. That is to say, both the undirected maps and the
searched global path may be ‘‘illegal’’. In this way, the
hypothesis mentioned above can be avoided.

Secondly, in order to ensure that the path is feasible, local
subgoal points being introduced, the collision detection is
only performed on the piece xcurrent→ xsub to ensure the fea-
sibility from the current position to the global next standard.
However, the global path is likely to be ‘‘illegal’’. All in all,
the strategy is only for the local area, reducing the number of
collision detections as much as possible, to ensure that PRM
algorithm can be used in a dynamic environment.

Latin hypercube sampling [19] is employed in this article.
It is a kind of stratified sampling [20], which can simulate the
distribution of problems with fewer points.

Points obtained by the simple random sampling are easy to
aggregate, and part of them may be invalid. However, points

FIGURE 3. Diagram of Local PRM algorithm strategy.

FIGURE 4. Simple random sampling and Latin hypercube sampling.

of the Latin hypercube sampling belong to different layers,
and each sampling point can represent the characteristics of a
local region. As shown in Fig. 4, using simple random sam-
pling, it is easy to cause the sampling points to be located in a
small area. Unlike it, each point obtained by Latin hypercube
sampling belongs to a different small area.

A∗ algorithm [21] is used to query the global path. The
heuristic function f (x) is shown in Eq. (19), and the distance
is defined as an Euclidean distance [22] between two points.

f (x) = g(x)+ h(x) (19)

where g(x) is the distance cost between the sampling point
and the current point, and h(x) is the distance cost between
the sampling point and the goal point.

Steps of the algorithm are as follows, and the flowchart is
shown in Fig. 5.
Step 1: Initialization. Including adjacency radius ρ, sample

sizeN , index of path segment pid , global environmentworld ,
and current position xcurrent.
Step 2: Sampling from the configuration space and the

points obtained are denoted as xksample, in which the k is the
index of the sampling points.
Step 3: The set of points C is constituted by xstart, xgoal and

xsample, and the set of edges V is calculated according to the
adjacency radius.
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FIGURE 5. Flowchart of the grid-local PRM algorithm.

Step 4: Taking the edge set V as a search graph, A∗ algo-
rithm is used to search the path path.
Step 5: Let xsub be path(pid), and judging whether

xcurrent→ xsub piece collides with the obstacles.
Step 6: If there is no collision, xcurrent→ xsub trajectory is

planned, thus xcurrent tracking the trajectory tomove. If xcurrent
reaches xsub, then pid = pid + 1.
Step 7: If there is a collision, determining whether xcurrent

already exists in the set of points C. If it is true, deleting
subgoal point, adjusting the set of edges V, initializing pid ,
and returning to step. 4. Otherwise, adding xcurrent to the set
of points C, recalculating the set of edges V, delete sub-goal
point, adjust the set of edges V, initializing pid , and returning
to step. 4.
Step 8: Repeating steps 5 to 7 until xcurrent reaches xgoal.

IV. SIMULATIONS AND VERTIFCATIONS
Taking a 6-DOF PUMA560manipulator as an example, some
simulation experiments by MATLAB and Robotics Tool-
box [23] and theirs analysis are carried out. The D-H param-
eters of the PUMA560 manipulator are shown in Table. 1.
Let nt = 30 · ones (6, 1), nc = 30 · ones (6, 1) and tmin =

−1 · ones (3, 1), tmax = 1 · ones (3, 1); cmin and cmax is given
by the D-H parameters [24]. Themapping from the task space
to the configuration space can be calculated according to the
method described in Section II.

Since the three posterior joints of the PUMA560 manip-
ulator have no influence on the collision state between the
whole manipulator and obstacles [25], its configuration space
can be expressed explicitly by the method of dimensionality
reduction.

Some grid indexes of obstacles are randomly selected to
express theirs mapping to the configuration space explicitly.
Fig. 6a is a single obstacle. Fig. 6b is combination obstacles.
Fig. 6c and Fig. 6d are their corresponding mappings in the
configuration space respectively.Moreover, the configuration

TABLE 1. D-H parameters of the PUMA560 manipulator.

TABLE 2. Time consumption comparison among the two algorithms(s).

space corresponding to the multiple grids is the union of those
corresponding to the single grids.

In order to verify the performance of the proposed
collision-detection algorithm, some obstacle sequences and
manipulator joint configurations are randomly extracted from
the task space and the configuration space respectively. The
collision state between the obstacles and the manipulator
are detected by employing the simplified collision-detection
algorithm and the standard collision-detection algorithm [26]
respectively, on which a total of 100 such calculations
are performed. The statistical data of the experiment are
shown in Table 2, which further supports the above con-
clusion. The average time consumption of the simplified
collision-detection algorithm is only 13.56% of that of the
standard collision-detection algorithm, and the median time
consumption is only 13.41%. The standard deviation of the
time consumption of the simplified collision-detection algo-
rithm is also an order of magnitude higher than that of the
standard collision-detection algorithm.

As shown in Fig. 7, the red dots in it are the
time-consumption dots with the standard collision-detection
algorithm, the blue dots are those with the simplified
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FIGURE 6. Mapping between the task space and the configuration space.

collision-detection algorithm, and the horizontal lines with
corresponding colors are the average value lines.

According to the distribution pattern of the dots, it is
obvious that the dots with standard collision-detection algo-
rithm are scattered, while the results of the simplified
collision-detection algorithm are dense. Since the complexity
of the environment selected for the experiments is random,
it means that the detection time of the algorithm in this
article is not sensitive to the complexity of the environment.
According to the average value lines, the time consumption
of the simplified collision-detection algorithm is less than that
of the standard collision-detection algorithm.

The Latin hypercube sampling and the simple random sam-
pling were used respectively to sample and build probability
maps in two-dimensional graphs with the starting point of
(0, 0) and the ending point of (1, 1), on which a total
of 100 such calculations are performed.

As shown in Fig. 8 is a set of experimental results. Fig. 8.
Fig. 8a and Fig. 8b that are the sampling point graphs using
the Latin hypercube sampling and simple random sampling,
respectively. Fig. 8c and Fig. 8d are the undirected graphs
using the Latin hypercube sampling and simple random sam-
pling, respectively. As shown in Table 3 is the average val-
ues of the aggregation degree and coverage area, where the
aggregation degree is the average value of the reciprocal of
the distance between any two points of effective connection,
and the coverage area is the average values of the polygon
area formed by the boundary of the undirected graphs.

Comparing with Fig. 8a and Fig. 8b, it can be seen that
the sampling points using simple random sampling method

FIGURE 7. Graph of the time consumption of algorithms.

occupy less space than the Latin hypercube samplingmethod,
and an aggregation phenomenon occurs in the upper left cor-
ner. Similarly, Comparing with Fig. 8c and Fig. 8d, it can be
seen that the undirected maps of the simple random sampling
have smaller coverage and fewer paths than that of the Latin
hypercube sampling. Combined with Table 3, the aggregation
degree of the simple random sampling is greater than that of
the Latin hypercube sampling, but the coverage area is on the
contrary.

The results show that the Latin hypercube sampling
method is more beneficial to the construction of undirected
maps.

In order to verify the performance of the proposed algo-
rithm in a static environment, 6 groups of grid sequences are
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FIGURE 8. Sampling and constructing undirected maps in two-dimensional space.

TABLE 3. Performance comparison among the two methods.

randomly sampled in the task space to construct a static envi-
ronment for the experiment. As shown in Fig. 9, the number of
grids is 6, 9, 12, 15 and 21, and the environmental complexity
of the 6 groups of the grid sequences increases successively.
The random selection of grid sequences is on the premise that
the selected grid sequences do not occupy the starting and
ending points of the planning task. That is to say, there is a
feasible path. The starting point of the task is set as (π3 , −π ,
−π , 0, 0, 0), and the ending point of the task as (− 2π

3 , π6 ,
π
6 ,

π
2 ,

π
6 , π ). For each group of grid sequences, the path is

searched by the PRM [27], the Lazy PRM [28] and the Local
PRM respectively. Each group of experiments is conducted
for 100 times, and the average andmedian values are adopted.
The statistics are shown in Table 4.

As shown in Table 4, with the increase of the environ-
mental complexity, the time consumption of each algorithm
presents an upward trend. However, the time consumption of
the algorithm in this article is still the least among the three.
The average time consumption of the proposed algorithm is
0.10% of PRM algorithm, and 20.55% of Lazy PRM algo-
rithm. The median value is 0.08% of PRM algorithm, and

TABLE 4. Time consumption comparison among the three algorithms(s).

21.68% of Lazy PRM algorithm. The results show that the
proposed collision-detection strategy and the simplified colli-
sion detection can significantly reduce the time consumption
of the algorithm.

Further, in order to verify whether the proposed algorithm
is competent in dynamic environments and to investigate its
performance in dynamic environments, the simulation envi-
ronment is set as follows. The starting point of the task is
(−π3 ,

π
6 , −

7π
3 , 0, 0, 0), the ending point of the task is (π3 ,

π
6 , −

2π
3 , 0, −π2 , 0), and the initial position of the dynamic

obstacle with a radius of 0.0667 is ( 35 , −
1
3 , −

2
15 ), which can

move along the Z-axis with a certain probability.
Due to the excessive time consumption of the PRM algo-

rithm, the Lazy PRM algorithm and the Local PRM algorithm
are used to carry out the simulation of path planning for a
dynamic environment. A total of 10 groups are carried out.
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FIGURE 9. Obstacle grids in a static environment.

TABLE 5. Time consumption Comparison among the two algorithms(s).

The statistical data are shown in Table 5, where ‘‘Period’’ is
the number of planning periods.

As shown in Table 5, since the movement of obstacles is
random, the difficulty of planning is different, which is shown

in the table as the difference of Total Time. The more times
the algorithm is reprogrammed, the greater the value will be.

However, in general, the time consumption of the algo-
rithm in this article is less than that of the comparison
algorithm. Single time is the average time consumption
of the algorithm in a single period, and the average val-
ues of multiple groups are 0.0221s and 0.0076s respec-
tively. The single-step time consumption of the proposed
algorithm is 34.55% of that of the contrast algorithm. The
results show that the dynamic performance of the pro-
posed algorithm is better than that of the contrast algo-
rithm, and the Local PRM algorithm can be used in dynamic
environments.

The 10th group of data is selected to illustrate the planning
process of the algorithm in this article. There are 135 planning
cycles in the path planning process, which generate a path
composed of 6 straight lines. As shown in Fig.10, Fig. 10a is
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FIGURE 10. Path planning of the manipulator.

the path of the fixed obstacle; Fig. 10b, Fig. 10c, Fig. 10d,
Fig. 10e, Fig. 10f, Fig. 10g and Fig. 10h are the key positions
of the path of the obstacle, in which the pink track is the path
of the moving obstacle, and the red track is the trajectory of
the end-of-arm tools (EOAT). The positions of key points at
the EOAT are shown in Table 6. The changes of the position of
obstacles in the process are shown in Table 7, which lists the
planning period for the change of the position of obstacles.

For the period not listed, the position of obstacles remains
unchanged.

During the period 1 to 5, it is judged that the changes
of the positions of the obstacles will not collide with the
manipulator, which moves to the key point 5. During the
period 6 to 16, it is judged that the changes of the positions of
the obstacles will also not collide with the manipulator, which
moves to the key point 16. During the period 17, it is judged
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TABLE 6. Positions of key points in the path of the manipulator(rad).

TABLE 7. Changes of the positions of obstacle(m).

that the changes of the positions of the obstacles will collide
with the scheduled path of the manipulator. The algorithm
should reprogram a path and the manipulator moves to the
key point 48, during which the changes of the positions of
the obstacles have no effect on the scheduled path. During the
period 49 to 66, it is judged that the changes of the positions
of the obstacles will not collide with the manipulator, which
moves to the key point 66. During the period 67, it is judged
that the changes of the positions of the obstacles will collide
with the scheduled path of the manipulator. The algorithm
should reprogram a path and the manipulator moves to the
key point 97, during which the changes of the positions of
the obstacles have no effect on the scheduled path. During the
period 98 to 135, it is judged that the changes of the positions
of the obstacles will not collide with the manipulator, which
moves to the key point 135. And so on until the manipulator
reaches the goal. In other words, in the planning period 17 and
67, the algorithm implements avoidance behaviors twice for
themoving obstacles, and realizes the dynamic path planning.

By comparing the differences of the path planning between
the static environment and the dynamic environment, it can be
seen that the proposed method can adjust the global path in
real time according to the changes of environment, to obtain
non-collision path. Obviously, the PRM algorithm can be
used in dynamic environments.

V. CONCLUSION
A Grid-Local PRM algorithm is proposed which using map-
ping model, sampling strategies, lazy collision detection and
single local detection method. The simulation results of the
collision detection show that the performance of the proposed
simplified collision-detection algorithm is much better than
that of the standard collision-detection algorithm, and the sta-
bility is far better than that of the standard collision-detection
algorithm. The sampling experiment in two-dimensional
space also shows that the stratified sampling is beneficial to
the generation of probability map. The simulation experiment
of the path planning shows that the proposed algorithm con-
sumes an average of 10ms in the static environment and 7ms
in single step in the dynamic environment, which is better
than the comparison algorithm. The proposed algorithm can
adjust the global path in real time to avoid obstacles according
to environmental changes, which have been verified to be

feasible and effective. The proposed method can implement
dynamic path planning and can be used for dynamic obstacle
avoidance of manipulators. In this article, the problem of
path planning in dynamic environment has been investigated,
which has solved the problem that PRM algorithm is difficult
to be applied in it to a certain extent. In the future, the dynamic
trajectory planning and trajectory tracking controller design
of the manipulator will be expanded.
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