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ABSTRACT This work addresses the problem of vehicle identification through non-overlapping cameras.
As our main contribution, we introduce a novel dataset for vehicle identification, called Vehicle-Rear,
that contains more than three hours of high-resolution videos, with accurate information about the make,
model, color and year of nearly 3,000 vehicles, in addition to the position and identification of their
license plates. To explore our dataset we design a two-stream Convolutional Neural Network (CNN) that
simultaneously uses two of the most distinctive and persistent features available: the vehicle’s appearance
and its license plate. This is an attempt to tackle a major problem: false alarms caused by vehicles with
similar designs or by very close license plate identifiers. In the first network stream, shape similarities are
identified by a Siamese CNN that uses a pair of low-resolution vehicle patches recorded by two different
cameras. In the second stream, we use a CNN for Optical Character Recognition (OCR) to extract textual
information, confidence scores, and string similarities from a pair of high-resolution license plate patches.
Then, features from both streams are merged by a sequence of fully connected layers for decision. In our
experiments, we compared the two-stream network against several well-known CNN architectures using
single or multiple vehicle features. The architectures, trained models, and dataset are publicly available at
https://github.com/icarofua/vehicle-rear.

INDEX TERMS Vehicle identification, vehicle matching, multi-stream neural networks, feature fusion.

I. INTRODUCTION
Identifying vehicles through non-overlapping cameras is an
important task to assist surveillance activities such as travel
time estimation, enforcement of speed limits, criminal inves-
tigations, and traffic flow. The vehicle identification problem
can be formally defined as the process of assigning the same
label to distinct instances of the same object as it moves
over time in a network of non-overlapping cameras [1]. The
remarkable progress of emerging technologies in produc-
ing low-cost cameras, capable of acquiring high-definition
images, has made the infrastructure to tackle this problem
become pervasive in many cities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Juan Wang .

Although extensively investigated [2]–[7], this research
problem is far from being solved since several challenges
come from the high inter-class similarity, caused by vehicles
of the same make, model and/or color that often look exactly
the same, see Figure 1(a), vehicles with similar license plate
identifiers, see Figure 1(b), and from the high intra-class dis-
similarity, caused by abrupt illumination changes or camera
viewpoints, that makes two instances of the same vehicle have
differences, see Figure 1(c). In the remainder of this section,
we detail our research problem and the main contributions of
this work.

A. RESEARCH PROBLEM
The main issue of existing datasets for vehicle identifi-
cation [8]–[10] is the fact that the authors intentionally
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FIGURE 1. Examples of challenging scenarios for vehicle identification:
(a) similar vehicles with different license plates; (b) similar license plate
strings and distinct vehicles; and (c) same vehicle under different lighting
conditions. The combination of attributes, e.g. vehicle appearance and
textual information from the license plate region, can help to improve the
recognition since two similar vehicles may have considerably different
license plates and vice versa.

redacted the license plate identifier in all images to respect
privacy restrictions, and, as explained later, the knowl-
edge extracted from this unique identifier is essential for
solving certain difficult matching problems, e.g., the cor-
rect identification of distinct but visually similar vehicles,
as shown in Figure 1(a). However, in some regions/countries,
the license plates are linked/related to the vehicle and not to
the respective drivers/owners; in other words, in such cases
it is not possible to obtain any public information about the
vehicle owner based on the license plate. One of the countries
where this occurs is Brazil [11], where we collected images to
create a novel dataset for vehicle identification that contains
labeled license plate information.

In this work, we consider a road network topology struc-
tured as shown in Figure 2, where the rear license plate
is legible in most cases – it is worth noting that in some
countries/regions, e.g. several states in the United States,
the license plate is attached only to the vehicle’s rear. The
images are taken from an elevated surveillance camera that
records simultaneously multiple road lanes. Each vehicle of
interest typically enters the field of view through the bottom
part of the frame and leaves through the top side. As can be
noted, not every vehicle seen in one camera appears in the
other.

B. CONTRIBUTIONS
This work has two main contributions for the vehicle identi-
fication problem:

FIGURE 2. Illustration of the experimental environment setup: a pair of
low-cost Full-HD cameras, depicted by red dots, properly calibrated and
time synchronized are monitoring two distinct traffic lights on the same
street, 546 ft away. The road network is structured in such a way that
some vehicles are monitored only by Camera 1, see route B; only by
Camera 2, see route C; or by both cameras, see route A.

• We introduce a novel dataset, called Vehicle-Rear, com-
posed of high-resolution videos, that, to the best of our
knowledge, is the first to consider the same camera view
of most city systems used to enforce speed limits –
i.e., rear view of the vehicles with their license plates
legible in most cases; Vehicle-Rear is associated with
accurate information about each vehicle: make, model,
color and year, as well as the image coordinates of each
license plate region and its corresponding ASCII string;

• We propose a novel two-stream CNN architecture that
uses the most distinctive and persistent features for
vehicle identification: coarse-resolution image patches,
containing the vehicle shape, feed one stream, while
high-resolution license plate patches, with string iden-
tifiers easily readable by humans (as present in the
Vehicle-Rear dataset), feed the other stream. Such
multi-resolution strategy helps to minimize the compu-
tational effort while it makes possible to capture the
essential details for vehicle identification;

We believe that the creation of a publicly available
dataset containing images captured in real-world scenar-
ios and labeled information about both the vehicle and its
license plate represents a step forward in designing differ-
ent approaches to vehicle identification, since state-of-the-art
algorithms for vehicle identification take advantage of only
one of these attributes [2], [12], [13]. We hope that our
dataset and deep architecture can also be useful for other
machine learning problems such as vehicle model identifi-
cation, time-travel estimation, among others.

The remainder of this paper is organized as follows.
In Section II, we review the literature on vehicle identi-
fication. The proposed Vehicle-Rear dataset is described
in Section III. The two-stream architecture is described in
Section IV, and the experimental evaluation is reported in
Section V. In Section VI we discuss some alternative archi-
tectures, and in Section VII we state the conclusions.
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II. RELATED WORK
Vehicle identification is an active field of research with
many algorithms and an extensive bibliography. As observed
by Tian et al. [14], this problem is still an open issue for
future developments of networked video surveillance sys-
tems, in which the road camera infrastructure is used to
extract vehicle trajectories for behavior analysis and pattern
discovery. Traditionally, algorithms proposed for this task
were based on the comparison of electromagnetic signa-
tures captured from a pair of inductive or magnetic sen-
sors [15], [16]. This class of systems can benefit from
the existing infrastructure to capture vehicle signature pro-
files from inductive-loop detectors [3], weight-in-motion
devices [17], and microloop sensors [4]. However, as stated
by Ndoye et al. [4], such signature-based algorithms are com-
plex and depend on complicated data models or extensive
calibrations.

Video-based algorithms have been proven essential for
vehicle identification. As describe in the surveys of
Deng et al. [13], Wang et al. [18], and Khan & Ullah [19],
handcrafted image descriptors [20]–[23] were the first
attempt to solve this problem, e.g. Zapletal and Herout [24]
and Chen et al. [25] used HOG descriptors, Cabrera et al. [20]
used HAAR descriptors, while Cormier et al. [26] used Local
Binary Patterns (LBP) [22] – all these works also com-
bined other hand-crafted descriptors. Zhang et al. [27] used
Scale-Invariant Feature Transform (SIFT) [21] to distinguish
between subordinate categories with similar visual appear-
ance, caused by a huge number of car design and models with
similar appearance. In particular, SIFT was widely explored
to extract distinctive key points from the vehicle for feature
correspondence [28].

The use of Siamese-based architectures for the specific
problem of vehicle identification is common. Tang et al. [7]
proposed to fuse deep and handcrafted features using a Triplet
Siamese Network [29] – a network that attempts to minimize
the distance between an anchor and a positive sample and
to maximize the distance between the same anchor and a
negative sample. Yan et al. [5] proposed a novel Triplet Loss
Function, which uses both the intra-class variance and the
inter-class similarity in vehicle models, but using only vehi-
cle shape features. Liu et al. [6] developed a coarse-to-fine
algorithm for vehicle identification that filters out potential
matchings with handcrafted and deep features based on color
and shape, and then used a Siamese network for the license
plate regions.

The idea of multi-stream Convolutional Neural Networks
(CNNs) has also been considered by many authors to tackle
different identification problems. Ye et al. [30] proposed
a two-stream architecture that uses static video frames
and optical flow features for video classification. Simi-
larly, Chung et al. [31] proposed a two-stream Siamese
architecture that is also based on spatial and temporal infor-
mation extracted from RGB frames and optical flow fea-
tures but for person re-identification. Zagoruyko et al. [32]

described distinct Siamese architectures to compare image
patches. In particular, they developed a two-stream archi-
tecture that explores multi-resolution information by using
the central part of an image patch and the surrounding part
of the same patch. Specifically for vehicle identification,
Oliveira et al. [33] proposed a two-stream network fed by
small patches from the vehicle shape and the license plate
region, and Guo et al. [2] proposed a three-stream network
where one stream extracts global features from the vehicle
shape and the other two streams learn to locate vehicle fea-
tures, such as windscreen and car-head parts.

Architectures designed to recognize patterns in temporal
sequences, such as Long Short-Term Memory (LSTM) [34],
ensembles [35], and spatio-temporal (3D) convolutions [36],
may also have a major impact on vehicle identification
[37], [38]. As an example, Shen et al. [37] noted that if
a vehicle is seen by cameras 1 and 3 then it should also
appear in camera 2; thus, if no candidate is observed by
camera 2, any subsequent match should have very low confi-
dence. The authors employed a Siamese network fed with the
vehicle’s shape and temporal metadata to model this scenario,
and an LSTM to evaluate the visual and spatio-temporal
differences of neighboring states along with path propos-
als. The dataset used in their experiments, VeRi-776 [39],
was acquired by 20 cameras. Zhou et al. [38] exploited an
adversarial bi-directional LSTM network to create a vehi-
cle representation from one camera view that would allow
modeling transformations across continuous view variations.
Generative Adversarial Networks (GANs) were also explored
to generate samples to facilitate the vehicle identification
task [40].

License plate recognition, as we used in this work, is one
of the key attributes for successful vehicle identification
and deep networks have achieved many advances in this
field. Li et al. [41] first extracted sequential features from
the license plate patch using a CNN in a sliding win-
dow manner. Then, Bidirectional Recurrent Neural Networks
(BRNNs) with LSTM were applied to label the sequential
features, while Connectionist Temporal Classification (CTC)
was employed for sequence decoding. The results showed
that their method attained better recognition rates than the
baselines. Nevertheless, Dong et al. [42] claimed that such
a method is very fragile to distortions caused by viewpoint
change and therefore is not suitable for license plate recog-
nition in the wild. Thus, a license plate rectification step is
employed first in their approach, which leverages parallel
Spatial TransformNetworks (STNs) with shared-weight clas-
sifiers. Recently, Selmi et al. [43] trained aMask-RCNN [44]
to predict 37 positive classes (0-9, A-Z, and one Arabic
word). Despite the fact that promising results were reported
in their experiments, the chosen model (with an input size of
530 × 300 pixels) is much more computationally expen-
sive than those used in other works (e.g., [45]–[47]) for
license plate recognition, which makes it difficult (or even
impossible) for it to be employed in some real-world
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applications – especially those where multiple vehicles can
coexist on the scene.

Silva& Jung [48] proposed aYOLO-basedmodel to simul-
taneously detect and recognize all characters within a cropped
license plate.While impressive frames per second (FPS) rates
were reported in their experiments, less than 65% of the
license plates on the test set were correctly recognized since
the character classes in the training set used by them were
highly unbalanced. Accordingly, Laroca et al. [47], [49] and
Silva & Jung [46], [50] retrained that model, called CR-NET,
with enlarged training sets composed of real images andmany
other artificially generated. In all these works, the retrained
networks became much more robust for the detection and
classification of real characters.

As final remarks, although some previous studies have
shown the importance of feature fusion for vehicle identifi-
cation (e.g., [2], [6], [7]), none of them explored a camera
infrastructure specifically designed for traffic law enforce-
ment as those available in many cities, where the vehicle’s
rear license plate is legible in most cases. Considering such
camera views, it is possible to develop a novel and robust
two-stream architecture that combines two decisive features
for vehicle identification: (i) shape features from the vehicle
rear-end and (ii) textual features from the license plate region.

TABLE 1. Vehicle-Rear dataset: detailed information about the number of
vehicles, with and without a legible license plate, recorded by Cameras 1
and 2; and the number of true matchings between Camera 1 and 2.

III. DESCRIPTION OF THE VEHICLE-REAR DATASET
As detailed in Table 1, the Vehicle-Rear dataset consists
of 10 videos – five from Camera 1 and five from Cam-
era 2 (20 minutes long each video) – captured by a low-cost
5-megapixel CMOS image sensor, time-synchronized, with a
resolution of 1,920×1,080 pixels at 30.15 frames per second.
We chose a busy avenue of the city, with traffic of different

types of vehicles, and different periods of the day to record the
videos so that each set has very specific lighting conditions
(see Figure 3). Note that temporal information can also be
explored in the Vehicle-Rear dataset since for each vehicle we
have between [5-25] frame occurrences per camera (depend-
ing on the vehicle speed); thus, redundant information could
be used to further improve the vehicle identification.

For each video, we provide a ground truth XML file in
which each entry, corresponding to a distinct vehicle, has
an axis-aligned rectangular box of the first license plate

FIGURE 3. Image sequences from the proposed Vehicle-Rear dataset. The
temporal sequences show examples of (a) motorcycles; (b) cars and
buses; (c) trucks; (a) and (c) in normal weather conditions; (b) dark frames
caused by the motion of large vehicles; and (d) severe lighting conditions.

occurrence, the corresponding identifier in ASCII code,
the frame position, as well as the vehicle’s make, model, color
and year, which were recovered from the database of the
National Traffic Department of Brazil (DENATRAN). We
remark that the DENATRAN database is publicly available,
that is, there is no restriction on access to such information.
As far as we are aware, the proposed dataset is the first public
dataset for vehicle identification to provide information on
the appearance of the vehicles and also on their license plates.
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FIGURE 4. Vehicle histogram by brand in the Vehicle-Rear dataset.

FIGURE 5. Vehicle histogram by color in the Vehicle-Rear dataset.

Figure 4 and Figure 5 show the diversity of our dataset
in relation to vehicle automakers and colors, respectively.
As can be seen, there is a considerable imbalance – as is likely
the case for every dataset – since vehicles of certain brands
and colors sell more than others. Nevertheless, according to
our experiments, such imbalance did not significantly affect
the results obtained by the evaluated models.

Finally, it is worth noting that the licenses plates of vehicles
in Brazil, where the images were collected, are linked/related
to the vehicle and no public information is available about
the vehicle drivers/owners; hence, a license plate remains the
same after a change in vehicle ownership [51]. Considering
the height and distance of the cameras, as well as the fact
that they record the rear view of vehicles, identifying the
driver/owner from the captured frames in our dataset is not
possible, to the best of our knowledge. Finally, as detailed in
Section VI, this study was officially authorized to collect and
explore open data such as the Vehicle-Rear dataset.

IV. VEHICLE IDENTIFICATION ARCHITECTURE
In order to explore the attributes of the proposed dataset,
we design a two-stream neural network, as shown in Figure 6,
that uses the most distinctive and persistent features avail-
able for vehicle identification: coarse-resolution image
patches, containing the vehicle shape, feed one stream,
while high-resolution license plate patches, easily readable
by humans, feed the other stream. Such a multi-resolution

FIGURE 6. Inference scheme of the proposed two-stream Siamese neural
network for vehicle matching.

strategy helps to minimize the computational effort while
making it possible to capture the necessary details for the
recognition. We developed a text descriptor, i.e., Optical
Character Recognition (OCR), which is combined with the
shape descriptor through a sequence of fully connected layers
for decision. Further details on these key steps are presented
in the remainder of this section.

A. PRELIMINARIES
For our problem, let S(c1) = 〈s(c1)1 , s(c1)2 , . . . , s(c1)m 〉 and S(c2) =
〈s(c2)1 , s(c2)2 , . . . , s(c2)m 〉 be two m-dimensional vectors repre-
senting the deep features extracted with a Siamese network
from shape patches recorded by cameras 1 and 2, respec-
tively. Also, let Cn = {c0, c1, . . . , cn−1} be a non-empty
alphabet consisting of n unique elements. Then, let f : C →
N be a one-to-one function (bijection) that maps elements
of the alphabet C to unique real numbers N according to
Equation (1)

f (ci) =
i

n− 1
(1)

where i is the element position in the alphabet, such that
0 ≤ i < n, and n denotes the set size. The alphabet used
to build the license plate identifiers is composed by 26 letters
and 10 digits, thus, C36 = {A, . . . ,Z , 0, . . . , 9}. Thismapping
is shown in Figure 7. Note that the lexicography order is
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FIGURE 7. A bijective function (f ) to map license plate characters
(domain C) to real numbers (range N ).

used to establish the mapping function f . As a consequence,
no special arrangement among similar characters, such as D,
O, Q and 0, was done.

B. SHAPE SIMILARITIES
The shape similarities are identified by a Siamese net-
work, which hereinafter is referred to as Shape-Stream. This
particular class of neural architecture was introduced by
Bromley et al. [52] and consists of two identical networks
that share the same weights. We choose a Siamese network
to compare shape similarities because it is an effective and
simple architecture to solve image matching problems.

The shape descriptor is defined as a new vector according
to Equation (2)

S = S(c1) − S(c2) = (s1, s2, . . . , sm) (2)

where each component si is given by an L1 (Manhattan)
distance, that is, si = |s

(c1)
i − s(c2)i | for cameras c1 and c2.

The twin networks guarantee that two similar image patches
will not be mapped to very different locations in the feature
space since they compute the same function and their weights
are tied [53]; therefore, it is expected that the vector com-
ponents are small for two instances of the same vehicle and
large otherwise. The deep features were extracted with a low
complex VGG-based CNN [33], called Small-VGG, formed
by a reduced number of convolutional layers in order to save
computational effort, as shown in Table 2.

TABLE 2. The CNN architecture used by the Siamese network in the
Shape-Stream.

C. LICENSE PLATE SIMILARITIES
The plate similarities are then identified by using tex-
tual information extracted from fine-resolution license plate

image patches (OCR-Stream). We observed through a series
of experiments, as detailed in Section VI, that the same
approach we used for shape was not very accurate to dis-
tinguish between very similar license plate regions. The
textual content, on the other hand, makes it possible to
explore the syntax that defines the license plate layouts and,
thus, to improve the recognition. Inspired by the tremendous
advances in machine learning achieved by CNNs, we used
a state-of-the-art architecture (CR-NET) [48] for OCR that
has proven to be robust to recognize license plates from
various countries [46], [47], but here it was fine-tuned for the
Brazilian license plate layout (i.e., three letters followed by
four digits).

TABLE 3. The CNN-OCR architecture for license plate recognition as
proposed by Silva & Jung [48] and improved by Laroca et al. [47].

The OCR architecture, as described by Silva & Jung [48]
and later improved by Laroca et al. [47], consists of the first
eleven layers of YOLO [54] and four other convolutional
layers added to improve non-linearity, as shown in Table 3.
The network was trained to predict 35 character classes (0-9,
A-Z, where the letter ‘O’ is detected/recognized jointly with
the digit ‘0’) – however, for the sake of simplicity of defini-
tions, we will assume a complete alphabet with 36 characters
in the remainder of this section. Furthermore, some swaps of
digits and letters, which are often misidentified, were used
to improve the recognition: [1⇒ I; 2⇒ Z; 4⇒ A; 5⇒ S;
6⇒ G; 7⇒ Z; 8⇒ B] and [A⇒ 4; B⇒ 8; D⇒ 0; G⇒ 6;
I⇒ 1; J⇒ 1; Q⇒ 0; S⇒ 5; Z⇒ 7].

We created an OCR descriptor by combining the textual
content extracted from both license plates. For that purpose,
we propose a scheme to map characters to real numbers
as follows.

The OCR descriptor is composed by the mapped charac-
ters, alternated with its classification scores so as to aggregate
knowledge about the confidence of each prediction. More-
over, the descriptor also contains the similarities between
both license plate identifiers. Namely, for two aligned strings,
we compute a character-by-character distance using a step
function, as shown in Equation (3)

d(ci, cj) =

{
0 if f (ci)− f (cj) = 0
1 otherwise

(3)
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where ci and cj are two characters that belong to set C36,
detailed in Section IV-A, and f is the mapping function of
Equation (1). Observe that two characters are equal or distinct
for the step function, i.e., the notion of proximity does not
exist. For example, although letter A is mapped to value
0.00, B to 0.02. . . and Z to 0.71. . . , the distance between A
and B is the same distance between A and Z (1 for both
cases). However, the confidence scores, associated with each
character, may help the network to decide the weight of such
distances.

The OCR descriptor is illustrated in Figure 8.

FIGURE 8. The OCR-descriptor scheme: the ASCII characters and the
corresponding classification confidences are extracted from both license
plate regions with the CNN-OCR architecture; then, they are combined to
create a text descriptor.

V. EXPERIMENTS
In this section, we describe an extensive set of experiments
comparing several CNN/OCR architectures.

For training, evaluation and testing it is necessary to pair-
wise image patches. If we have n1 vehicles passing through
Camera 1 and n2 vehicles passing through Camera 2, then we
can create n1 × n2 image pairs, where n1 is the maximum
number of matching pairs and (n1 × n2)− n1 is the approxi-
mate number of non-matching pairs. Note that we have highly
imbalanced sets from non-matching pairs ((n1 × n2) − n1)
compared to matching pairs. Therefore, in order to have
more matching pairs, we used the MOSSE algorithm [55] to
track a vehicle for m consecutive frames, and only for the
matching pairs we used all its m frame occurrences to create
new matching pairs. An advantage of using such a technique
is that the object appearance in a sequence of consecutive
frames usually has small image variations – due to the vehicle
motion, scene illumination changes, image noise, etc. – that
produces distinct pairs. This process is depicted in Figure 9.
Using the strategy described above, we generated 5 sets of
matching/non-matching pairs, as listed in Table 4.

FIGURE 9. Generation of image pairs for training, validation and testing.
The same procedure is used for the license plates.

TABLE 4. Number of matching/non-matching image pairs generated
within each set.

A. EXPERIMENTAL SETUP
The CNN-OCR model was trained using the Darknet frame-
work,1 while the other models were trained using Keras.2

We performed our experiments on an Intel i7-8700K 3.7GHz
CPU, 64GB RAM, with an NVIDIA Titan Xp GPU.

Our experiments were performed using Ubuntu 14.04,
Python 3.7, OpenCV 3.4.1, Keras 2.3.1 and TensorFlow
1.15.2. All networks were trained using the Adam optimizer
with a learning rate of 10-4, batch size = 128, and epochs = 10.
The architectures and trained models are publicly available at
https://github.com/icarofua/vehicle-rear.

We remark that we evaluated different input sizes,
as well as number of filters in the convolutional lay-
ers, for both vehicle and license plate images, but better
results were not achieved. In this sense, it is also worth
noting that both models chosen by us (Small-VGG and

1https://github.com/AlexeyAB/darknet/
2https://keras.io/
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CNN-OCR) are relatively lightweight compared to oth-
ers commonly used in the literature, despite the fact that
they have reached impressive results [33], [46], [56]. More
specifically, Small-VGG has 1.7M parameters and requires
0.317 GFLOPs, while CNN-OCR has 3.3M parameters and
requires 5.899 GFLOPs.

B. EVALUATION METRICS
The quantitative criteria we used to assess the performance
of each model are precision P and recall R, as defined in
Equation (4)

P =
tp

tp+ fp
R =

tp
tp+ fn

(4)

where tp denotes the number of true matchings between
Cameras 1 and 2, fp is the number of false matchings, and
fn the number of true matchings missed by the respective
model. For ranking purposes, we also consider the F-score,
which is the harmonic mean of precision and recall, as shown
in Equation (5)

F =
2

1/P+ 1/R
(5)

We chose F-score over accuracy since the number of
non-matching pairs is much larger than matching pairs and,
thus, for highly imbalanced data, we can have a very low true
matching rate but a very high accuracy.

C. DATA AUGMENTATION
For data augmentation in vehicle shape images, we used ran-
dom crops between 0 and 8 pixels, scale between 0.8 and 1.2,
and shear between−8 and 8. In license plate images, we used
scale between 0.8 and 1.2, translation between −10% and
10%, rotation between −5 and 5, and shear between −16
and 16 (note that these parameter values were defined based
on experiments performed in the validation set). We used
Albumentations [57], which is a well-known Python library
for image augmentation, to apply these transformations.

TABLE 5. Vehicle identification performance based on shape: for these
experiments, we evaluated several CNN architectures, exclusively based
on shape features, in the Siamese Shape-Stream using different image
sizes.

D. ABLATION STUDY
As shown in Table 5, we evaluated the use of several CNNs
architectures for the identification task. In all experiments,
we used 5 rounds of cross-validation using the 5 sets listed
in Table 4. For each round, we used 2 sets for training, 1 for

validation, and 2 for testing.We startedwith sets 01 and 02 for
training, 03 for validation, and 04 and 05 for testing; then we
used 02 and 03 for training, 04 for validation, and 05 and 01
for testing; then 03 and 04 for training, and so on. Therefore,
P̄, R̄ and F̄ are the average values of precision, recall and
F-score for these 5 rounds.

For license plate recognition, we compared the perfor-
mance of the CNN-OCR architecture against two commercial
systems: Sighthound [58] and OpenALPR3 [59]. These sys-
tems were chosen since they are commonly used as baselines
in the license plate recognition literature [46], [47], [60] and
also because they are robust for the detection and recognition
of various license plate layouts [58], [59]. It should be noted
that, due to commercial reasons, little information is given
about the network models used in such systems. As can
be seen in Table 6, the CNN-OCR architecture achieved an
F-score of 94.1% if we consider a perfect match (correct
matching of all characters), however, if we consider partial
OCR readings, then we can have an F-score of 97.7% by
allowing one misreading and 98.6% for two misreadings.
In any scenario, CNN-OCR considerably outperformed the
Sighthound and OpenALPR commercial systems.

TABLE 6. Vehicle identification performance based on OCR: comparison
of the results achieved by the CNN-OCR architecture with those obtained
by two well-known commercial systems. For this evaluation, we consider
as true matchings the cases where exactly the same license plate
characters were predicted in cameras 1 and 2.

It is important to highlight that we employed datasets pro-
posed by several research groups from different countries (the
same ones used by Laroca et al. [47]), with only 445 more
images belonging to our scenario, to train the CNN-OCR
architecture so that it is robust for various license plate lay-
outs. In this way, as shown in Figure 10, CNN-OCR is able
to correctly recognize license plates from various countries.

As the commercial systems were not tuned specifically for
our dataset/scenario, we also report in Table 6 the results
achieved by CNN-OCR when it was trained without using
any images belonging to our scenario. It is remarkable
that CNN-OCR still outperformed both commercial sys-
tems despite the fact that they are trained in much larger
private datasets, which is a great advantage, especially in
deep learning-based approaches [46], [47]. This experiment
also highlights the importance of fine-tuning the CNN-OCR
model to our scenario in order to achieve outstanding results.

3Although OpenALPR has an open source version, the commercial ver-
sion (the one used in our experiments) employs different algorithms for OCR
trained with larger datasets to improve accuracy [49], [59].
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FIGURE 10. Examples of license plates that were correctly recognized by
the CNN-OCR architecture. The images in the first row belong to our
dataset while the others belong to public datasets acquired in
other countries.

FIGURE 11. Examples of license plates that were partially or not
recognized by the CNN-OCR architecture. For each license plate, we show
the predicted and ground truth strings, where the red and blue characters
denote the CNN-OCR misreadings and the ground truth, respectively.

Figure 11 shows some examples in which CNN-OCR
failed to correctly recognize all license plate characters.
As can be seen, errors occur mostly due to partial occlusions,
extreme light conditions, and degraded license plates. Note
that such conditions may cause one character to look very
similar to another, and thus even humans can misread these
license plates (we even had to explore multiple frames and
vehicle make/model information to check if the labeled string
was correct in such challenging cases).

TABLE 7. Vehicle identification performance based on shape and textual
features: performance of the proposed two-stream network by using the
best CNN for shape (Small-VGG) and the best OCR model (CNN-OCR). For
comparison, we included the performance of each stream when used
alone.

Finally, as can be seen in Table 7, the fusion of appear-
ance information (vehicle shape features obtained by the best
network found in our experiments shown in Table 5) with
textual information (OCR) using the proposed two-stream

FIGURE 12. Inference results: the first three rows show examples where
the three architectures failed: partial occlusion; CNN-Shape failed (similar
shape); CNN-OCR failed (HBI-20 for the left plate, HLG-297 for the right
one, while the ground truth is HST-2875). In the last two examples, all
architectures found a true non-matching and a matching, respectively.

neural network, as described in Section IV, increased the
F-score by nearly 5% over each feature separately.

We believe that both features have a significant level of
complementarity, that is, even if CNN-OCR does not recog-
nize all license plate characters correctly, it is still possible to
correctly match the image pairs in most of the cases by using
the textual and confidence information available, as well
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as the characters and shape similarity features. Figure 12
shows some classification results obtained by our two-stream
neural network.

As an additional contribution, we shared in GitHub4 three
alternative architectures that explore the same features but use
additional streams and temporal information.

VI. DISCUSSION
In this section, we compare the proposedVehicle-Rear dataset
with four other well-known datasets described in the litera-
ture, namely, VeRi-776 [61], VERI-Wild [8], VehicleID [10],
and CityFlowV2 [9]. An overview of these datasets is pre-
sented in Table 8. As can be seen, our dataset is the only
one with visible/legible/labeled license plate identifiers and
with all videos recorded in Full-HD resolution. Furthermore,
Vehicle-Rear and CityFlowV2 are the only datasets that pro-
vide uncropped frames, enabling the design of vehicle iden-
tification approaches that explore the entire scene. Another
point worth noting is that none of the public datasets for vehi-
cle identification – except ours – have motorcycle images,
despite the fact that motorcycles are one of the most popu-
lar transportation means in metropolitan areas, especially in
developing countries [47], [62]. On the other hand, the images
in the Vehicle-Rear dataset were not collected by as many
cameras as those from CityFlowV2 and VeRi (776 andWild),
nor in multiple views.

In summary, the main advantage of the proposed dataset,
compared to existing ones, is that it enables the development
of novel approaches/architectures for vehicle identification
(both cars and motorcycles) based on the license plate iden-
tifiers in conjunction with vehicle shape features.

As can be seen in Figure 13, even if we consider only
images from the vehicle’s rear, in most of the cases the license
plate identifier is illegible for the VeRi-776 dataset, and the
authors did not provide the bounding boxes and strings of the
license plates in cases where they are legible, and it would
be impractical (i.e., a very laborious task) to scan/label them
to train/evaluate our networks. Moreover, two state-of-the-art
commercial systems that are widely employed to locate
and recognize license plates from various regions/countries,
Sighthound [58] and OpenALPR [59], rejected or failed in
79% and 96% of all images available in the VeRi-776 dataset,
respectively. We emphasize that even though in [6], [39]
the authors claimed that they extended the VeRi-776 dataset
with license plate annotations, these annotations were not
made available due to privacy restrictions (according to
the first author of [6], [39], [61]). In the VERI-Wild [8],
CityFlowV2 [9] and VehicleID [10] datasets, on the other
hand, it is not even possible to exploit information from the
license plate regions for vehicle identification, as they were
purposely redacted in all images (with a black bounding box)
by the respective authors because of privacy restrictions. For
the record, CityFlowV2 is an updated version – with refined
annotations – of CityFlow [63].

4https://github.com/icarofua/vehicle-rear

FIGURE 13. Vehicle rear images of four public datasets: in the VeRi-776
dataset (a), most license plates are not legible and the authors did not
provide any annotations for the plates; in the VERI-Wild, VehicleID and
CityFlowV2 datasets (b-d), the license plates were redacted due to
privacy restrictions.

In this sense, we remark that the above datasets – as well
as others available in the literature – have a different purpose
from the one introduced in this work, as they have images
from urban surveillance cameras in different resolutions
and viewpoints. As stated in [13], these datasets have high
inter-similarity (similar visual appearance for two different
makes, model and type of vehicles) and high intra-variability.

Lastly, it is important to highlight that the Vehicle-Rear
dataset is part of a cooperation agreement5 between the uni-

5A copy of the cooperation agreement can be obtained upon request.
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TABLE 8. A comparison of publicly available datasets for vehicle identification with the proposed dataset called Vehicle-Rear. The entries marked with ∗

refer to cases where only cropped patches (i.e., vehicle bounding boxes and not the entire scene) are provided by the authors.

versities involved in this project and the city where the videos
were recorded. This agreement involves free and open access
to the data mentioned in this article.

VII. CONCLUSION
In this paper, we introduced a novel dataset for vehicle iden-
tification that, to the best of our knowledge, is the first to
consider the same camera view of most city systems used to
enforce traffic laws; thus, it enables to extract features with
quality and also to retrieve accurate information about each
vehicle, reducing ambiguity in recognition.

To explore the Vehicle-Rear dataset, we designed a
two-stream CNN architecture that combines the discrimina-
tory power of two key attributes: the vehicle appearance and
license plate recognition. For this purpose, we proposed a
novel approach to compute textual similarities from a pair of
license plate regions which were then combined with shape
similarities extracted from a Siamese architecture.

The proposed architecture achieved precision, recall and
F-score values of 99.35%, 98.5%, 98.92%, respectively.
The combination of both features (vehicle shape and OCR)
brought an F-score boost of nearly 5%, solving very chal-
lenging instances of this problem such as distinct vehicles
with very similar shapes or license plate identifiers.

Finally, although we achieved an F-score of 98.92% there
is still room for improvement. Some open research problems
are (i) designing novel networks that could extract vehi-
cle information with the same quality from even smaller
image patches; (ii) designing a one-stream architecture that
has performance comparable to multi-stream architectures;
and (iii) exploring other fine-grained attributes or temporal
sequences for vehicle identification.
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