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ABSTRACT Motivated by the challenge that manual glaucoma detection is costly and time consuming,
and that existing automated glaucoma detection processes lack either good performance or any statistical
robustness testing procedures, we proposed an effective, robust, and automated framework for glaucoma
detection based on fundus images. The proposed framework using 1450 color fundus images provided
by Kaohsiung Chang Gung (KCG) Memorial Hospital in Taiwan. The proposed framework combines the
use of convolutional neural networks (CNN) with the proposed generalized loss function, robust design of
experiment (DOE), and Retinex theory to improve the results of fundus photography flash by restoring the
original colors via removing the light effect. The proposed framework outperformed most archival automatic
glaucoma detection approaches in its effectiveness and simplicity. The effectiveness was demonstrated via
the estimated sensitivity 0.95, specificity 0.98, and accuracy 0.97. The simplicity was shown via the adopted
basic CNN model compared to deep CNNs such as GoogleLeNet and ResNet152. Further, the proposed
framework outperformed all relevant archival work in terms of its robustness, illustrated in the associated
standard errors (all less than 0.03). This paper demonstrated the proposed framework via intuitive graphs and
clear mathematical notations to make it easy for others to reproduce our results. The proposed framework
and demonstration have the potential to become the standard automated glaucoma detection approaches in
practice.

INDEX TERMS Glaucoma, CNN, DOE, robust, Retinex.

I. INTRODUCTION
Glaucoma is an eye disease that is notoriously known to be
incurable, treatable with medical and surgical procedures that
can only delay the aggravation of glaucoma but not restore
eye health. Glaucoma is considered to be one of major causes
of irreversible-blindness worldwide.

At present, existing glaucoma detection processes do not
consistently provide satisfactory results. Manual glaucoma
detection (i.e., assessment of the optic nerve head) is subjec-
tive, costly, time consuming, and that the variations among
physician performances are high.

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Ali.

Our review of prior research found that a number of
automated glaucoma detection processes using color fun-
dus images have been proposed. Beginning in 2006, earlier
works include [3], [14], [18], [2], [25], [5], [10], [15], [28],
[24], [19], and [27]. Since 2018, more recent investigations
include [7], [26], [8], [29], [9], [30], [32], and [4].

All of the above-cited automated glaucoma detection
method studies use color fundus images as input data and
adopt a common framework that includes two major steps:
(1) data transformation, which converts the input data (color
fundus images) into so-called transformed data; and (2) data
classification, which categorizes the binary output (glaucoma
or healthy eye) as a function of the transformed data.

We proposed an effective automatic classification
framework that integrates Retinex transformation and
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FIGURE 1. Image before and after Retinex process.

convolutional neural network (CNN) deep learning method
with the proposed new loss function and robust hyper-
parameters obtained via Design of experiments (DOE).
Specifically, the contributions of the paper are listed below:

1) Effectiveness: The resulting estimated performance
(sensitivity 0.95, specificity 0.98, and accuracy 0.97)
are all above 0.95.

2) Robustness: The associated standard errors are all less
than 0.03 for the estimated performance.

3) Creativity (To the best of our knowledge, no exist-
ing glaucoma detection literature stated the following
methods):

a) A new loss function, shown in Eq. (14), was
proposed.

b) Retinex theory (to improve the results of fundus
photography flash by restoring the original colors
via removing the light effect) was adopted.

c) A robust design of experiments (DOE) to generate
optimal hyper-parameters (including input image
size, convolution layers, and hidden layers) was
adopted.

d) All reported digits of the estimated perfor-
mance were determined through the leading digit
rule (LDR [33]).

4) Simplicity: The basic CNN model (with 4 convolu-
tional layers) was adopted instead of choosing deep
CNNs such as GoogleLeNet (with 21 convolutional
layers) or ResNet152 (with 152 convolutional layers).

5) Clarity: Many intuitive graphs and clear mathematical
notations were proposed to make it easy for others to
reproduce our results.

The remainder of this paper is organized as follows.
Section II provides a literature review with expansions.
Section III presents the methodology combining Retinex the-
ory and CNN with the optimal hyper-parameters using DOE.
A discussion of the associated performance is provided
in Section IV. The summary and conclusion are given
in Section V.

II. LITERATURE REVIEW
Twenty archived publications addressing automated glau-
coma classification are summarized in Table 1, with the top
row indicating the column (C) number. Significant factors
(such as Retinex, ROI*, robust DOE, and the proposed new

loss function for the CNN) proposed in this study are marked
in red in Table 1. C1-C6 are defined as follows: C1 is the paper
number. C2 identifies the paper’s referenced index, with the
publication year shown in C3. C4 shows the original-data
figures indicating glaucoma (G) and normal (N), while
C5 indicating whether augmented data are adopted. Note that
augmented data (rather then original data) are finally used to
be classified. C6 lists the adapted data-ratio for the training,
validation, and test sets. Figures appear as a hyphen in C5 and
C6 if the associated information are not clearly shown in
the cited paper. All images, except those used in [9], are
independent. Images adopted in [9] are sequential images

The results of our current research are shown at the bottom
of Table 1. The explanation of corresponding C4-C6 are given
below. This study investigated original data for 899 glau-
coma (G) cases and 551 normal (N) cases. After augmenta-
tion (see Step 4 of Section III-B), the data size was enlarged
twice. C-6 shows a data-ratio of 5:2:3.

Data transformation methods are listed in C7. To conserve
space, only an abbreviation is listed for each associated
transformation method, including ROI, PCA, EF, IC, HF,
GCM, EWT, and ROI*. Specifically, ROI (region of inter-
est) indicates the area covering around optic nerve cup and
optic nerve disc. ROI* adopted in the proposed method
covers the optic nerve cup, optic nerve disc, and macula.
Other transformation methods are briefly described below.
PCA (principal component analysis [1] and [17]) transforms
the data via the logic of reducing the dimensionality of a
set of variables while retaining the maximum variability
in terms of the variance-covariance structure. Texture fea-
ture [2] provides measures of properties, such as smoothness,
coarseness, and regularity of the images. Higher order spectra
(HOS) [2] elicited both amplitude and phase information of a
given signal. EF (ellipse fitting [6]) fits an elliptical model
of data into the area identified in ROI. IC (illumination
correction [5]) uses anisotropic diffusion filtering to remove
noise, further subtracting the estimated background from the
original color image to achieve homogeneity. HF (Haralick
features [13]) here refers to 28 statistical features (includ-
ing the first and second moment, correlation, and entropy).
EWT (empirical wavelet transform [11]) transforms
time-domain data into frequency domain data. GCM (grid
color moment) transforms pixels into statistical moments
such mean, variance, and skewness. Retinex [21], used to
remove the effects of fundus photography flash and to restore
the original colors of the fundus image, will be further
explained in Section III-B.

Data classifiers, shown in C8, include ANFIS (adaptive
neuro-fuzzy inference systems), ANN with the associated
optimizer BP (back propagation [2]), SVM (supporting vec-
tor machine [3]), k-means clustering [16], RF (denotes for
random forest [23]), RT (denotes for random tree [22]),
CNN (denotes for convolutional neural network [20]) which
integrates both feature extraction and classification. The loss
function, such as mean squared error (mse) or cross entropy
(CrossE), adopted in CNN is listed inside the parenthesis.
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TABLE 1. Literature review.

Authors [7] claimed that the advantage of CNN is that it does
not need any pre-processing or handcrafted feature extraction
by other methods.

More deep CNN (D-CNN)models includeDENet (denotes
for Denver group chromosomal based on CNN [14]),
GLN (denotes for GoogLeNet [35]), VGG (denotes for
VGGNet [31]), RN152 (denotes for ResNet152, [36]), and
RNN (denotes for recurrent Neural Network [37]). Unlike
CNN, GLN, VGG, and RN152, RNN is designed for sequen-
tial data instead of independent data. For example, images
adopted in [9] are sequential images, therefore a combination
of CNN and RNN performs better than CNN alone.

The above-mentioned deep CNN models have been com-
monly adopted to use in automatic glaucoma detection
since 2019. For example, [29] proposed deep CNN architec-
tures including GoogleLeNet (with 21 convolutional layers)
and ResNet152 (with 152 convolutional layers). [29] pro-
posed to train and test 5 different data sets by employing
four of them during training and the other during testing.

For example, the first row corresponding to No 16
(in Column 1) used no. of glaucoma and healthy images
(G=27, H=18) and total train data 1662 (= 70+ 31+ 194+
261+ 101+ 300+ 396+ 309, the sum of the rest four data
sets) and testing data 45 (= 27 + 18). All of the proposed
5 cases corresponding to No 16 in Table 1 are inferior than
the model proposed in this paper.

The last 4 columns (C9, . . . ,C12) are categories desig-
nated as follows. With regard to C9, none of the studies
in the 20 cited publications appear to have used statisti-
cal robust design of experiments (DOE) (see Section III-F)
via blocking (see Section III-A) to determine the opti-
mal hyper-parameters. C10, C11, and C12 indicate data
for three performances: sensitivity, specificity, and accu-
racy, respectively. The average sensitivity, average speci-
ficity, and average accuracy and the associated standard
error for the 10 block settings adopted in this paper are
listed in the last two lines. The average performances are all
above 0.95 and the corresponding standard errors are all
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below 0.03. Further explanation about the proposed method
is given in Section III. Again, figures appear as a hyphen if
the associated information was not clearly shown in the cited
paper.

Finally, the comparison of the performance with respect to
sensitivity (shown in C10), specificity (shown in C11), and
accuracy (shown in C12) is summarized below.
• Results show that the proposed framework provided
better or comparable (< 5% worse) results compared
with 20 archival work listed in Table 1. Specifically,
results in bold indicated that our model produced worse
results, but the differences are less than 5%, 2%, 1%with
respect to sensitivity, specificity, and accuracy, respec-
tively. Results in bold are listed below.
– Sensitivity: [25], [28], [19], and [9].
– Specificity: [25], [27], and [26].
– Accuracy: [19], [24], [25], and [26].

• The proposed estimated performances have standard
error less than 0.03, while the standard errors for archival
work listed in Table 1 were not stated.

Overall, the proposed framework, combining a CNN (with
4 convolutional layers) with a pre-processing via the Retinex
with the proposed parameters (see Eq. (1) to Eq. (10)) pre-
sented promising results for automatic glaucoma detection.

III. PROPOSED METHODOLOGY
The framework of the proposedmethod is illustrated in Fig. 2,
in which there are three main parts. We first explain
Part 1 (marked in light purple) and 3 (marked in blue).
Part 1 confirms that 1450 fundus images (899 showing glau-
coma and 551 healthy) were provided by Kaohsiung Chang
Gung Memorial (KCGM) Hospital, Taiwan. The percentage
adopted for the training, validation, and test sets were 50%,
20%, and 30%.

Part 3 indicates that the performance measures adopted
for testing data were accuracy, sensitivity, and specificity,
defined below.
• sensitivity: TP (true positive) rate, the ratio of cases
correctly identified as positive to all glaucoma cases.

• specificity: TN (true negative) rate, the ratio of cases
correctly identified as negative to all normal cases.

• accuracy: the ratio of correct classification to the total
cases.

Next, we explain Part 2 (mark in gray) with regard to four
issues: (1) the relationship among block, epoch, and batch,
(2) the pre-CNN process, (3) the CNN process, and (4) the
robust design of experiment (DOE). Further explanation is
given in Subsections III-A through III-F.

A. BLOCK, EPOCH, AND BATCH
First, we discuss here the relationship between blocks and
epochs. The proposed framework contains l blocks, where
l = 10. The term ‘‘block’’ was adopted from the experimental
design point of view in that the data set (in terms of the
training, validation, and test sets) is identical in each block.
Block i contains hi epochs, where hi ≤ h, i = 1, 2, . . . , l,

FIGURE 2. Framework-1 of the Proposed Methodology.

where we chose h = 50 to be the maximum value of the total
epochs in each block. If the termination rule was not reached
(see Section III-D), then hi = h. After the final epoch was
completed for each block, we constructed a block-model to be
tested using the test set to generate the performancemeasures,
shown in Part 3 of Fig. 2.

Next, we assessed the relationship between epochs and
batches. Each epoch passed through b = 40 batches, each
with batch size (images) m = 40. The m = 40 images in
each batch were randomly selected from the training set in the
associated block. Each image in each batch passed through
the pre-CNN-process (Steps 0 to 4, as shown in Fig. 3. and
CNN (Steps 5 to 8, as shown in Fig. 4. At the end of each
batch, the loss function and therefore the associated parame-
ters were updated. A pre-validation model was derived from
40 batches of 40 images. Pre-CNN-process and CNN-process
are further discussed in Subsections III-B and III-C,
respectively.
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FIGURE 3. Pre-CNN process (Steps 0 – 4).

FIGURE 4. CNN framework (Steps 5 – 8).

B. PRE-CNN-PROCESS
This subsection describes the pre-CNN-process, including
Steps 0 to 4, illustrated in Fig. 3. The values followed by
‘‘input and output’’ are the number of images with respect
to R-G-B, the number of row pixels, and the number of
column pixels. For example, the values 3@500 × 750 in
step 0 indicates that there are 3 images regarding R-G-B,
500 row pixels, and 750 column pixels, Further descriptions
of Steps 0 to 4 are given below.

• Step 0. Input Images: All input fundus images include
text about patient information and the date that the asso-
ciated images were collected.

• Step 1. Clean Images: All text on each image was
replaced by pixel 0, which is the color black.

• Step 2. Retinex: The word Retinex combines retina and
cortex, where the retina is the part of the eye that detects
color, and the visual cortex is the part of a brain that
processes the information it receives from the retina.

This step was used to remove the light effect in a
flash image. The logic of removing the light effect is
explained below.
Suppose that an original image recorded by a camera
is denoted as I, which is a function of the actual color
(denoted as R), light conditions (denoted as L), and
other camera settings. Assuming that we can ignore the
camera settings, we can therefore write the relationship
among I, R and L as follows:

I(i)(x, y) = R(i)(x, y)L(x, y), i=1, 2, 3.(R, G, B) (1)

or

R(i)(x, y) = I(i)(x, y)/L(x, y). (2)

To prevent the effect of a small value in the denominator
L(x, y) leading to a huge R(i)(x, y), we performed a
logarithm function on both sides of Eq. (2). Thus,

log(R(i)(x, y)) = log(I(i)(x, y)/L(x, y)). (3)
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Let the estimated image of R(i)(x, y) be denoted as R(i)
III,

which is a transformation of R(i)
I , R(i)

II . Below, we explain
R(i)
I , R(i)

II , and R(i)
III.

– Function R(i)
I is used to remove the light effect:

R(i)
I = ω[

I(i)(x, y)

I(i)A (x, y)
⊗

G(i)(g1, g2)
], (4)

where we chose ω = 1/3,

I(i)A (x, y) =


I(i)(x − 1, y− 1),

x = 2, 3, . . . , 501;
y = 2, 3, . . . , 751;

0, x = 1, 502.

(5)

The image I(i)A (x, y) with dim 502 × 752 is the
augmentation of I(i)(x, y). The Gaussian blur
(smoothing) function, used to reduce image noise
and unimportant detail, is defined as

G(i)(l,m) = k exp(
−(l2 + m2)

c2i
), (6)

where we chose l = −1, 0, 1; m = −1, 0, 1;
(c1, c2, c3)= (15, 80, 250), and the value k is deter-
mined to guarantee

∑1
l=−1

∑1
m=−1G

(i)(l,m) = 1.
– Function R(i)

II is used to optimize the R-G-B color
proportion, such that

R(i)
II (x, y) = H (i)(x, y)× R(i)

I (x, y)+ bias, (7)

where

H (i)(x, y) = βlog[
αI(i)(x, y)∑3
i=1 I

(i)(x, y)
], (8)

and bias, α, and β are the color-control parameters.
We chose bias = 125, α = 125, β = 230.

– Function R(i)
III is used to increase the variability

of pixel in R(i)
II , provided that all pixels are still

between (0, 255).

R(i)
III =

255× (R(i)
II −Min R(i)

II )

Max R(i)
II −Min R(i)

II

, (9)

where Max R(i) and Min R(i) are the maximum
and minimum value for the associated matrix R(i),
respectively.

• Step 3. Region of Interest (ROI*):
Based on the knowledge of this paper’s second author,
a well-respected ophthalmologist in Taiwan, we recog-
nized that the region of interest should be near the optic-
nerve, cup, and macular portion. Therefore, we selected
the (ROI*) as follows.

I(i)ROI(x, y) =

{
R(i)
III(x, y), x ε ROI∗

0, otherwise,
(10)

where ROI* covers the optic nerve cup, optic disc, and
macula.

• Step 4. Image augmentation and dimension reduction:
For each input image, we randomly randomly twist-
ing the image among 30, 60, 90, 120, or 180 counter-
clockwise. Thus, each image was augmented into twice
images. Finally, we reduced each image, shifting the row
and column sizes 500×750 into smaller sizes 78×116.
Let D(i) denote the image processed at the end of this
step, where i = 1, 2, 3 regarding R-G-B.

C. CNN PROCESS
This subsection describes the CNN process, including Steps 5
through 8, which were used to train the optimal parameters.

In order to implement a data transformation and data
classification method, one needs to first determine the associ-
ated values of parameters and hyper-parameters. Using CNN
as an example, it is necessary to begin by determining the
parameter values (such as weights in each hidden layer) and
hyper-parameter values (such as convolution layer, hidden
layer numbers, and numbers of nodes in each hidden layer).
The rules and the values of hyper-parameters used in this
paper are summarized below.

Rules determined in advance:
1) loss function: cross-entropy
2) padding method: same (instead of valid)
3) initiation weights: Glorot_normal
4) optimizer: Adam.
5) activation functions for convolution and ANN

hidden layers: Relu
6) activation function for ANN output layer:

sigmoid
Hyper-parameters determined in advance:
1) termination rule: if overfitting more than

15 times, stop the replication for epoch.
2) kernel matrix: 3× 3
3) number of blocks: 10
4) number of epochs: 50
5) number of batches: 40
6) batch sizes: 40

Hyper-parameters determined via robust DOE, see
Subsection III-F:
1) A. sizes used in images: 78× 116
2) B. convolutional layers: 4, each with 4 trans-

formations (C-N-R-P)
3) C. number of kernels in each convolutional

layer: 32
4) D. NN-hidden layers: 4, each with 3 transfor-

mations (C-N-R)
5) E. number of nodes in each ANN-hidden

layer: 16
6) F. treatment for the area outside the ROI:

delete (rather than filling with black)
7) G. parameters α, β used in the proposed loss

function: 1, 1.5
After all hyper-parameters were set, we initiated the
CNN architecture, illustrated in Steps 5 through 8, below.
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FIGURE 5. Artificial Neural Network (ANN) framework.

• Step 5. CNN with four processes: 1) Convolution (C),
2) Normalization (N), 3) Relu (R), and 4) Pooling (P) are
defined below:
– 1) Convolution(C) used to extract image feature:

O(l,m)
C (x, y)

=

{∑3

i=1
D(i)

⊗
C (1,m)(i), l = 1

O(l−1,m)
C−N−R−P

⊗
C (l,m), l = 2, 3, . . . ,L

where D(i) is the image processed at the end of
Step 4 in pre-CNN process, C (1,m)(i), i = 1, 2, 3;
m = 1, 2, 3, . . . ,M are different kernel matrix
(we chose the matrix size 3 × 3) used in the
1st convolution, In this research, we chose M =
32,L = 4. The notation

⊗
in ‘‘A

⊗
B’’ denotes

the convolution filter, which reads all of the pixels
of the initial image (A) in the action area (3 × 3),
then multiplies the value of each of them by the
corresponding value of the kernelmatrix (B), finally
adds the multiplication results. The operation

⊗
replaces the initial pixel in A with the added
result.

– 2) Normalization (N) used to balance the scale:

O(l,m)
C−N (x, y)

= β0 + β1

[
(O(l,m)

C (x, y)− µ(x, y))/
√
σ 2(x, y)

]
whereµ(x, y) and σ 2(x, y) are the expectative value
and variance for all of the images in the same
batch of the train set at position (x, y). The values

β0 and β0 are parameters that needed to be
trained.

– 3) Relu (R) used to avoid the gradient vanishing:

O(l,m)
C−N−R(x, y)

=


255, O(l,m)

C−N (x, y) ≥ 255

0, O(l,m)
C−N (x, y) < 0

O(l,m)
C (x, y), otherwise;

l = 2, 3, . . . ,L,m = 1, 2, . . . ,M .

– 4) Pooling (P) used to reduce the problem size:

O(l,m)
C−N−R−P = Pooling(O(l,m)

C−N−R,max).

• Step 6. Flatten, used to induce the ANN input vector:
Let h(0) be the vector containing the flattening data with
size 3× 5× 32 = 480.

• Step 7. ANN, used to train all parameters for hidden
layers and output layer (see Fig. 5.)
The jth hidden layer h(j) is computed via three trans-
formations: convolution (C), normalization (N), and
Relu (R), where the notation C-N-R is similar to that
used in Step 5. The true response y and its estimates p̂
and ŷ, (used for the train and test set data, respectively)
are shown at the top right of Fig. 5. Notations used in
Step 7 will be further explained below.
– Convolution (C) used to extract image feature:

Let c(j)k denotes the linear sum (i.e, convolution)
of h(j−1), W(j−1), and b(j−1), where h(j−1) is a col-
umn vector containing h(j−1)k ; W(j−1) is a matrix
with the kth column vector, denoted as w(j−1)

k ,
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containing w(j−1)
i,k , i = 1, 2, . . . ,Kj−1; b(j−1) is a

column vector containing b(j−1)k . That is,

c(j)k =
Kj−1∑
i=1

h(j−1)i w(j−1)
i,k + b(j−1)k ,

j = 1, 2, 3, . . . , J + 1; k = 1, 2, . . . ,Kj;

(11)

where K0 = 480 (the data size after flatten in
Step 6), hidden layers J = 4, number of nodes in
each hidden layer Kj = 16, j = 1, 2, . . . , J , and
KJ+1 = 1 indicating one node in the output layer.

– Normalization (N) used to balance the scale:

z(j)k = γ0 + γ1

[
(c(j)k − c

(j)
k )/

√
var(c(j)k )

]
, (12)

where c(j)k and var(c(j)k ), j = 1, 2, . . . , J + 1 are the
expected value and variance over the train data set
in the same batch, values γ0 and γ1 needed to be
trained.

– Relu (R) used to avoid the gradient vanishing:

h(j)k = max(0, z(j)k ),

j = 1, 2, . . . , J ; k = 1, 2, . . . ,Kj, (13)

• Step 8. Back-propagation implemented with optimizer
Adam (see [12]) and the proposed loss, defined in
Eq. (14) and Eq.(16) below. Recall that optimal weights,
obtained via the back-propagation methods, are referred
to as parameters rather than hyper-parameters.

D. THE PROPOSED LOSS FUNCTION
The loss function, L, used for each image in the train set is
the proposed generalized cross-focal entropy, defined below.

L = −y(1− p̂)α log p̂β − (1− y)(p̂)α log(1− p̂)β , (14)

where a sigmoid function

p̂ = [1+ exp(−zJ+11 )](−1), (15)

is the estimate of y for the train set data (0 ≤ p̂ ≤ 1) and the
response y = 1 or y = 0 indicates the truth being glaucoma
or normal, respectively. Note that two commonly used loss
functions: cross entropy (α = 0, β = 1) and focal loss
(β = 1) are special cases of Eq. (14).

Consequently, the average batch-loss function LB for a
batch of images used is the average of the associated m loss
functions. That is,

LB = (1/m)
m∑
i=1

[
−yi(1− p̂i)α log p̂βi

−(1− yi)(p̂i)α log(1− p̂i)β
]
, (16)

where the batch size m = 40 used in this study. The average
batch-loss function LB is then used in the back-propagation

(Step 8) to update all parameters. In summary, the proposed
loss function defined in Eq. (14) is for the train set. Regarding
the test set, the estimate of the y for the test set data is: ŷ = 1
if p̂ > 0.5, otherwise ŷ = 0.
Here, we discuss the selection of the parameters α and β

in Eq. (14). Based on the experiments studied in this paper,
we conclude that the optimal parameters in the proposed loss
function are α = 1, β = 1.5 for the glaucoma detection.
Fig. 6 shows the plot of four loss functions: mse (y−p̂)2, cross
entropy (α = 0, β = 1), focal loss (α = 1, β = 1), and the
proposed generalized cross-focal loss (α = 1, β = 1.5) for
the case that the true response y = 1 and p̂ = 10−2. Consider
an example p̂ = 10−2 (close to 0), which can be treated as
a hard sample since it estimates the true response y = 1.
The proposed loss (marked in green) is −1 × log (10−3) −
0 = 3, which is 1.5 times larger than the cross-entropy
(marked in red) −1 × log (10−2) − 0 = 2, which is 2 times
larger than the mse loss (marked in block) (p̂−y)2 = (10−4−
1)2 ' 1. That is, the proposed loss focuses on the hard sample
(say p̂ = 10−2, y = 1). For normal samples (say p̂ > 0.5,
the loss between the mse (marked in black) and the proposed
one (marked in green) are negligible.

FIGURE 6. Four loss functions, assuming y = 1.

We further compare the performance for policy
(ROI* + Retinex) using various loss functions: the proposed
loss (α = 1, β = 1.5), focal loss (α = 1, β = 1)
cross-entropy (α = 0, β = 1), and mse. Table 2 showed
that the proposed loss with values α = 1, β = 1.5 performs
the best among 4 loss functions.The difference performances
for the rest of three loss functions are negligible. Note that the
standard errors (se, denoted as σ ∗) listed in the parenthesis,
to the right of the associated estimates, are further explained
in Subsection III-E.

E. THE POINT ESTIMATE AND ITS STANDARD ERROR
All values listed in Table 2 are estimated performances
(estimated accuracy, estimated sensitivity, and estimated
specificity). The robustness of the estimated performances
depends on the associated standard errors, which are used
as the quality measures of the estimated performances.
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TABLE 2. Performance among various Loss functions for Policy (ROI* +
Retinex).

Let 2̂ denote the estimated performance such as estimated
sensitivity. And the associated standard error is denoted
as σ ∗, where

σ ∗ =

√
var(2̂)/n, (17)

assuming that all samples adopted to calculate 2̂ are indepen-
dent.

Motivated by the question of which point-estimator digits
to report in a statistical experiment, [33] and [34] proposed a
leading digit rule (LDR) which is used to decide the position
of the right-most reported digit. LDR rule is equivalent to
discard digits that the practitioner considers to be meaning-
less (because of sampling error). LDR rule reports the point
estimate through the leading digit of the standard error, where
the leading digit of the standard error is the first left-most
non zero digit of the standard error. All reported digits via
LDR are meaningful and unreported digits are meaningless.
See [33] and [34] for further explanation of the meaningless
digits in terms of the probability sense.

Below, we demonstrate two examples to show how LDR
suggests the reported estimated performances. Ex 1. Let the
estimated sensitivity is 0.954 and its standard error σ ∗ =
0.03. LDR suggests to report the estimated sensitivity 0.95
(i.e., up to the hundredth digit). Ex 2. Let the estimated sensi-
tivity is 0.954 and its standard error σ ∗ = 0.1. LDR suggests
to report the estimated sensitivity 0.9 (i.e., up to the tenth
digit). That is, in Ex. 2, LDR does not report digits 5 and 4
because those digits are meaningless.

F. ROBUST AND OPTIMAL DESIGN
Here, we describe the optimal values of the proposed
hyper-parameters in three steps.

Step 1. We first adopted a 27−3IV fractional factorial design
with resolution IV, where there were eight factors (denoted
as A through H in subsection III-C, each with two levels.
Specifically, A. (64, 96), (78, 118); B. 3, 9; C. 16, 32; D. 3, 9;
E. 16, 32; F. Delete or filling with black for the area outside
the ROI*, G: (0, 1), (1, 1.5).

Results of the 16 combinations (runs) in the 27−3IV fractional
factorial design are listed in Table 3, where themean accuracy
and the standard error (σ ∗) ) are shown in the last two associ-
ated columns. The listed data in the right most three columns
are explained as follows: g(i)

j
denotes a vector containing

g(i)j (k), the accuracy at the ith replication, jth combination,

TABLE 3. 27−3
IV fractional factorial design.

TABLE 4. Effect and P-values w.r.t. mean response.

FIGURE 7. Optimal values for Factors B and D.

FIGURE 8. Four policies: Policy 4 (ROI* + Retinex) is the proposed model.

and kth block, i = 1, 2; j = 1, 2, . . . , 16; k = 1, 2, . . . , 10.
The associated mean and standard deviation are denoted
as g(i)j and s(i)j .

Step 2. Statistical inferences. Based on the two rightmost
columns, we constructed the statistical inferences for all
effects and their associated p-values. Results (based on mean
and standard deviation) show that only main factors B, D, and
G are significant. Table 4 shows that with respect to mean
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FIGURE 9. Framework-2 of the proposed methodology.

response, only the p-values for factors B, D, F, and G are less
than 0.05. (To conserve space, higher-iterations factors and
non-significant factors are not shown here. The effect table
with respect to the standard error is not shown here either.)

Step 3. Optimal design. Because the coefficients of fac-
tors B and D are both negative (specifically, −0.1313 and
−0.0776, shown in Column 2 of Table 4), we continue to
investigate the DOE for factor B and D in relation to the layer

numbers (6, 6), (5, 5), (4, 4), (3, 3), where the first figure
in each parenthesis indicating the number of convolutional
layers each with 4 transformations (C-N-R-P), and the second
figure in each parenthesis indicating the number of NN-
hidden layers each with 3 transformations (C-N-R). The aver-
age accuracy continues to increase up to (4, 4), but decreases
at (3, 3). We conclude that the optimal design centers on
(4, 4). That is, we chose B = 4 each with 4 transformations
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TABLE 5. Mean performance and its standard error (σ∗) for the Four
Policies: 10 Blocks, 2 Replications, CNN with the proposed loss
function (α = 1,= 1.5).

TABLE 6. Optimal Performance and its standard error (σ∗) for the Four
Policies: 10 Blocks, 2 Replications, CNN with the proposed loss
function (α = 1,= 1.5).

(C-N-R-P), and D = 4 each with 3 transformations (C-N-R).
Fig. 7 illustrates the plot of the average accuracy as a function
of factors B andD,where the x-axis is the layer no. for B (each
layer with C-N-R-P) and D (each layer with C-N-R).

IV. PERFORMANCE
This section compared four policies, illustrated in Fig. 8,
in terms of the sensitivity, specificity, and accuracy. Policies
were provided for the complete cross-section range, in which
Policy 1 adopted no ROI and no Retinex, while Policy 4
adopted Retinex and ROI. Table 5 listed the associated mean
and standard error (σ ∗), and Table 6 listed the associated
optimal combination. All statistical data (mean and is stan-
dard errorσ ∗) were computed based on 10 blocks setting,
each with 2 replications, described in Section III-A. Note
that all policies used CNN with the proposed loss function
(α = 1,= 1.5).

Results shown in Tables 5 and 6 are summarized below.
1) Both Retinex and ROI* were significant factors in

terms of the estimated performance and its stan-
dard error (σ ∗) for accuracy, sensitivity, and speci-
ficity. However, Retinex showed greater significance
than ROI*.

2) Policies involving Retinex (Policies 3 and 4) per-
formed significantly better than those without Retinex
(Policies 1 and 2) in terms of both estimated per-
formance and its standard error. Specifically, results
in Table 5 showed that the estimated performance were
all above 0.90 for Policies 3 and 4 involving Retinex,
while the estimated performance were all below 0.80
for Policies 1 and 2 without Retinex. The associated
standard errors were all below 0.05 for Policies 3 and 4
involving Retinex, while the associated standard errors
were all above 0.1 for Policies 1 and 2 without Retinex.

3) Policies involving ROI* (Policies 2 and 4) performed
better than those without ROI* under the same condi-
tions. As such, Policy 2 performed better than Policy 1,
and Policy 4 performed better than Policy 3.

4) Policy 4 significantly performed the best of all four
policies. Results in Table 5 showed that the associated
estimated performances for Policy 4 were all above
0.95, and the associated standard errors were all below
0.03. Results in Table 6 showed that the optimal perfor-
mance for Policy 4 was (0.97, 0.98, 0.98).

V. SUMMARY AND CONCLUSION
This study proposed an effective and robust framework for
detection of glaucoma that integrates deep learning tech-
nologies and statistical methodologies. These technologies
include (a) Retinex, a color enhancement algorithm that
removes the effects of fundus photography flash and restores
the original colors of the fundus image; (b) the extraction
of critical areas for analysis (including the optic nerve cup,
optic disc, macula, and minimal area of optic nerve fiber
layer); and (c) a basic CNN with 4 convolutional layers
using the proposed loss function L = −y(1 − p̂)αlog p̂β −
(1 − y)(p̂)αlog(1 − p̂)β with the optimal parameters α = 1,
β = 1.5 andwith the optimal hyper-parameters (such as input
image size, convolution layer, and hidden layer) obtained via
a robust design of experiment.

The proposed framework was illustrated in Fig. 2 (a sim-
ple form) and Fig. 9 (a thorough form) using 1450 color
fundus images provided by KCGM Hospital in Taiwan. The
proposed framework outperformed other approaches with
respect to effectiveness, robustness, simplicity, and clarity.
The effectiveness was demonstrated via the estimated sen-
sitivity 0.95, specificity 0.98, and accuracy 0.97 in different
training, validation, and test set settings. The robustness was
demonstrated via he associated standard error all below 0.03.
the simplicity was shown via the adopted basic CNN model
(with 4 convolutional layers) compared to deep CNNs such
as GoogleLeNet (with 21 convolutional layers) or ResNet152
(with 152 convolutional layers). The clarity is demonstrated
via intuitive graphs and clear mathematical notations which
make it easy for others to reproduce our results. Overall,
the proposed framework advances the field of glaucoma
detection.
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