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ABSTRACT Traffic Sign Detection (TSD) is a complex and fundamental task for developing autonomous
vehicles; it is one of the most critical visual perception problems since failing in this task may cause
accidents. This task is fundamental in decision-making and involves different internal conditions such as the
internal processing system or external conditions such as weather, illumination, and complex backgrounds.
At present, several works are focused on the development of algorithms based on deep learning; however,
there is no information on a methodology based on descriptive statistical analysis with results from a solid
experimental framework, which helps to make decisions to choose the appropriate algorithms and hardware.
This work intends to cover that gap. We have implemented some combinations of deep learning models
(MobileNet v1 and ResNet50 v1) in a combination of the Single Shot Multibox Detector (SSD) algorithm
and the Feature Pyramid Network (FPN) component for TSD in a standardized dataset (LISA), and we
have tested it on different hardware architectures (CPU, GPU, TPU, and Embedded System). We propose a
methodology and the evaluation method to measure two types of performance. The results show that the use
of TPU allows achieving a processing training time 16.3 times faster than GPU and better results in terms
of precision detection for one combination.

INDEX TERMS Traffic sign detection, deep learning, hardware acceleration, computer vision, autonomous
vehicles, embedded systems, digital systems.

I. INTRODUCTION
Nowadays, there has been a rapid emergence in the
development of Deep Learning (DL) algorithms focused
on vision problems for autonomous vehicles. These algo-
rithms have been evolving throughout the years, having
different applications such as robotics, object recognition,
self-driving cars, among others [1]. Within the applications
of autonomous vehicles, different tasks exist to attain vehicle
autonomy. One of those is computer vision. One of the
main tasks to achieve in computer vision is Traffic Sign
Detection (TSD).

The vision problem of traffic sign detection started decades
ago with some research that focused on classical computer
vision algorithms [2], [3], where image processing was used
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through geometric characteristics. However, these algorithms
were not robust enough to obtain the desired results. This
is because they faced different challenges [4], such as
the internal and external conditions of the traffic sign’s
environment. External conditions are variables that cannot be
controlled, such as lighting conditions, weather conditions,
complex backgrounds, physical degradation of traffic signs,
among others. On the other hand, the internal conditions are
the variables that can be controlled by the algorithm, such
as response time, precision in detection, adaptability, and
hardware dependency, among others [5]. These challenges
of improving precision, reducing complexity, and hardware
dependence have encouraged the development of more robust
algorithms that allowed the adaptation and improvement
in recent results. Through the years, intelligent algorithms
began to be used in state-of-the-art, specifically, machine
learning [6], [7]. The expected results were improved due
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to better extraction of more descriptive characteristics, and
using classifiers, classification, and detection of traffic signs
could be performed.

The detection task can be solved by implementing DL
algorithms, which have progressed continuously through
time, improving their performance among the various tasks
in detection, segmentation, and classification of objects
[8], [9]. DL algorithms have been increasingly used to solve
computer vision problems in autonomous vehicles; this is
due to the extraction of characteristics and classification
employing Convolutional Neural Network (CNN) architec-
tures. Liu in [10], reported that for the case of the TSD
problem, they started using CNN for the background’s objects
classification and they needed extraction methods for the
regions of interest (ROI) to obtain the candidates.

These network architectures have evolved into two differ-
ent types of methods: one-stage methods and two-stage meth-
ods. One-stage methods contain a single feed-forward fully
convolutional network that directly provides the bounding
boxes and the object classification. The two-stage methods
divide the detection process into the region proposal and
the classification stage [11]. An important one-stage method
is the YOLO model [12]. This model had a great impact
on the state-of-the-art real-time object detection methods.
It has been evolved to reach a new YOLO v5 version [13],
which improves its object detection results. The two-stage
methods began with the Region-Based Convolutional Neu-
ral Networks (R-CNN) [14], being the pioneering deep
learning-based work. Newer studies as the Cascade R-CNN
method [15] can yield more precise detections, but it requires
more computation, making it less suitable for real-time
applications. However, these methods (one-stage and two-
stage) have specific limitations or are dependent on hardware
accelerators to take advantage of their processing power.

In this article, we continue our previous works [16], [17]
for the traffic sign detection problem. We propose a
comparative evaluation of two different hardware accelera-
tors to measure the detection system’s performance on traffic
sign detection. We evaluated these detection systems for
different situations to implement them in embedded devices
for real-time applications. Different metrics are considered
for the proper evaluation of detection systems in embedded
devices. The metrics used in this work are Precision, Recall,
mean Average Precision (mAP), Memory consumption,
Latency, Throughput, and Energy consumption. The main
contributions of this paper can be summarized as follows:
• We contribute with comparisons based on a descriptive
statistical analysis of detection system combinations
based on deep learning and hardware accelerators.
This will help to elucidate some advantages and
disadvantages when using a Central Processing Unit
(CPU), Graphics Processing Unit (GPU), or a Tensor
Processing Unit (TPU). This analysis can be used to
identify some bottlenecks in the whole system since it
tells which combination helps to reduce or increase the
training time while improving the detection results.

• We proposed a methodology to evaluate a DL model’s
performance. This methodology is made up of four
stages: data selection, model selection, hardware selec-
tion, and the embedded application. Each of these stages
uses different objective metrics to select, characterize
and analyze the final application approach. It can be
used for hardware architectures with ample resources
such as in a workstation or limited architectures like
in an embedded system. The methodology allows
producing a balanced set of examples to improve the
training. Themodel selection stage evaluates the training
time required by different hardware accelerators, and
the detection results providing useful information to
choose the most appropriate hardware for the model.
Moreover, it evaluates theMemory consumption and the
required-time for the different embedded applications.
This methodology experimentally demonstrates that the
use of TPU reduces training time without significantly
affecting the accuracy of the models.

• We contribute with an algorithm for the proposed
methodology to evaluate the different combinations of
the selected DL models. The algorithm is immersed in
the methodology mentioned above. It configures and
connects Google Cloud and Google Colab services to
use TPU processing, loads the dataset, the DL model,
and the model’s hyperparameters. The configuration
files that contain all the required parameters of datasets,
the model, and its parameters, and hyperparameters are
in a bucket in the Google Cloud Storage service. The
training results are saved in a checkpoint file in the
mentioned bucked.

The remainder of this paper contains the following topics.
In Section II, we present a review of a selection of related
works that deal with the evaluation of hardware accelerators
for deep learning algorithms, the works focused on the
evaluation of traffic sign detection systems, as well as the
Single Shot Multibox Detector (SSD) meta-architecture and
Feature Pyramid Network (FPN), and the feature extractors
are presented. In Section III, the proposed methodology
for evaluating traffic sign detection systems in hardware
accelerators is described. In Section IV, the experiments
and results obtained from the TSD systems are presented.
In Section V, the conclusions and future work are presented.

II. FUNDAMENTALS
Currently, accidents in autonomous vehicles keep happen-
ing [18]–[20]. Hence, the demand for solutions has been on
the rise, pressing research lines and the automotive industry in
order to accelerate the design and development of algorithms
to reach full autonomy of vehicles. At present, to achieve
this feat, researchers around the globe have based their work
on the implementation of DL algorithms to contribute to the
various tasks involved in different levels of autonomy [21].
However, these algorithms present another problem besides
requiring an adequate dataset for the training stage. The
reliance on hardware, specifically, hardware accelerators, was
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created by DL algorithms to exploit their specific hardware
architectures for more efficient processing, inference, and
training by reducing the time necessary to implement DL
models [22].

DL algorithms rely on big data to accomplish appropriate
performance in a model’s training and testing stages. The
results are sometimes dependent on the quality and quantity
of data, being a problem when it has a small dataset or when
it has a lot of noise in the data. This indicates that an extra
step is necessary before processing the data. This stage is
called ‘‘preprocessing’’, which allows transforming the data
into a more understandable format, as well as fixing data
problems. Some of the problems are incomplete, inconsistent,
or patterned data, which ultimately call to the stage of
processing [23].

Although data and preprocessing are relevant problems
for DL algorithms, they have not been the only trend or
challenge we have today. Mobile applications are still a
current challenge, mainly online mode, this refers to when the
cloud carries out training and data inference, while mobile
devices only send and receive data due to their battery,
power of computation, and data storage. However, this online
mode depends on internet connectivity, which can cause a
long delay. On the other hand, in offline mode, the training
task is still performed by the cloud, but the trained model
is sent to the mobile device to make inferences locally
to preserve user privacy. However, trained deep models
can have a large number of parameters and complicated
calculation requirements, posing great challenges for the
limited resources of mobile devices [24].

New mobile and embedded devices are more powerful,
featuring dedicated hardware accelerators, multi-core pro-
cessors, and gigabytes of RAM. So, the new emerging
trend is to take advantage of offline mode to directly
implement deep learning models on mobile and embed-
ded devices for inference. Offline mode is the preferred
mode for various applications, especially for real-time
applications; however, factors such as computing power,
memory, memory bandwidth, and battery are too limited
to support modern deep learning models that require both
computation and memory [24]. These computational cost and
memory limitations have prompted the development of new
hardware architectures and DL algorithms for more efficient
processing by optimizing the use of computing resources.
This has promoted the investigation of DL algorithms
applied to embedded systems, optimization, and compression
of DL models, among other topics. Therefore, different
researchers have carried out various studies that address these
problems to find solutions [22], [25]. Other more specific
investigations have focused on certain applications such as
autonomous vehicles [26], [27], and more specifically their
tasks such as object detection, semantic segmentation, among
others [28]–[30].

These DL algorithms designed for real-time applications
are based upon a proper trade-off between the essential
properties for real-time implementation, like Latency, model

size, Energy consumption, Floating Point Operations per sec-
ond (FLOPs), among other relevant hardware factors. On the
other hand, lie the qualities of object detection, centered
in the model’s inference results. In this case, localization,
and classification of objects, ensuring Precision, Recall, and
Average Precision to fulfill these two objectives [31], [32].

Researchers such as Arcos-Garca et al. [33] and
Ayachi et al. [34] developed a TSD system utilizing a
GPU, where the results were evaluated through mean
Average Precision (mAP). Ayachi implemented a database
created by their team, while Arcos uses the German
Traffic Sign Detection Benchmark (GTSDB). On the other
hand, researchers like Bangquan and Xiong [35] and
William et al. [36] achieved important advancements in
the embedded system implementation field, evaluating the
performance of detection systems in these devices. Both,
Bangquan as well as William utilize meta-architectures
and feature extractors to develop models, as well as mAP
and accuracy metrics. Research from Jouppi et al. [37]
compared CPU and TPU hardware accelerators to evaluate
the difference between Throughput and Latency, exploitation
on neural networks of these specific devices.

DL algorithms are employed in computer vision applica-
tions, where object detection is one of the revolutionizing
tasks of state-of-the-art through these algorithms. These
systems are composed of meta-architectures and feature
extractors, which allow improving detection results over
different combinations.

Arcos in [33] states that combinations rely on the applica-
tion’s approach to development and performance of Traffic
Sign Detection (TSD) systems can be enhanced through
said combinations. Comparing several combinations helps
find the proper trade-off among the application systems’
performance on embedded devices and their detection results.

These characteristics allow the development of more
efficient systems, requiring an appropriate performance of the
detection results and the application’s real-time functionality,
which are fundamental in developing autonomous vehicle
systems. Nevertheless, this process depends on the employed
hardware accelerator, both in the training and test phase and in
the system implementation phase [34], [35]. Thus, this work
centers on comparing advantages and disadvantages in the
use of hardware accelerators implemented in DL algorithms.

A. MACHINE LEARNING ARCHITECTURES
Deep Learning Neural Networks are a subset of machine
learning algorithms, which simplify feature extraction and
description through a multi-layer Convolutional Neural
Network. CNN intends to transform the high-dimension input
image into a low-dimension but highly abstracted semantic
output. Powered by massive amounts of data and modern
CPUs and GPUs, methods based on deep neural networks
obtain state-of-the-art performance and help the computer
vision field in algorithms development. At present, there
is an increase in the design and development of deeper
networks to make CNN’s provide near-human accuracy
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in different computer vision applications, for instance,
classification, segmentation, and detection. However, a high
computational cost is required in order to achieve these
levels of high accuracy. Dedicated hardware like GPUs
and application-specific CPUs are studied to optimize Deep
Neural Networks (DNN) [38].

Convolutional Neural Network (CNN) is a well-known
deep learning architecture inspired by the natural visual
perception of living beings. In 1959, Hubel and Wiesel [39]
found that cells in the animal visual cortex are responsible for
detecting light in receptive fields. Inspired by this, Kunihiko
Fukushima proposed the neocognitron in 1980 [40], which
can be considered as the precursor of CNN. In 1990,
Le-Cun [41] established the modern framework of CNN
and subsequently improved it in [42]; they developed a
multi-layer artificial neural network named LeNet-5, which
could classify handwritten digits.

FIGURE 1. LeNet-5 network architecture.

There are several variants of CNN architectures. Nonethe-
less, their essential elements are very similar. LeNet-5, for
example, consists of three types of layers: convolutional,
pooling, and fully connected layers. The convolutional
layer is in charge of learning the representations of input
characteristics. Each layer is composed of a convolution
kernel. This kernel calculates the following input feature
maps of the next layer, see Fig. 1.

Each neuron of the feature map is connected to a region
of adjacent neurons in the previous layer. This neighborhood
is named as the neuron’s receptive field in the past layer.
Convolving the input with a learned kernel and applying
a nonlinear activation function through the element on the
convolved results produces a new feature map. The kernel is
shared in spatial locations of the input in order to generate
each feature map. The complete set of feature maps are
obtained by using several different kernels. Mathematically,
the feature value at location (i, j) in the k-th feature map of
l-th layer, zli,j,k , is calculated by:

zli,j,k = (wlk )
T x li,j + b

l
k (1)

where (wlk )
T and blk are the weight vector and bias term of

the k-th filter of the l-th layer respectively, and x li,j is the
input patch centered at the location (i, j) of the l-th layer.
The kernel wlk that generates the feature map zli,j,k is shared.
Such a weight-sharing mechanism has several advantages:
reducing the model complexity and make the network easier
to train. The activation function introduces nonlinearities to
CNN, which are desirable for multi-layer networks to detect

nonlinear features. Let a(·) denotes the nonlinear activation
function. The activation value ali,j,k of convolutional feature
zli,j,k can be computed as:

ali,j,k = a
(
zli,j,k

)
(2)

Common activation functions are sigmoid, tanh, and
Rectified Linear Unit (ReLU) [43]. The pooling layer’s goal
is to achieve shift-invariance by reducing the resolution of the
feature maps. It is usually placed between two convolutional
layers. Each feature map of a pooling layer is linked to its
corresponding feature map of the preceding convolutional
layer. Defining the pooling function as pool(·), for each
output of the feature map zli,j,k processed with its activation
function ali,j,k we get:

yli,j,k = pool
(
alm,n,k

)
, ∀(m, n) ∈ Ri,j (3)

where Ri,j is a local neighborhood around location (i, j).
The common pooling operations are average pooling and
max pooling [44]. After numerous convolutional and pooling
layers, there may be one or more fully connected layers that
aim to perform high-level reasoning [45]. The fully connected
layers take all neurons in the prior layer and connect them to
every neuron of the current layer to produce global semantic
information. The last layer of CNNs is an output layer. Let θ
denote all the parameters for a CNN. The optimal parameters
of a specific task can be obtained by minimizing a suitable
objective function in that task, in this case, C is defined as the
cost function and l would be the loss function to optimize for
each N relation. Therefore, if we have N desired input-output
relations {(x(n), y(n)); n ∈ [1, . . . ,N ]}, where x(n) is the n-th
input data, y(n) is its corresponding target label and o(n) is the
output of the CNN. The loss of CNN can be calculated by:

C =
1
N

N∑
n=1

l
(
θ; y(n), o(n)

)
(4)

Deep Convolutional Neural Networks (DCNNs) have a
significant number of advantages: a hierarchical structure
to learn representations of data with multiple levels of
abstraction, the capacity to learn very complex functions, and
learning feature representations directly and automatically
from data with minimal domain knowledge. What has
made DCNNs successful has been the availability of large,
labeled datasets and hardware accelerators like GPUs with
considerably high computational capabilities [9], [46].

The Single Shot Multibox Detector (SSD) [47] is an
approach based on a feed-forward convolutional network that
produces a fixed-size collection of bounding boxes and scores
for the presence of object class instances in those boxes,
followed by a non-maximum suppression step to produce the
final detections, as seen in Fig. 2. Default boxes represent
carefully selected bounding boxes based on their sizes, aspect
ratios, and positions across the image. The core of SSD
is to predict category scores and box offsets, aiming to
determine which of the set of default boxes will be used
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to apply convolutional filters to the feature maps. The early
network layers are based on a standard architecture used for
high-quality image classification. A key feature of the model
is the use of multi-scale convolutional bounding box outputs
attached to multiple feature maps at the top of the network.
This representation allows us to model the space of possible
box shapes efficiently. The key difference between training
SSD and training a typical detector that uses region proposals
is that ground truth information needs to be assigned to
specific outputs in the fixed set of detector outputs.

FIGURE 2. Single Shot Multibox Detector (SSD) model.

When deeper networks start converging, a degradation
problem arises; as network depth increases, accuracy gets
saturated and degrades rapidly. This degradation indicates
that not all systems can be optimized similarly and easily. For
example, if we consider a shallow architecture and add more
layers to it, one would suppose that the performance obtained
from the model would be better. However, this can lead to
higher complexity when optimizing the network parameters
causing higher training errors. A solution is that the added
layers focus on identity mapping, while the other layers
extract the residuals from previous layers of the shallower
part of the model. Due to this, small residuals are added to
the input during the learning process; instead of transforming
the whole input [48]. The ResNet50 model [48] is based on
a deep residual learning framework consisting of multiple
subsequent residual modules, see Fig. 3. The residual blocks
allow the network to retain what it has previously learned.
Using an identity mapping function where the output equals
the input to retain what it previously learned, will add what
the network has already learned if there is nothing new to
learn.

FIGURE 3. Residual ResNet50 v1 block.

TheMobileNetmodel [49] is based on depthwise separable
convolutions, which are a form of factorized convolutions
that factorize a standard convolution into a depthwise

convolution, and a 1 × 1 convolution called a pointwise
convolution. The result of the depthwise convolutions
significantly reduces the number of parameters compared to
the network with normal convolutions with the same depth.
It reduces the total number of floating-point multiplication
operations, which is favorable inmobile and embedded vision
applications with less computer power. This factorization has
the effect of drastically reducing computation andmodel size.
MobileNet’s essential block is defined in Fig. 4.

FIGURE 4. Depthwise separable convolution MobileNet v1 block.

Feature pyramids are a necessary component in recognition
systems for detecting objects at different scales. These
pyramids are scale-invariant. An object’s scale change is
offset by shifting its level in the pyramid, enabling models
to detect objects across a large range of scales by scanning
over pyramid levels and positions. The main advantage of
featuring each level of an image pyramid is that it produces
a multi-scale feature representation in which all levels
are semantically strong, including high-resolution levels.
Nonetheless, featuring each level increases inference time,
requires considerable memory usage, and produces inconsis-
tency between train/test-time inference. The Feature Pyramid
Network (FPN) [50] shown in Fig. 5 is an architecture that
combines low-resolution, semantically strong features with
high-resolution, semantically weak features via a top-down
pathway, and lateral connections.

FIGURE 5. FPN block showing the top-down pathway and lateral
connection merged by addition.

This method takes a single-scale image of arbitrary size
as input and delivers proportionally sized feature maps
at multiples levels as an output. The bottom-up pathway
represents the feed-forward computation of the backbone
ConvNet, which computes a feature hierarchy consisting of
feature maps at several scales with a scaling step of two.
The top-down pathway visualizes higher resolution features
by upsampling spatially rough to extract feature maps from
higher pyramid levels. These features are enhanced with
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FIGURE 6. Examples of classes and superclasses in the LISA dataset.

features from the bottom-up pathway via lateral connections.
Each lateral connection merges feature maps of the same
spatial size. As seen in Fig. 5, with a coarser resolution
feature map, the spatial resolution is upsampled by a factor
of two and then merged with the corresponding bottom-up
by element-wise addition. This process is repeated until an
adequate resolution map is obtained.

B. TRAFFIC SIGN DETECTION DATABASE
The Laboratory for Intelligent & Safe Automobiles (LISA)
developed a traffic sign dataset comprising 6,610 images with
several distinct characteristics. Variables such as occlusion,
blur, illumination variation, multiple signs, and distance
discrepancy are some of the events present in the dataset.
There are 47 unique traffic signs in the database. In this work,
it is chosen to divide these 47 classes of signs into three
superclasses: warning, prohibitory, and mandatory, as can be
seen in Fig. 6. These are divided into a subset of 2,641 color
images containing 18 traffic sign classes, as also shown
in Fig. 6. In this work, we used only 900 samples divided
by their corresponding superclass, which are also labeled by
their traffic sign class, as shown in Table 1. The purpose
of superclasses is to encompass similar properties of signs,
as well as their parent category. For example, the warning
superclass mostly shares the geometric shape of a diamond,
as well as its characteristic color is commonly yellow. On the
other hand, the mandatory ones, mostly their geometric
shape is a rectangle, and they are white, as they are also
commonly speed limit signs. Finally, the prohibitory ones
have a geometric shape from circular to octagonal, this value
is variable, and its characteristic color is red, an example
of this superclass is the stop sign. The final objective of
this categorization of superclasses is to be able to facilitate
the final classification of the signs, reducing the multi-class
classification problem from 47 to 3 classes.

Besides, each annotation provides data that are more
relevant for the training phase. The database has different
resolutions, ranging from 640 × 480 to 1,024 × 522 pixels,
as well as color samples and others at gray scales. Other
characteristics are the type of sign, position, size, if it has
occlusion or not, and if it is on the way of the vehicle or not.

A descriptive example of a scene from the database would
be the following: in video number 0 is sample number 0, this
sample is in color and has a resolution of 704 × 480 pixels,
as well as in PNG format. This scene has a stop sign, which
has the following coordinates of the bounding box of the
sign: in the upper-left corner (x1) it has the first point at pixel
485, in the upper-right corner (y1) it has the second point

TABLE 1. Traffic sign classes and superclasses in the LISA dataset.

in pixel 41, in the lower-left corner (x2) there is the third
point in pixel 504 and the lower-right corner (y2) there is the
fourth point in pixel 59. This sign has no occlusion that is
represented by the value 0 and is in the path of the vehicle
which is also represented by the value 0. Another important
piece of information in the traffic sign dataset is their
location since their geometry and color vary by continent and
country [51].

C. HARDWARE ACCELERATORS
The deployment of a DNN on a real-world application
consists of two phases: training and inference. Network
training is expensive in terms of speed and memory;
consequently, it is commonly carried out on GPUs off-line.
Recently, hardware accelerators [52], [53] for DNN have
received widespread attention, particularly for the training
phase. An accelerator comprises five parts: data buffers,
parameter buffers, processing elements, global controller, and
off-chip transfer manager [31].

The data buffers are used to cache input images, inter-
mediate data, and output predictions, while the weight
buffers are used mainly to cache convolutional filters.
The processing elements are a set of basic computing
units that execute multiply-add, non-linearity, and other
functions such as normalization and quantization. The global
controller is employed to arrange computing flow on-chip,
while the manager organizes off-chip instructions and data
transfer. The most significant difference among all hardware
accelerators is in the processing elements. They are designed
for most intensive computing tasks in deep networks,
such as massive multiply-add operations, normalization
(batch normalization, or local response normalization), and
calculating non-linearities in common activation functions
like ReLU, sigmoid, and hyperbolic tangent [31].

A hardware accelerator for DNNs implemented on
an Application-Specific Integrated Circuit (ASIC) or
Field-Programmable Gate Array (FPGA) typically consists
of an array of Processing Elements (PE) for computation,
as shown in Fig. 7. The PEs are interconnected by a
Network-on-Chip (NoC) designed to achieve the desired data
movement scheme. The three levels of the memory hierarchy
are the Register Files (RFs) in the PEs, which store data
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for inter-PE movements or accumulations, and the Global
Buffers (GBs), which stores enough values to feed the PEs,
and the off-chip memory, usually a DRAM [54]. The real bot-
tleneck in DNNs computation is the huge number of memory
access by unit of time. Therefore, one of the key design issues
for memory hierarchy is to reduce the DRAM accesses since
they have a high Latency and energy cost. Hence, the reuse
of the data stored in smaller, faster, and low-energy memories
(GBs and RFs) is favored, as seen in Fig. 7.

FIGURE 7. The architecture of hardware accelerator in DNNs.

An embedded real-object detection system has numerous
real-world applications; however, an on-board system that
supports weight, power consumption, and computational
resources are necessary for these tasks. Furthermore, while
GPUs enhance deep learning algorithm’s performance, their
power consumption and cost are greater than an embedded
CPU system. Here is where the NVIDIA Jetson AGXXavier,
which is illustrated in Fig. 8, exceeds, in terms of performance
and efficiency in deep learning and computer vision.
This device enables the development of prototypes and
artificial intelligence applications for autonomous machines
and robots with a GPU workstation’s performance in an
integrated module of less than 30W [55]. This powerful
AI computing can provide 32 Tera Operations Per Sec-
ond (TeraOPS) of peak computation in a compressed module
of 100-mm × 87-mm.

FIGURE 8. NVIDIA Jetson AGX Xavier Developer Kit and module.

III. PROPOSED METHODOLOGY AND
EVALUATION METHOD
In this section, a methodology for traffic sign detection
systems using hardware acceleration is proposed. At present,

different hardware accelerators exist and provide the ability
to accomplish more difficult challenges through their power
capabilities. In this methodology, three different hardware
accelerators are utilized (CPU, GPU, and TPU). The selection
of hardware accelerators relies on data properties such as
type, size, quantity, and application. This information assists
in selecting the hardware accelerator and model, allowing
us to choose the right combination based on the data
characteristics [23]. Thus, this methodology is proposed
regarding a specific database and two models and three
hardware accelerators, see Fig 9.

FIGURE 9. Proposed methodology for hardware accelerators in DL.

A. DATA SELECTION
An essential stage in choosing and implementing DL
algorithms is the selection of data. DL algorithms require
large amounts of data to attain better performance. Several
works [23], [36] consider transcendent the size and type of
data when working on a computer vision problem. Since
processing is done using images, the resolution must be
considered in order to determine the input size of the
algorithm. Data quantity must also be contemplated; if the
dataset is too small, training will be affected negatively
depending on the number of samples per class. Considering
the previous properties, we performed different steps for the
data selection stage. The LISA database (see subsection II-B
for more details) contains 6,610 images and 47 classes
of traffic signs; these samples are composed of some
examples in color and others in grayscale. The first step
considers only the color samples because they contain more
information for the feature extraction stage of the DLmodels.
In addition, the superclass design is based on the color and
geometric shape of the traffic signs. This process discarded
3,969 samples and 29 classes from the dataset, reducing their
number of samples by 60%, see Table 2.

In the next step, we consider the classes with the greatest
number of examples in each superclass. The objective of
this process was to balance the superclasses (see Table 1).
Each superclass contains three intraclasses and 300 examples
per superclass, giving a total of 900 samples for the dataset.
We called this reduced dataset Tiny LISA and made it
available on the Kaggle site.1

B. HARDWARE SELECTION
Due to the dependency of DL algorithms in hardware
accelerators, specific hardware that meets the model’s
application and data requirements must be picked, prompting

1https://www.kaggle.com/mmontiel/tiny-lisa-traffic-sign-detection-
dataset
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TABLE 2. Traffic sign classes in the color LISA dataset.

the seeking of the proper hardware for the task through
evaluation. The evolution of deep neural networks has
increased the demand for computational complexity and,
consequently, its resources consumption, posing hardware
implementation challenges for these deep neural networks.
Some works, such as the one from Cheng et al. [31], provide
an analysis focused on essential topics such as network
pruning, low-rank approximation, network quantization,
teacher-student networks, compact network design, and hard-
ware accelerators. Other researchers like Sharma et al. [56]
and Chen et al. [57] generated hardware accelerators both in
the hardware and software fields to improve the performance
and take advantage of the use of DNNs and CNNs and
optimizing and maximizing data reuse, data movement, and
statistical exploitation.

In this methodology, the performance of different hardware
accelerators is compared for the models’ training and
execution time of the algorithm phases to determine the most
appropriate hardware accelerator for the selected database.
The significance of hardware accelerator selection is reflected
in training time and implementation of the algorithm [22]
due to each hardware accelerator’s different specifications.
Several works [58]–[60] consider Memory consumption,
Energy consumption, Latency, and Throughput as the most
relevant metrics for DL implementation; thus, these metrics
are evaluated in this methodology.

C. MODEL SELECTION
The selection of a model relies on its properties, and it
is indispensable to identify in the approach of the model
the adequate features that constitute the model [61], [62].
According to the application, a balance between the proper-
ties is required to attain the desired performance. The main
property considered for the model was its high-quality image
classification capabilities in the early layers of the network.
The TSD system’s construction is established on the use of
meta-architectures and feature extractors [63], [64]. Modern
meta-architectures implement CNNs for object detection;

hence, they must be carefully selected since they affect
object detection speed and performance. Feature extractors
focus on attaining the substance of the infrastructure.
In conjunction with meta-architectures, high-level image
information extraction is simplified. Thus, capacity type
selection impacts feature extractors; hence, model selection
for meta-architectures and feature extractors depends on the
application. Good performance in TSD systems depends
on different properties. The Latency, Memory consumption,
and mean Average Precision are the ones considered in
this work. The model’s inference time rests in how quickly
the system delivers a result, and the time frame for it
determines its potential in real-time applications. Memory
consumption refers to how much hardware resources are
required by the system, which helps ascertain if the embedded
device is capable to support it. The mean Average Precision
identifies the excellent performance of a system through its
sensitivity and Precision. Considering all these properties
define whether a system can be implemented in embedded
devices for real-time applications [65].

D. EMBEDDED APPLICATION
Specific hardware characteristics are necessary in order to
implement a system on an embedded device [66]. Factors
like RAM, memory bandwidth, and hardware accelerator
are considered to select an adequate embedded system.
Embedded devices with GPU are necessary for DL-based
systems due to the massive data processing performed in the
training and validation stages. A high number of cores and
memory bandwidth allow the GPU to process a large amount
of data required in DL algorithms. Thereby, embedded
devices require a minimum of hardware specifications so that
DL-based systems can be implemented efficiently on them.
However, hardware requirements must be reduced as well to
make up for the limitations of embedded systems.

E. EVALUATION METHOD
Algorithm 1 presents the Traffic Sign Detection Evaluation
Method (TSDEM), which consists of performing the steps
mentioned in the previous sections.

The main objective of Algorithm 1 is to carry out each of
the stagesmentioned in the proposedmethodology, see Fig. 9.
Algorithm 1 performs the following steps:
• Select workstation for training (CPU, GPU, or TPU).
• Configure and connect the workstation or the Google
Cloud Service.

• Load the dataset, the DL model, and its
hyperparameters.

• Train the DL model and save it to a checkpoint file.
• Evaluate the DL model on CPU, GPU, or Jetson.
• Generate and save training, detection, and performance
metrics.

The TSDEM algorithm has the following input parameters:
the D parameter is the original dataset that contains all
the samples in the database. The Min parameter is the
combination of the selected model. The parameter H is
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Algorithm 1 TSDEM
Input: database D, DL model Min, hyperparameters of the model H ,

and system configuration parameters P
Output: file Fmodel with trained model and Fmt , Fmd , and Fmp for

train, detection, and performance metrics
1 CKPT ← Pe Every few epochs the model is saved
2 B← Ps Number of samples per class
3 C ← Pc Specific classes
4 E ← He Total number of epochs
5 Initialize files F to store model and metrics
6 Initialize superclasses SC to store class samples
7 Initialize Mt to store train metrics
8 Initialize Md to store detection metrics
9 Initialize Mp to store performance metrics
10 Flag HW to select the hardware accelerator to train or implement
11 init
12 i← 0
13 foreach sample in D do
14 Extract image, and annotation of sample
15 SC(i+ 1)← sample ∩ C
16 i← i+ 1

17 Create subsets Dtrain = (90%)(SC) and Dtest = (10%)(SC)
18 Sample balancing Strain = {Dtrain ∩ B} and Stest = {Dtest ∩ B}
19 Create TFrecords TFRtrain ← Strain and TFRtest ← Stest
20 if HW is equal to CPU or HW is equal to GPU then
21 Set P workstation settings

22 else
23 Set P cloud settings

24 j← 0
25 while j ≤ E do
26 Mout ← Train Min with H and Strain
27 if j is equal to CKPT then
28 Save model Mout to Fmodel
29 Generate training metrics for Mtj Mt(j+ 1)
30 j← j+ 1

31 Saved training metrics Mt to Fmt
32 k ← 0
33 while k ≤ E do
34 Eval Mout with Stest
35 Generate detection metrics for Mdk Md(k + 1)
36 k ← k + 1

37 Saved detection metrics Md to Fmd
38 if HW is not equal to TPU then
39 l ← 0
40 while l ≤ E do
41 Eval Mout with Stest
42 Generate performance metrics for Mpl
43 Mp(l + 1)
44 l ← l + 1

45 Saved performance metrics Mp to Fmp

46 end

all the hyperparameters of the Min model, which are: the
number of epochs He, the batch size, the initial learning rate,
the decay factor, and the values of the two L2 regulators.
The P parameter contains the following system configuration
variables: the Pckpt variable is every few epochs that the
model is saved, the Ps variable is the number of examples
selected per class, and the Pc variable is the selected classes.

The output parameters of the TSDEM algorithm are as
follows: the Fmodel parameter is a file containing the trained
model, the Fmt parameter is a file containing the training
results, the parameter Fmd is a file that contains the detection
results, and the parameter Fmp is a file that contains the
performance results.

From line 1 to line 10 is the assignment and initialization of
the variables used in the algorithm, such as the initialization

of the F files to store the model and metrics, as well as the
HW flag to indicate the hardware accelerator to use.

From line 11 to line 18, the data selection process is
carried out, where the examples of the specified classes
C are extracted to generate the superclasses SC ; From the
examples of each superclass, the training set Dtrain and test
Dtest are created, then each class and superclass are balanced,
obtaining the training set Strain and the test set Stest . And
finally, the TensorFlow Records for training TFRtrain and
TFRtest of the balanced sets Strain and Stest are generated;
these records facilitate and optimize the storage and loading
of data, in a simple format, based on a sequence of binary
records.

From lines 19 to 22, the hardware accelerator with theHW
flag is selected to perform the training stage. Depending on
whether the workstation or cloud computing is used, different
configurations are made through parameter P. In the case of
CPU or GPU, it is configured for the workstation based on
different scripts, and in the case of the TPU, it is configured
for cloud computing with other scripts.

From lines 23 to 29, the selection and training process of
theMin model is carried out to obtain theMout trained model
and its Mt training metrics. This cycle trains the Min model
up to the hyperparameters H up to many epochs indicated by
E . Every certain number of epochs the model is saved in a
CKPT checkpoint file, and every epoch the training metrics
are generated and saved in Fmt .
From lines 30 to 34, the evaluation process of the Mout

trained model is carried out, to obtain its Md detection
metrics. This cycle evaluates theMout model up to the number
of epochs indicated by E . Each epoch the detection metrics
are generated and stored inMd . In the end, all the metrics are
collected in the file Fmd .
From lines 35 to 41, the process of implementation and

performance evaluation of the trained model Mout is carried
out, to obtain its Mp performance metrics. This process is
focused on CPU, GPU, or Jetson, to know the difference in
the Precision of the training in TPU, so TPU is not used
at this stage. This cycle evaluates the performance of the
Mout model by the number of epochs indicated by E . In each
epoch, the performance metrics are generated and stored in
Mp. In the end, all the metrics are collected in the Fmp file.

The technical details are described below: the configura-
tion files that contain all the required parameters of datasets,
the model and its parameters, and hyperparameters are in a
bucket in the Google Cloud Storage Service. The execution
of the training of the selected model and the trained model is
saved from every certain number of epochs in a checkpoint
file, in the same mentioned bucket. The model is downloaded
to be tested in any of the selected architectures (CPU,
GPU, or Embedded System); and the evaluation scripts are
executed in the architecture to generate the metrics, graphs
and to be able to perform the analysis of the results. This
algorithm allows assigning various user parameters such as
model name, dataset, hyperparameters such as batch size,
number of steps, learning rate, L2 regulator value, and
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also in which architecture it will be tested (CPU, GPU,
or Embedded System). For the testing and implementation
stage, scripts were developed to evaluate the performance
of the models both on the workstation and on the Jetson
Xavier Embedded System. Various tools such as Google
Colab, TensorFlow Object Detection API, NVIDIA System
Management Interface, Jetsonstats, and Tegrastats are used.

F. EVALUATION METRICS
The following describes the metrics used to evaluate each
stage of detection for the DL models. In the detection stage,
Bounding-Box, Recall, Precision, and Average Precision
metrics are used to evaluate the sensitivity and Precision of
the TSD systems. For the implementation stage, the metrics
for system evaluation are Memory consumption, Energy
consumption, Latency, and Throughput. The purpose is to
compare different hardware accelerators.

In the detection task, the model’s predictions can be
evaluated through the Bounding-Box measure, in which the
overlap ratio between the predicted Bounding-Box Bp and
the ground truth box Bgt is calculated. A correct detection
is obtained when the overlap ratio Intersection over Union
(IoU) surpasses 0.5 using the equation:

IoU =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (5)

where Bp∩Bgt denotes the intersection area, in pixels, of both
predicted and ground truth bounding boxes. The termBp∪Bgt
denotes the union area in pixels. The possible values for the
threshold range from 0 to 1 [67].

The classification results were divided into three groups:
true positives (TP), which are examples correctly labeled
as positives; false positives (FP) refer to negative examples
incorrectly labeled as positive; and false negatives (FN),
which are positive examples labeled incorrectly as negative.
In [68] were defined the metrics Precision and Recall based
on the groups mentioned above. The Precisionmetric in Eq. 6
is defined as the number of true positives divided by the sum
of true positives and false positives, and the Recall metric in
Eq. 7 is the number of true positives divided by the sum of
true positives and false negatives (the sum is just the number
of ground-truths).

Precision =
TP

TP+ FP
(6)

Recall =
TP

TP+ FN
(7)

Although a curve for Precision and Recall relation can
be drawn, a better way to evaluate a detector is using the
Average Precision (AP) metric [67]. The AP summarizes
the shape of the Precision/Recall curve and is defined as
the mean precision at a set of eleven equally spaced Recall
levels [0, 0.1, . . . , 1]. TheAP evaluates theAverage Precision
across all unique Recall values, and its equation is defined as:

AP =
1
n

∑
r∈[0,0.1,...,1]

Pinterp(r) (8)

where n represents the number of Recall levels used. In this
work, the PASCAL VOC challenge’s [67] new standard is
chosen, rather than the traditional way, which implements
only 11 Recall levels. The Precision at each Recall level r
is interpolated by taking the maximum Precision measured
for a method for which the corresponding Recall exceeds r :

Pinterp(r) = max
∼
r :
∼
r ≥r

p(∼r ) (9)

where p(∼r ) is the measured Precision at Recall ∼r . The
Precision/Recall curve is interpolated to reduce the impact
of the ‘‘wiggles’’ caused by small variations in the ranking
of examples. To obtain a high level of AP, a high Precision
value must be obtained for each Recall, because its mean is
calculated.
Memory consumption is defined as the maximum memory

usage during the training [59], [60]. Intermediate data is
the most memory-consuming among the different variables
(DL model, hardware accelerator, or application). This data
includes the machine learning framework, also known as the
workspace and the feature map.
Energy consumption (E) is crucial in the inference process

of deep learning models. This consumption determines if
the model will be feasible within the battery capacity of
the mobile device [59], [60]. In Eq. 10, the time interval
(ti) defines how frequently sample data j is collected, and
power consumption (pwr) represents the whole system power
of the mobile device collected in a power sample data j.

E =
∑
j

tij × pwrj (10)

The Latency of a model, also known as inference time,
is the amount of time it takes to train a single sample
of the batch size [59], [60]. Specifically, considering the
time required by the model to deliver an output response
upon receiving the input image, smaller time values mean
a better model speed is attained. Eq. 11 describes Latency
calculation, where the number of samples (num_spl) defines
the total number of samples to be processed, the start of the
inference (start_infer) indicates the time when the model
started processing the sample, and the end of the inference
(end_infer) represents the time when the model finished
processing the sample. The time is measured in milliseconds.

Latency =
num_spl

end_infer − start_infer
(11)

To evaluate the efficiency of the DL model processing,
the metric of Throughput is utilized. Throughput describes
how many inferences can be delivered given the size of the
deep learning network created or deployed. DL inference
Throughput is generally expressed as images-per-second for
image-based networks and the systemmust achieve Through-
put within a specified Latency threshold [69]. In based
on [59] this metric it is defined as follows, the number of
samples (images) that can be processed in the Latency of
the DL model. Eq. 12 defines the calculation of Throughput
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metric.

Throughput =
num_batches× batch_sz

Latency
(12)

where the number of batches (num_batches) refers to the
number of batches to be processed, and the batch size
(batch_sz) establishes the number of samples that the model
feeds, and the Latency refers to the time calculated in Eq. 11
and establishes the time required for the model to process
a single sample. For example, if we have 100 batches,
a batch size of 32, and a model inference time of 5 seconds,
the Throughput is 640 samples per second.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
We divided the experimental phase into two parts: training
of DL algorithms and embedded system implementation.
For training the DL algorithms, we used a subset of
the LISA database [51]. It is constituted of 900 samples
and is divided into three different subclasses (prohibitory,
mandatory, and warning) with 300 samples each. Each
superclass contains three classes subsequently, as shown
in Table 1. The dataset is separated by 90% for the
training phase and the remaining 10% for the testing phase.
Training is done using a CPU (AMD Ryzen 3600), a GPU
(NVIDIA 2060 SUPER card), and a Google Colab TPU.
For the embedded system implementation, we used the
NVIDIA Jetson AGX Xavier embedded system board. The
detection algorithm was implemented using the TensorFlow
Object Detection API [70], where COCO [71] database
pre-trained models that support TPU hardware are selected.
Evaluation of traffic sign detection is done using COCO
Object Detection metrics, where mAP with different sized
objects (small, medium, and large) is chosen explicitly for
detection model evaluation. The combination of detection
systems is composed of a meta-architecture (SSD) and
two convolutional feature extractors (MobileNet v FPN and
ResNet50 v1 FPN). System 1 (S1) is formed by SSD +
MobileNet v1 FPN, and System 2 (S2) is composed of SSD
+ResNet50 v1 FPN architectures. The hyperparameters used
for both S1 and S2 are a batch size of 32, with 2,600 steps,
an Adaptive Momentum Estimation (ADAM) optimizer,
an initial learning rate of 0.000999, a decay factor of 0.950,
and a refresh every 26 steps (1 epoch). Two L2 regulators with
a value of 0.000025 were used for both the box-predictor and
the feature extractor.

A. TRAINING EVALUATION
The following results are from the training systems S1 and
S2, with each hardware accelerator selected. The training
stage was composed of 809 samples, a batch size of 32, with
100 epochs, and 2,600 steps.

Table 3 shows training time as well as the number of
training steps per second for each hardware accelerator,
where it can be observed that CPU is the one that requires the
most amount of training time and TPU attains the best results
on both metrics. This is due to three important elements that

TABLE 3. System training time results. The best results are in bold.

differ depending on the type of hardware accelerator; these
elements are primitive calculation, memory architecture,
and its design purpose. TPU utilizes tensor calculation and
can handle up to 128,000 operations per cycle and have a
specific purpose of accelerating the development of DL tasks
employing TensorFlow for attaining a faster training process.

Generally, the most critical factor in the overall perfor-
mance of a DNN model is the architecture. The hardware
accelerator is significantly important. Most DNN models
are based on 32-bit floating-point matrix multiplication [22].
These operations require floating-point arithmetic units for
vector processing in a combination of bandwidth memories.
Due to this, hardware accelerators are generally required
to allow massive parallel processing of data, where the
GPU is generally selected instead of the CPU. Currently,
the custom-designed TPU hardware accelerator for Machine
Learning is considered. This selection is due to the computing
power of the TPU, which is higher than that of the GPU.
The TPU has multiple array units (MXUs) implemented in
systolic arrays. These units allow higher performance for
larger batches, and this reduces model training time. On the
other hand, the GPU is a better option for small batches and
large models. This is because the memory system is better
optimized in the transmission and memory reuse operations.
Also, the GPU has a higher bandwidth than the TPU, which
allows it to better adapt to the memory requirements of large
models [63].

Therefore, it can be seen that the hardware selection will
depend on several factors, such as model size, batch size,
model architecture, and its operations. An efficient combina-
tion of a hardware accelerator and a DNN architecture will
help to improve the convergence of the cost functions of
the models. This combination will provide greater stability,
as well as lower Latency in the model steps. On the other
hand, an inefficient combination could cause bottlenecks,
causing the opposite effect, and affecting the inference of
the model. These bottlenecks will depend on the workload,
hardware memory resources, and the design of the DNN.
Fig. 10 shows the losses related to the CPU hardware
accelerator, where the total loss for S2 is lower than in S1.
This is because the architecture of this system uses waste to
improve its performance. It can also be noted that there is a
type of shattering because there are not enough processors
to avoid Throughput bottleneck. In Fig. 11, the losses related
to the GPU hardware accelerator are shown. Where the total
loss for S2 is also lower than in S1, we notice a smoother loss
(without shattering). In this case, the number of cores in the
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FIGURE 10. Training loss on CPU of Systems S1 and S2.

FIGURE 11. Training loss on GPU of Systems S1 and S2.

accelerator is 182 times higher, having a lower Throughput
and avoiding bottlenecks. In Fig. 12, the losses related to
the TPU hardware accelerator are shown; the total loss
for S2 continues to be less than in S1 as in the previous
accelerators, but in this case, we can see that both the losses of
S1 and S2 are more significant than in the other accelerators,
the loss that is affected or the greatest is the classification loss.

FIGURE 12. Training loss on TPU of Systems S1 and S2.

These higher TPU losses are due to the type of operations
they use. TPU uses bfloat (Brain Floating Point Format).
A regular TPU Cloud Service has two 128 × 128 systolic
arrays, adding 32,768 ALUs for 16-bit floating-point values
on a single processor [72].

B. DETECTION EVALUATION
The following detection results are from S1 and S2, with
each hardware accelerator selected. Precision, Recall, and
mAP were the selected metrics and the COCO metrics for
different sized objects (small, medium, and large) to evaluate
the systems under different types of traffic signs.

Table 4 shows superclass detection results for each
hardware accelerator system, where a noticeable difference
can be seen among the implemented devices. Even though
the same hyperparameters are used (training sample number,
epoch number, batch size, type of optimizer, and regulation
constants) different results were obtained. As can be seen
in the combinations (S1 + TPU), (S2 + GPU), and
(S2 + CPU) have better results in some superclasses
than other combinations with the same model but with
different hardware accelerators. This difference is owed to the
primitive operations mentioned in section IV-A, proving that
the use of different hardware accelerators has an impact on the
results of DL-based systems [73]. Fig. 13 shows the mean
Average Precision results of the CPU hardware accelerator.
The S2 system has better detection results in the mAP
(87.07%). Obtaining better results for the warning (100%)
and mandatory (88.33%) class; however, in the prohibitory
class (77.87%), it is not better than that of the S1 system
(80.75%). Fig. 14 shows the results of the mean Average
Precision of the GPU hardware accelerator. In this case,
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TABLE 4. Precision, Recall, and AP results for each System with different
hardware accelerators (IoU = 0.5). The best results are in bold.

FIGURE 13. mean Average Precision on CPU of Systems S1 and S2.

it is observed that the S1 system is the one that obtains the
best detection results in the mAP (88.31%). Obtaining better
results for the warning class (95.66%) and the prohibitory
class (92.59%); however, in the mandatory class (76.67%)
it is worse than that of the S1 system (79.34%); though to
MobileNet v1 architecture (S1) was developed for embedded
vision applications andmobile devices, and ResNet50 v1 (S2)
focuses on computational accuracy and also has more param-
eters; the pointwise convolution and depthwise convolution
operations of S1 create new features that with more epochs
it gets better results than S2 combination. Fig. 15 shows
the mean Average Precision results of the TPU hardware
accelerator, where the S1 system gets better detection results
in the mAP (88.50%); it showed better results for all

FIGURE 14. mean Average Precision on GPU of Systems S1 and S2.

FIGURE 15. mean Average Precision on TPU of Systems S1 and S2.

classes, warning (96.31%), mandatory (85.25%), prohibitory
(83.94%).

The difference between the mAP results can be seen more
clearly through the COCOmetric evaluation, considering that
the size of the objects does not vary dramatically for the
S1 system. However, for the S2 system, the results of the
TPU are worse than those of the CPU and GPU, and this is
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TABLE 5. mAP results for S1 and S2 using COCO metrics with different
hardware accelerators. The: represents a range with an increment 0.5 and
the best results are in bold.

due to the bottleneck mentioned above in its feature extractor
(ResNet50), which requires memory-bound operations [63].

Table 5 shows detection results through COCO metrics
considering two cases. First, all sizes of objects are contem-
plated, and second selecting different categories depending
on the number of pixels for the object area, like small (0 to
322 pixels), medium (0 to 462 pixels), and large (462 to 922

pixels). The previously mentioned results in Table 5 have
been corroborated once again; combinations of S1 with TPU
and GPU attain the best performance; on the other side,
the combination of S1 with CPU attains better results than
GPU and TPU, due to the bottleneck caused by the feature
extractor ResNet50 and its memory capacity dependency.

Fig. 16 shows illustrations of the detection of the S1 system
in the CPU. In the scene of the mandatory and warning class
the size of the objects is smaller due to the distance that
was used, and yet acceptable results were obtained. In the
prohibitory class scene, it can be observed that there is a
lower lighting condition than the one in the environment due
to the shadow generated by the tree on the traffic sign, and
the algorithm can detect it with this variation.

Fig. 17 shows illustrations of the detection of the S2 system
in the CPU. In the mandatory class scene, the algorithm
has great robustness since the traffic sign is attached to a
gray post which has a similar color; however, the algorithm
manages to properly locate the traffic sign. In the scene of the
warning class, there are many cars with different colors that
could confuse the algorithm, however, the systems yield good

FIGURE 16. Illustrations of the best detection results of the S1 System
on CPU.

detection performance. In the prohibitory class scene, another
case of illumination can be seen, the lens is being affected
by a flash of light, having a high illumination condition,
however, the algorithm demonstrates its robustness in traffic
sign detection under challenging lighting conditions.

Fig. 18 shows illustrations of the detection of the S1 system
in the GPU. In the scene of the mandatory class two objects
could cause noise to the algorithm, the sidewalk where the
traffic sign already has a gray color and a rectangular shape
and the wall on the right that separates the trees, which has
a rectangular shape and a beige color, having a similarity
with the geometric and color characteristics of the traffic sign,
however, the algorithm yields acceptable results in traffic
sign detection. In the scene of the warning class, it is noted
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FIGURE 17. Illustrations of the best detection results of the S2 System on
CPU.

that there is a certain blur generated by the acquisition of
the moving image, however, the algorithm presents good
performance to detect the traffic sign under this condition.
In the scene of the prohibitory class, there is also a blur, but
the algorithm manages to detect under this condition. Fig. 19
shows illustrations of the detection of the S2 system in the
GPU, where the scene of the mandatory class is taken with a
low-resolution camera and presents some blur in the captured
scene, since some details of the borders of the paving are
blurred, however, the algorithm has no problem detecting
the traffic sign. In the warning class scene, as it is shown,
it is surrounded by several cars with different shapes and
colors, and the algorithm yields high performance in traffic
sign detection. In the prohibitory class scene, it is possible
to appreciate that there is a blur, and a stop sign is behind in

FIGURE 18. Illustrations of the best detection results of the S1 System on
GPU.

a lateral position, and on the left side there is another stop
sign facing away, having some opportunity to confuse the
algorithm with its similar properties, however, the algorithm
presents outstanding robustness under these conditions and
detects the traffic sign. Fig. 20 shows illustrations of the
detection of the S1 system in the TPU, where it can be
observed that in the scene of the mandatory class there are
too many objects of different sizes and colors, where some
of these share colors of the traffic sign such as vehicles
and there is also a traffic sign from behind that could
confuse the algorithm due to its similar geometric shape,
however, the algorithm demonstrates its robustness. Also,
the presented algorithm yields good detection performance
in the scene of the warning class, which also presents another
case of blurring due to the acquisition in motion in the scene
capture, as well as cluttered background containing objects
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FIGURE 19. Illustrations of the best detection results of the S2 System on
GPU.

and vehicles. In the scene of the prohibitory class, the image
scene presents a challenging lighting condition, which that
affects the color properties of the traffic sign; however,
the algorithm has no problem detecting the traffic sign under
this condition. Fig. 21 shows illustrations of the detection of
the S2 system in the TPU, where it can be seen that in the
scene of the mandatory class two objects could cause noise to
the algorithm, the sidewalk where the traffic sign is already
has a gray color and a rectangular shape and the wall on the
right that separates the trees, which has a rectangular shape
and a beige color, having a similarity with the geometric and
color characteristics of the traffic sign, however, the algorithm
yields high detection results. In the warning class scene, as it
is shown, it is surrounded by several cars with different shapes
and colors, and the algorithm manages to detect the traffic
sign. In the prohibitory class scene, it is observed that there

FIGURE 20. Illustrations of the best detection results of the S1 System on
TPU.

is a lower lighting condition than the environment due to
the shadow generated by the tree on the traffic sign, and the
algorithm presents robustness of traffic sign detection with
this variation.

As shown in the illustrations above, different detection
results are obtained for current scenarios from the LISA
database. Considering that the detection is achieved under
different lighting conditions, blur, multiple objects, or with
similar characteristics, different sizes, or distances of the
objects.

C. PERFORMANCE EVALUATION
The results of the performance evaluation of the S1 and
S2 systems for each hardware accelerator are shown below,
Table 6 shows the characteristics of the hardware accelerators
used [73]–[76].
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FIGURE 21. Illustrations of the best detection results of the S2 System on
TPU.

TABLE 6. Hardware accelerators specifications. HBM: amount of
high-bandwidth memory. MXU: scalar, vector, and matrix units.

In the performance evaluation, Latency, Throughput,
Memory consumption, and Energy consumptionmetrics were
considered.

TABLE 7. Performance results for S1 and S2 with Latency, and
Throughput metrics with different hardware accelerators. The best results
are in bold.

TABLE 8. Performance results for S1 and S2 with average Memory
consumption and average Energy consumption metrics with different
hardware accelerators. The best results are in bold.

Table 7 shows the performance results for TPU, GPU, and
CPU. These results are focused on the efficiency analysis;
therefore, only the Latency and Throughput metrics are
used. Statistics show that S1 is the best match across
all architectures, both in Latency and Throughput. The
description of the experiment to obtain the above results is
as follows:
• In the case of the Latency, metric, 256 samples were
used, and a timeline tracker was used to know the start
and end of the algorithm’s execution time. The times
that do not involve the inference time were ignored, they
remained as the initial time when the sample enters the
network and the final time when the detection result
is delivered. For the GPU, 300 samples were used to
perform the warmup and the warmup time was leftover.

• In the case of the Throughput metric, the number of
batches was 100, with a batch size of 32, and the
inference time was previously calculated.

The results above show that the TPU architecture with S1 is
the best performing combination. Although the network
architecture is not optimized, acceptable performance is
obtained due to the characteristics of the models such as the
depth of the layers and the operations they perform, which
impacts the results [77].

Table 8 shows the performance results for the GPU
and Jetson Xavier hardware accelerators. These results are
focused on the resources consumption analysis; therefore,
only the Memory consumption and Energy consumption
metrics are used. In this analysis, we only consider the most
feasible implementations (generic GPU and specific Jetson
embedded device); for both the training and inference stage.
We discard the CPU and TPU hardware architectures in this
analysis due to the following:

• In the case of the CPU, both training and inference
results show (see Table 3 and Table 7) that both proposed
combinations have bottlenecks. This is because this
hardware has not enough cores to take advantage of
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TABLE 9. Results obtained using the LISA database. The −− represents missing results and the best results are in bold.

parallel processing and the DL architecture design,
causing bottlenecks in the data processing.

• In the case of TPU, although the training results
show (see Table 3) that it is the best option, this
hardware is not feasible for the inference stage. This
is because TPU relies on cloud services, and the
only available embedded devices that have TPUs do
not have enough RAM (currently) for our proposed
combinations.

The results show that the S1 combination is the best, both
on the GPU and the embedded system. The experiment
carried out to obtain the previous results is the same as
that in Table 7. In this case, the tools mentioned in the
evaluation Algorithm 1 were used. TheMemory consumption
and power consumption between the GPU and the Jetson
show that each hardware accelerator has a specific purpose
to obtain the best possible performance based on its task.
In the case of the GPU, it gets higher power consumption
with lower Memory consumption, due to its purpose of
maximizing processing performance. In the case of the Jetson
Xavier, there is a higher Memory consumption with lower
power consumption due to its purpose of minimizing power
consumption for use in applications with low energy demand.
The results show that the embedded system achieves 20 times
less power consumption than the GPU; however, itsMemory
consumption is higher because it shares memory for CPU and
GPU when the model is loaded, the samples are loaded, and
the inference is performed [46].

D. RESULTS COMPARISON
In this subsection, we show our testing stage results against
the results of previous works in the LISA database. Because
not all works show results based on the metrics used in this
work, we put all our metrics in Table 9.

Table 9 shows the results obtained from different methods
used in the LISA database. To make an objective comparison
of the AP and mAP results of the evaluated works, we added
the class (All); this class represents ‘‘all the superclasses’’
considered on different works. As it is shown, each work
considered different classes for each superclass. Therefore,
to compare the methods, the mAP results of the class ‘‘All’’
are used.

As it can be seen, the results of the method of Mogel-
mose et al. in [78] are better than the other methods.
However, it can also be noted that state-of-the-art works of the
LISA database do not have Latency, Memory consumption,
and Energy consumption metrics. Because of this, we do
not know if it can be applied to a real-time environment.
Therefore, although our proposed method does not obtain
the best results, our methodology, experimental tests, metrics,
and results obtained allow us to carry out a preliminary
analysis for its application in real-time, being essential for
the deployment of an autonomous vehicle.

V. CONCLUSION
Recent reports about accidents in autonomous vehicles can
identify some challenging problems that it is important to
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solve to avoid accidents. This work is intended to contribute
to advances in safety for autonomous vehicles. Therefore,
we focused on developing an evaluation methodology based
on statistical analysis and algorithms for Deep Learning
to be implemented into embedded systems applied to
the Traffic Sign Detection (TSD) task for autonomous
vehicles.

Our first contribution provides a descriptive statistical
analysis where different combinations of models and deep
learning hardware architectures for a workstation and an
embedded system were evaluated. This is important because
deep learning systems are complex, and the number of
combinations that may form a system is large, being easy to
have bottlenecks and other design problems. The descriptive
statistical analysis provides information about different deep
learning models and hardware architecture combinations. For
example, for workstations, we have found that the models
MobileNet v1 FPN (S1) and ResNet50 v1 FPN (S2) have
the shortest training times. The achieved TPU speedup of
the S1 system training is 333 compared to CPU training and
16.3 times compared with GPU training. The TPU speedup
training of the S2 system is 384.46 compared with the CPU
training and 13.33 compared with the GPU. Using the mean
Average Precision metric (mAP) for the ALL size cases of
objects, we found that the S1 in TPU has a difference in
its favor of 0.0337 when compared against the CPU, and
a disfavorable difference of 0.0026 when compared with
the GPU; in the same way, mAP for the S2 in TPU is
0.0687 better than in CPU and 0.0733worse than inGPU. The
implementation performance was evaluated with the Latency
and Throughput metrics, which show that:
• The case of the S1 combination system implemented in
TPU has 1,436.56 ms of less Latency than in CPU, and
the TPU Throughput is 328.98 better. When comparing
the TPU vs GPU implementation, we obtained that the
TPU has 66.25 ms less Latency than the GPU, and the
TPU Throughput is 16.13 better.

• For the case of the S2 combination, we found that the
TPU has 2,489.06 ms less Latency than the CPU, and
the TPU Throughput is 399.25 better. When comparing
the TPU vs GPU implementation, we obtained that the
TPU has 80.31 ms less Latency than the GPU, and the
TPU Throughput is 13.85 better.

Memory consumption and Energy consumption are also
important information that can be obtained with statistical
analysis. The Memory consumption metric tells us that
the S1 combination implemented into an embedded system
requires 4 GB more of memory than the same combination
when implemented into a workstation; the S2 combination
implemented into an embedded system requires 5 GBmore of
memory than when the same application is implemented into
a workstation. The Energy consumption metrics indicate that
the power consumption of both system combinations, S1 and
S2, implemented into an embedded system is less than when
implemented into a workstation; in these cases, 46.19 and
48.32 fewer watts, correspondingly.

Therefore, the descriptive statistical analysis helps to
identify the strengths and weaknesses of deep learning
models for different system targets. In our case, we identify
that using the TPU provides a substantial reduction of training
time, obtaining a good approximation of the desired results;
however, one of its main disadvantages is that technical
factors such as the use of Google Colab and Google Cloud
TPU Cloud Services or acquiring an integrated device from
Google Coral is required. Also, the support of the TPU
models for DL is less than the CPU and GPU support, and
similarly for the TensorFlow versions. Now on the side of
the implementation in embedded systems with this method,
we see that the advantage of a workstation is that it distributes
the Memory consumption better due to its type of hardware
architecture so that it will not have any problem with
the data load, model, and processing concerning Memory
consumption, however, this will be reflected in the power
consumption. In the case of the Jetson Xavier embedded
system, it is observed that the Memory consumption is
almost double, so for other embedded systems that do not
have this capacity, it would be a problem; therefore, this
evaluation method supports us to confirm which model is
more appropriate in order to avoid such implementation
problems.

The second contribution of the paper is regarding the
methodology, which was divided into four stages. The first
stage (data selection) produces a balanced set of examples to
improve the training, enclosing the 47 classes of traffic signs
in three superclasses to generalize and facilitate the object
detection problem. The second and third stages (Hardware
and model selection) focus on selecting the best combi-
nation of hardware architecture and DL model, covering
training time and detection results. The last stage (embedded
application) focuses on knowing if the best combination
proposed in the previous stage is feasible to implement in
an embedded system or is better in a workstation. This
methodology uses a simple and practical framework to know
the minimum requirements before implementing a DL model
into an embedded system. This is an important issue since,
at present, there is no standardized methodology that guides
users to achieve an appropriate model and hardware selection
for a DL application.

Our third contribution provided an algorithm for the
proposed methodology. The purpose of this algorithm is to
divide each stage into simple repetitive scripts. For example,
for the TPU training, we used a Google Colab Notebook
for the connection and configuration for cloud computing.
Furthermore, for the Workstation, we developed separate
python scripts to train, evaluate, and measure any stage of
the methodology. Also, for the testing of both Workstation
and an Embedded System, we developed a bash script to
measure both hardware and model DL performance. This
algorithm will help to easily reproduce and perform possible
improvements to the results of this work.

Overall, all the work provides a global methodological
framework based on descriptive statistical analysis and an
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evaluation algorithm. This descriptive statistical analysis
and evaluation algorithm helped to select the most suitable
combination between models and hardware architectures
for DL vision applications. This methodological framework
allows knowing the minimum requirements before the
implementation of a DL model in an embedded system. The
evaluation algorithm covers the connection and configuration
of cloud computing with TPU to the implementation in
the embedded system. The algorithm is divided into small,
simple, and reusable scripts for each stage, allowing easy
reproduction, making possible future improvements to the
algorithms and results of this work.

The obtained results indicate that the combination S1
(SSD + MobileNetv1 FPN) in TPU was the best com-
bination. This combination obtained better results on all
stages and almost all metrics, getting a speedup of 16.3 for
the training and a minimum difference between accuracies
of 0.0363 for both CPU and GPU.

This work allowed us to analyze the methodology,
methods, and metrics used in DL for the TSD problem.
We considered the performance results of the DL models,
such as Latency, Throughput, Memory consumption, and
Energy consumption, which in other works were not consid-
ered as shown in Table 9. Therefore, based on the analysis
and results obtained, we proposed to include these metrics,
to have a broader analysis when implementing the methods in
real-time environments, in this case to autonomous vehicles.
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