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ABSTRACT Massive Multiple Input Multiple Output (MIMO) is a promising technique for communications
due to the high data transmission rate. To harvest the benefit from the massive MIMO, it is necessary
to have accurate channel estimates. Such channels often exhibit sparsity in the virtual angular domain.
This paper proposes a dichotomous coordinate descent (DCD) based algorithm for joint sparse channel
estimation in the virtual angular domain for the orthogonal-frequency-division-multiplexing massive MIMO.
We show that compared to the distributed sparsity adaptive matching pursuit algorithm previously proposed
for this purpose, the DCD-based algorithm has significantly lower complexity and better channel estimation
performance.

INDEX TERMS Channel estimation, common sparsity, compressive sensing, dichotomous coordinate
descent, distributed sparsity adaptive matching pursuit, joint sparse recovery, massive MIMO, virtual angular

domain.

I. INTRODUCTION

Massive MIMO has been proposed for next generations of
communication systems, since it provides higher spectral
efficiency [1], [2]. It can enhance the spectral efficiency by
orders of magnitude by equipping the wireless transmitter
with a large number of antennas and exploiting the increased
degree of freedom in the spatial domain.

Pilot aided channel estimation is widely used in MIMO
systems [3]. For channel estimation in a MIMO system with
a small number of antennas, orthogonal pilots are often
used [4], [5]. However, the pilot overhead increases with the
number of antennas [6]. Employing orthogonal pilots for
channel estimation would cause unacceptable pilot overhead
because of the massive number of antennas at the base sta-
tion (BS) [7]. In [7], a compressive sensing based channel
feedback scheme was proposed, which can reduce the pilot
overhead and achieve good channel state information (CSI)
acquisition. In this paper, we focus on the channel estimation
in the feedback scheme.

Experiments and research have shown that due to the
small angle spread seen from a BS between a user and
BS, massive MIMO channels exhibit sparsity in the virtual
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angular domain [8]. Furthermore, according to [6], [7], [9],
when applying the orthogonal frequency division multiplex-
ing (OFDM), because of the spatial propagation property
of the wireless channel, such as the number of scatterers is
nearly unchanged over the system bandwidth, the common
sparsity is shared by different subcarriers, which is referred
to as the spatially common sparsity over multiple subcarri-
ers. Often, massive MIMO channels can be considered as
quasi-static over a coherence time interval [9]. Furthermore,
since the angle variation from the user to the BS is relatively
slow, and can be often neglected, the support set of the
channel in the virtual angular domain can be regarded as
unchanged over several OFDM symbols, which is referred to
as spatially common sparsity over multiple OFDM symbols
[7], [9]. By exploiting the common sparsity in the virtual
angular domain, we can jointly estimate the channel for mul-
tiple subcarriers.

Sparse recovery techniques are attractive for channel esti-
mation [10]-[12]. There are two ways to find sparse rep-
resentation, convex optimization and greedy methods [13].
Greedy methods typically have lower complexity [14], such
as the orthogonal matching pursuit (OMP) [15], matching
pursuit (MP) [14], compressive sampling matching pursuit
(CoSAMP) [16]. However, they may provide limited per-
formance when the signal is not very sparse or the noise
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is too high [17]. Convex optimization algorithms such as
Your ALgorithms for £1 (YALL1) [18], which employs the
alternating direction method, provide high accuracy, but the
complexity is high [13], [19], [20]. For channel estimation,
we usually deal with complex-valued problems [13]. The
sparse recovery algorithm used in this paper is for solving
complex-valued problems.

The low-complexity coordinate descent (CD) search can
be implemented to estimate the channel [21], [22]. In [13],
algorithms applying dichotomous CD (DCD) iterations for
solving ¢>¢( and £,£; optimization problems have been pro-
posed. By exploiting the DCD, the use of multiplications have
been minimized, which significantly reduces the algorithm
complexity and makes it well suited for real-time implemen-
tation [13]. Here we are interested in the DCD algorithm
for the £,€y optimization since it outperforms such greedy
algorithms as MP and OMP [13].

The DCD algorithm for £, £ optimization is a greedy algo-
rithm [13], different from the CD algorithm [22], [23]. It does
not optimize the step size for each iteration, but employs a set
of step sizes defined by the fixed-point representation of the
solution [13]. It has been indicated in [13] and [21], that the
computational complexity of the algorithm is dominated by
the computational complexity of a small number of successful
iterations, while most of the operations of the DCD algo-
rithm are additions and bit-shifts, which makes it suitable for
implementation on real-time design platforms, such as digital
signal processors and field-programmable gate arrays [24].

Since the DCD algorithm in [13] can only deal with sin-
gle sparse channel at one time, by exploiting the spatially
common sparsity in the virtual angular domain of the massive
MIMO channels, a DCD-Joint-Sparse-Recovery (DCD-JSR)
algorithm is proposed here. The DCD-JSR algorithm can
jointly estimate multiple sparse channels and provide accu-
rate CSI acquisition with a low computational complex-
ity. Simulation results show that the proposed algorithm
has better mean square error (MSE) performance than the
Distributed-Sparsity-Adaptive-Matching-Pursuit (DSAMP)
algorithm proposed in [7] for solving the same problem.

The paper is organized as follows. Section II describes the
system model. Section III presents the proposed DCD-JSR
algorithm. In Section V, numerical examples are analysed
and, finally, Section VI presents the conclusion.

In this paper, capital and small bold fonts are used to
denote matrices and vectors, respectively, and j = V=1,
(x),, denotes the nth element of the vector x, R? denotes the
gth column of the matrix R, and R,, denotes the nth row of
the matrix R, R, , denotes an element of the matrix R. The
transpose operator is given by ()7, (.)* denotes the conju-
gate operator, (.)T denotes the Moore-Penrose inversion, and
(.)H denotes the Hermitian transpose operator. The £p-norm
and £>-norm are represented by ||.||o and |].|,, respectively.
We use [ to denote a support, || is the cardinality of the
support I, I€ is the complement of 7, R; is a matrix obtained
from R, and which only contains columns corresponding to
support I. Ry ; is an |I| x |I| matrix obtained from R by
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FIGURE 1. Each OFDM symbol contains N subcarriers, while P subcarriers
are used to transmit pilot symbols.

collecting elements from columns and rows corresponding
to I, and x; is the subset of x that includes non-zero elements
from x corresponding to /. We use h to denote a channel
vector and h to denote the channel vector in the virtual angular

domain, h,, denotes the channel vector corresponding to the
nth subcarrier. YR denotes the real part of a complex number.

Il. SYSTEM MODEL AND PROBLEM FORMULATION

A. CHANNEL ESTIMATION SCHEME

The conventional method to acquire the CSI in frequency-
division-duplexing (FDD) systems is as follows: the BS trans-
mits downlink pilot symbols to a user, so the user can estimate
the downlink CSI locally and then feed it back to the BS via
an uplink channel [25]. If we are employing conventional CSI
estimation techniques (such as the minimum mean square
error (MMSE) estimator), since the number of pilots required
at the BS has to scale linearly with the number of transmit
antennas at the BS [26], it would cause prohibitively large
overhead for both pilot training (downlink) and CSI feedback
(uplink). Hence, to solve the overhead issues, as suggested
in [7], the channel estimation is performed at the BS. The
channel estimation scheme is summarized as follows.

1 In each OFDM symbol, every BS antenna broadcasts
pilot symbols to users, the kth user receives the signal
yr and feeds it back to the BS. The BS recovers the
CSI for each user based on the feedback signals yj,
k =1,...,K. As shown in Fig.1 each OFDM symbol
contains N subcarriers, while P subcarriers are used to
transmit pilot symbols. The user feeds back the received
signal to the BS without performing downlink channel
estimation.

2 At the BS, a channel estimation algorithm is used to
jointly estimate multiple sparse virtual angular domain
channels, which are assumed to have the same support /.
The least squares (LS) algorithm [27] is employed to
acquire the CSI based on an estimate of the common
support /.

B. CHANNEL MODEL

In a typical FDD massive MIMO system, consider a
coherence time interval consisting of / OFDM symbols.
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K users

FIGURE 2. The virtual angular domain channel vector exhibits common
sparsity within the system bandwidth (adapted from [7]).

M antennas are employed at the BS to serve K single-antenna
users simultaneously, where M > K. At the tth OFDM
symbol, 1 < ¢ < J, for the nth subcarrier, | < n < N,
the received signal for the kth user, 1 < k < K, is given by:

T
Vin = (0 )" X+ W (1

where hfw e CM*1 represents the downlink channel
between the kth user and M antennas, XZ e CMx1 ig the
vector of transmitted symbols (data or pilot symbols) and wf{’n
is the corresponding additive white Gaussian noise (AWGN).
For a single user, we can drop the index k, thus we can write:

¥y = (h)" Xt + . @)

Matrix Ag is used to modify the channel vector h/, into a
vector fl; in the virtual angular domain, and it is determined
by the geometric structure of the antenna array. We consider a
uniform linear array with the antenna spacingd = A /2, where
A is the wavelength, then Ap becomes the discrete Fourier
transform (DFT) matrix. Thus we obtain:

~N\T
v = (B) AR, + v, 3)

where, (hﬁl)T = (flﬁ,)T Aj. As illustrated in Fig.2, the
channel vector in the angular domain divides the covering
area of the BS into angular intervals. The mth element of h!
corresponds to the mth virtual angle, where | <m < M.
According to experimental study [8] and analysis [26],
in practical massive MIMO systems, the BS is usually at a
high elevation with a limited number of scatterers (relative
to the number of antennas), and the scatterers at the user
side are relatively rich. In other words, the BS might only
have few active transmit directions for the kth user, which
means that the number of multipath arrivals dominating the
majority of channel energy is small, and the channel vectors
in the virtual angular domain exhibit sparsity. Thus, we have
|I| <« M, which means the channel exhibits sparsity in
the virtual angular domain. Furthermore, as shown in Fig.2,
according to [9] and [7], since the spatial propagation char-
acteristics such as scatterers are almost unchanged over the
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FIGURE 3. Structure of the transmitted JP pilot symbols. Each pilot
symbol corresponds to the pilot sequence transmitted from M antennas.

system bandwidth, the subchannels associated with differ-
ent subcarriers in the same OFDM symbol share common
sparsity. Moreover, in [28], it has been indicated that even in
time-varying scenarios, the variation of the arrival angles is
usually much slower than that of channel gains. This means,
as shown in Fig.2, the channel associated with J successive
OFDM symbols shares common sparsity. Since the channel
during / OFDM symbols is time invariant, the channel gain
can be considered as unchanged during / OFDM symbols,
which can be written as:

B =R = ... =& = )

In this paper, we consider the pilot-aided channel esti-
mation. The structure of the transmitted pilot symbols is
shown in Fig.3. To provide accurate channel estimation with
multiple pilot subcarriers, for the tth OFDM symbol, a part of
subcarriers is used for transmitting pilot symbols s; e CMx1,
and the received signal at the pilot subcarrier n(p) is given by:

~ T
S = (Ban) Afsh + . )
t — Jbm,
[5], ="
I<p<P, l<m<M,1<t=<J (6)

while 6; , , are independent random numbers uniformly dis-
tributed in (0, 27 ].

C. PROBLEM FORMULATION

As described in Section II-A, after receiving the signal from
BS, the user will send the received signal back to the BS with-
out performing the downlink channel estimation, where the
feedback channel can be considered as an AWGN channel,
and the variance can be neglected [26], [29], [30]. Hence, for
the 7th OFDM symbol, at the pth pilot subcarrier, the signal
received at the BS is given by:

=@ b +v,, 1<p<P. (7)

Here, ¢, = (sé)T (A;)T e C"M js the sensing vector.
fln(p) € CMx1 is the sparse channel vector for the n (p)th
subcarrier, and v;, is the corresponding noise, which contains
both downlink and uplink channel noise.

To provide an accurate channel estimation for the pth
pilot subcarrier, the BS should jointly utilize the feedback
signal over J successive OFDM symbols [7]. We collect
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the feedback signals 7/,1 < ¢t < J, in a vector r, =

T
1.2 J Jx1
[rp,rp,...,rp] € C°*°, then we have

rp, =@l +v,, 1<p=<P, ®)
T

where, ®, = [S; (AE)T] e M s, =

T T
12 J JxM _ .1 .2 J
[sp,sp,...,sp] e C'* ,andvp_[vp,vp,...,vp] €

C7*1 is the noise vector, which contains both downlink and
uplink noise. Since the channels for all subcarriers exhibit
common sparsity, we can jointly estimate the channels asso-
ciated with multiple pilot subcarriers assuming the common
support.

Illl. DCD-JSR ALGORITHM FOR THE CHANNEL
ESTIMATION IN VIRTUAL ANGULAR DOMAIN

In [7], the distributed sparsity adaptive matching pur-
suit (DSAMP) algorithm was proposed to jointly estimate
multiple sparse channels by estimating the common support
shared by different subcarriers in OFDM. However, simu-
lation results show that it provides a limited performance
when the number of OFDM symbols J used for the channel
estimation is not high. In [13], the homotopy ¢,¢9 DCD
algorithm was proposed, which can be used to estimate the
sparse channel, and it can provide accurate sparse estimation
with low complexity. However, it was focused on a single
sparse problem, and cannot jointly estimate multiple sparse
channels. Therefore, based on [7] and [13], we propose the
DCD-JSR algorithm, which can jointly estimate multiple
sparse channels with a common support.

To simplify notation, we replace hy,,) with h, € cMx1
which is the channel vector to be estimated. We denote h, as
the final vector estimate. The DCD-JSR algorithm is summa-
rized as follows.

1 For each pilot subcarrier, the £,£¢ homotopy DCD algo-
rithm is employed to acquire an estimate of h,,.

2 Based on the h,, estimate, a common support 1 is found
by analysing the distribution of the estimates.

3 Based on the common support I, the final channel vector
estimate ﬁp is acquired by using the LS algorithm [27]
on the support.

A. CHANNEL ESTIMATION USING THE ¢,¢, HOMOTOPY
DCD ALGORITHM

To estimate the channel at the pth pilot subcarrier using
the £2£¢ homotopy DCD algorithm, we consider the signal
model

r, = ®,h, +v,. )

It is worth to mention that since h,, is sparse in the virtual
angular domain, only |/| elements of the channel vector h,
are non-zero. We consider that the observation matrix @), is
available and the support I is unknown.

Based on [13], we can find an estimate of h, by apply-
ing the homotopy DCD algorithm to the £,¢( optimization,
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Algorithm 1 ¢>¢¢ Homotopy DCD Algorithm
Initialization:vector h, = 0, I, = ¢, b, = ®,/r,,
R, =%, ®,

1: g = argmax| (by), [*/(Ry), ;.
Tmax = (1/2) maxi [ (bp),[*/ (Ry), .

2
T =05|(by), | / (Ry), - Ip = (g}
2: Repeat until the termination condition is met:
3: If the support I, has been updated then

Solve (RP)I,;,IP (hﬂ)l,, =1,

where f, = (d)p)z r,

c<b- (Rp)lp,lp (hp)lp
4: Update the regularization parameter: T <— yt
5: Add the g-th element into the support 7,

where g € I§,
and g = arg max [N st (o) |2 > 21 (Ry), .
kel (Rp) g P/g.8

then assign to (hy),, the value (¢), / (Rj)
update ¢ < ¢ — (hp)g RS

6: Remove the gth element from the support 7,,
where g € I, and

g = argmin [ 1](y), " (Ry),  + 9% {(by); @}]

2
st 4 |(hy), [ (Ry), , + ] (0) @) <+
for every removed element,
update ¢ < ¢+ (hy), R and set (h,), = 0.

s

88

considering the minimization of the cost function

1 2
J:(hy) = 3 Hrp—%thﬁf HhPHO' (10)

Here, 7 € [0, 1) is a regularization parameter. The second
term in (10) makes it non-convex problem and the solution
of it is NP-hard. To solve the problem, we initially assign
the support set [, = ¥, and by adding new elements into
the support or removing elements from the support in sev-
eral iterations following the proposition in [13], we can find
an estimate of h,. Therefore we need to assign initially a
high value to the regularization parameter T = Ty Which
can dominate the cost function to provide an empty support
I, = . In the homotopy iterations, by gradually reducing
value of T as T <— y 1, where y € [0, 1), new elements can be
added to the support or removed from the support [13]. The
algorithm stops when T < Tpin, Where Tmin = ¢ Tmax and
e € [0,1) is a predefined parameter, and (hp)g is the gth
element of the pth estimated channel vector hy,. The structure
of the employed ¢>¢¢y DCD homotopy algorithm is shown in
Algorithm 1.

As shown in Algorithm 1, by solving the LS problem
(Ry), , (hy) ;, = fp at step 3, hy is estimated. According
to [13], instead of using the matrix inversion to solve the LS
problem, the DCD iterations [13], as shown in Algorithm 2,
are employed at step 3 in Algorithm 1. When the DCD
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FIGURE 4. Magnitudes of elements of vectors: (a) ﬂl, (b) I~|54, () q.
iterations start, an LS solution for the vector h, and the vector we compute
¢ found at the previous iteration are used as the initialization p
of the DCD algorithm, which results in the reduction of the q Z ‘ﬁ ‘ /P (11)
computational complexity. In the DCD iterations, N, is the o b '

maximum number of successful iterations and a successful
iteration means that the solution is updated in the iteration,
My, and H are predefined parameters.

Algorithm 2 DCD Iterations for LS Minimization
Input: hy, ¢, I, R,

Initialization: s =0, = H

l:form=1,..., M, dountil s = N,

2: 8=6/2,a =[5, —5,j8, —jd], State =0

3: forn=1,...,

4: fork=1,...,4do

5: if % { (@) (©F) > [(R,,)M] 52/2 then

6: (hy), < (hy), + (@), € < e~ (@) R}
7. State=1,5s < s+ 1

8: if State = 1, go to step 3

B. COMMON SUPPORT ACQUISITION AND JOINT
CHANNEL ESTIMATION

In this section, the process of estimating the common sup-
port I is presented. For example, we consider a scenario with
P = 64 pilot subcarriers, M = 128 transmit antennas, signal
to noise ratio SNR = 20 dB, J = 20 OFDM symbols and
7] = 8.

According to [7], among M coordinates of the channel
vector hy,, the vast majority of the channel energy will
concentrate on |/| coordinates, which are the non-zero ele-
ments in h,. Since we can estimate the channel at the pth
pilot subcarrier using the £2£p homotopy DCD algorithm,
we can find an estimate of the common support I by
jointly analysing estimates ﬁp of vectors h, for all pilot
subcarriers.

In Fig.4(a) and Fig.4(b), magnitudes of elements of vectors
h; and hgy are shown. For estimation of the joint support,
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An estimate I of the common support [ is obtained using
thresholding, as a set of elements in the vector q, satisfying
the condition

I={k:(qx > 8,

where § is a predefined threshold parameter.
Based on the estimate I, the LS algorithm [27] is employed
as follows:

12)

(Rp)z; (o), =17 (13)
f; = (@)

Here, (ﬁ,,)i is the final estimate of the channel vector h,

H

7. (14)

on the support /.

IV. DSAMP ALGORITHM

The DSAMP algorithm [7], which was developed from
the sparsity adaptive matching pursuit algorithm [31], can
acquire multiple sparse channel vectors for different pilot
subcarriers simultaneously. The DSAMP algorithm has
been shown to provide a better channel estimation perfor-
mance than the orthogonal matching pursuit, sparsity adap-
tive matching pursuit and subspace pursuit algorithms [7].
We use the DSAMP performance as a benchmark
to assess the performance of the proposed DCD-JSR
algorithm.

V. SIMULATION RESULTS

A. MSE OF THE CHANNEL ESTIMATION

We will be assessing the algorithm performance using the
mean square error (MSE) of the channel estimation. The MSE
is given by

~ 112
MSE = th_th2 (15)
= —",
[y 3
102085
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(16)

where ﬁp is the estimated channel vector and h,, is the true
channel vector. When analysing the performance of the esti-
mators, we will also calculate the probability of the estimated
support I to be exactly the same as the support I to be
estimated.

B. NUMERICAL RESULTS

In this section, we consider simulation scenarios correspond-
ing to a MIMO system with a uniform linear array. We com-
pare the channel estimation performance of the DCD-JSR
and DSAMP algorithms. The performance of the oracle LS
algorithm [27] with known support is adopted as the per-
formance bound. In most scenarios, we consider two cases,
SNR = 10 dB and SNR = 20 dB.

To provide the best MSE performance, the threshold py,
for the DSAMP algorithm and & for the DCD-JSR algorithm
need to be adjusted. As shown in Fig.5, when SNR = 20 dB,
the DCD-JSR algorithm has the best MSE performance when
& = 0.055. In Fig.6, it can be seen that when SNR = 20 dB

102086

and py, = 0.1, the DSAMP algorithm achieves the best MSE
performance. Similarly, appropriate values of & and py, for
different SNR can be obtained. In this paper, for the DCD-JSR
algorithm, & = 0.05 is considered for both SNR = 20 dB and
SNR = 10 dB; for the DSAMP algorithm, py is set to be 0.1
and 0.17 for SNR = 20 dB and SNR = 10 dB, respectively.

In Fig.7(a) and Fig.7(b), we consider scenarios with differ-
ent number of pilot subcarriers. The number of pilot subcar-
riers varies from 48 to 64, and we set M = 128, |I| = 12, the
number of simulation trials is Ny = 10000. It can be seen that
both the DSAMP and DCD-JSR algorithms benefit from the
increasing number of pilot subcarriers, but a larger number
of subcarriers results in lower spectral efficiency, since a
smaller number of subcarriers are used for data transmission.
However, the DCD-JSR algorithm shows significantly better
MSE performance.

Fig.8(a) and Fig.8(b), for different number of pilot
subcarriers and different SNR, show the probability of the
perfect support estimation by the DSAMP and DCD-JSR
algorithms, where the perfect support estimation means that
the estimated support is exactly the same as the true support.
In Fig.8, it can be seen that, compared to the DSAMP algo-
rithm, the DCD-JSR algorithm provides a better probability
of correct support estimation. This explains the better MSE
performance of the DCD-JSR algorithm, as seen in Fig.7.
Compared to the DSAMP algorithm, the DCD-JSR algorithm
requires less pilot subcarriers to provide a specified probabil-
ity of correct support estimation under same scenario.

In Fig.9(a) and Fig.9(b), we show the MSE performance
for scenarios with / = 10 and J = 20 at different SNR.
We set M = 128, P = 64, and the number of simulation trials
N; = 10000. In Fig.9(a), for J = 10, at SNR = 10 dB, and
|I| < 6, the DCD-JSR algorithm approaches the performance
of the oracle LS algorithm [27], while the DSAMP does it
only for |I| < 4. In Fig.9(b), for / = 20, when SNR =
10 dB, the DCD-JSR algorithm approaches the performance
of the oracle LS algorithm [27] for || < 13, whereas the
DSAMP algorithm does not show the LS performance even
for |[I| = 10. When SNR = 20 dB, the DCD-JSR algo-
rithm could approach the oracle performance until || = 13,
while the DSAMP does not. Hence, in these scenarios, the
DCD-JSR algorithm outperforms the DSAMP algorithm.

Fig.10(a) and Fig.10(b) present results for different number
of employed OFDM symbols J. The number of simulation
trials is Ny = 10000, M = 128, P = 64. It can be seen that
the DCD-JSR algorithm outperforms the DSAMP algorithm
for both SNR = 20 dB and SNR = 10 dB, and requires less
OFDM symbols to approach the performance of the oracle
LS channel estimator.

Fig.11(a) and Fig.11(b) compare the probability of perfect
support estimation by the DSAMP and DCD-JSR chan-
nel estimators. It can be seen that the DCD-JSR chan-
nel estimator outperforms the DSAMP channel estimator:
at SNR = 20 dB, the DCD-JSR channel estimator needs
J = 28 to provide the perfect support estimation, while
the DSAMP algorithm needs J = 34, i.e., a lower number
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of OFDM symbols is required by the DCD-JSR algorithm.
Thus, it is easy to see that, compared to the DSAMP channel
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estimator, the DCD-JSR channel estimator requires less
OFDM symbols for an accurate support estimation.
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In Fig.12, we consider the case where the massive MIMO
system employs different number of antennas. The number of

102088

antenna varies from 16 to 128, the number of simulation trials
is Ny = 10000. We set the number of OFDM symbols J = 20
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FIGURE 13. Computational complexity of the DSAMP algorithm and the
DCD-JSR algorithm, M = 128, J = 20, P = 64, SNR = 20 dB.

and number of non-zero virtual angles |/| = 11. In Fig.12(a),
it can be seen that when SNR = 10 dB, there exists a
significant performance gap between the DSAMP algorithm
and oracle LS algorithm [27], while the DCD-JSR algorithm
approaches the oracle performance for any number of anten-
nas. When we increase the SNR = 20 dB, the DCD-JSR
channel estimator approaches the oracle performance for any
number of antennas, while the DSAMP algorithm does not.

Fig.12(b) shows the probability of perfect support esti-
mation in these scenarios. It can be seen that the DCD-JSR
algorithm always provides perfect support estimation, while
the DSAMP algorithm does not. Thus, we can see that with
a large number of antennas, the DCD-JSR channel estimator
provides a better MSE performance and more accurate sup-
port estimation than the DSAMP algorithm.

To estimate the computational complexity of the
algorithms, we decided to update the computational com-
plexity after each line of the algorithm code (both the algo-
rithms have been implemented in Matlab) where an operation
occurs. In the DCD-JSR algorithm, most of the operations are
additions [13]; to simplify the comparison, we also count the
pure additions as multiply-accumulate (MAC) operations.

Fig.13 shows the computational complexity against the
number of non-zero virtual angles. We consider the SNR =
20 dB, J = 20 and average the results over Ny = 10000
simulation trials. It can be seen that the DCD-JSR algorithm
has significantly lower complexity. Thus we can say that,
compared to the DSAMP algorithm [7], the DCD-JSR algo-
rithm exhibits lower computational complexity.

VI. CONCLUSION

In this paper, based on the original £2€op DCD algorithm,
a DCD-JSR algorithm has been proposed to jointly estimate
the channel for multiple pilot subcarriers in the virtual angular
domain in an FDD massive MIMO system. The DSAMP
algorithm is used to compare the channel estimation perfor-
mance with the DCD-JSR algorithm in different simulation
scenario. Simulation results have shown that the proposed
DCD-JSR algorithm outperforms the DSAMP algorithm, and

VOLUME 9, 2021

requires less OFDM symbols and employed pilot subcarriers
for accurate channel estimation, whereas it also exhibits a
significantly lower computational complexity.
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