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ABSTRACT Robust state estimation problem is investigated for discrete-time linear state space models
with uncertain parameters, deterministic control input and d-step state delay. Firstly, the original system
is transformed into a non-time-delay system based on the method of state augmentation. Then a robust
state estimation algorithm is proposed based on the sensitivity penalty method and the derivation is
given. Moreover, compared with the standard Kalman filter, this algorithm has similar iterative form and
considerable computational complexity. Finally, numerical simulations are utilized to show the effectiveness
of this algorithm.

INDEX TERMS Deterministic control input, d-step state delay, robust state estimation, state augmentation,
sensitivity penalty.

I. INTRODUCTION
State estimation includes filtering, smoothing and prediction.
As one of the fundamental problems in control theory and
system engineering, it is of great significance for understand-
ing and controlling a system. And, existing research results
play an important role in communication, target tracking,
signal processing and other fields, see [1] and the references
therein. In the past sixty years, with the deepening of research,
the Kalman filter theory has the most complete research
results, see [2], [3] and for more. At the same time, people
also deeply realize that in the actual control field, the exis-
tence of system model errors is inevitable. If these uncertain
factors that causemodel errors are ignored, the control system
will be difficult to achieve the desired performance. However,
the traditional Kalman filter is only applicable to systems
with precise mathematical models, and is no longer applica-
ble to uncertain systems, so robust control theory has received
extensive attention, see [4], [5]. Moreover, in [6], a robust fil-
ter based on expectation minimization of estimation errors is
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proposed, which provides a new idea for solving the problem
of random uncertainty of system model errors.

On the other hand, time delay is a common phenomenon
in engineering practice. Compared with non-delay systems,
time-delay systems have more complex dynamic characteris-
tics, see [7]–[10]. For systemswith both time delay and uncer-
tainty, we usually call them uncertain time-delay systems.
Moreover, with the development of robust control theory to
practical applications, many scholars have done a lot of anal-
ysis and research on uncertain time-delay systems, especially
on linear uncertain time-delay systems, see [11]–[18] and for
more. In [12]–[15], they mainly use partial differential Riccat
equations and linear matrix inequalities to solve the robust
filtering problem of state delay systems.

Later, a named state augmentation method is used to deal
with the filtering problem of time-delay systems in [16], and
has achieved good results. Moreover, the optimal filter based
on the corresponding partial differential equation is given
in [18]. However, both the linear matrix inequality method
and the Riccat equation have certain shortcomings. The for-
mer is difficult to construct convex optimization problems,
and the latter is not easy to solve the Riccat equation and
analyze the performance of its robust filter.
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Besides, in [19], a robust state estimator is given for uncer-
tain linear systems control input, but it doesn’t consider the
situation when the system has time delay. Moreover, it is
worth pointing out that a large number of important research
results have been achieved in the design of H∞ filters for
time-delay systems in recent years, see [20]–[22], and H∞
robust state estimation for state time-delay systems has also
been extensively studied (see [23]). Meanwhile, for uncertain
time-delay systems with deterministic control input, consid-
ering the impact of control input on the performance of state
estimation, the H∞ filtering method given in [24] is extended
to the continuous time-varying uncertain system (see [23])
and the discrete time-varying uncertain system (see [25]) with
known control input. However, some filters are only suitable
for systems with a certain type of model error (see [26]).
Besides, in [27], for a certain type of uncertain time-delay
systems, a method based on integral quadratic constrained
modeling noise to deal with robust filtering problems is pro-
posed. Obviously, it is only applicable to a certain type of
uncertain time-delay systems. Moreover, in [28], the filtering
problem for the observation time-delay systems mainly uses
the method of information reorganization, but this method is
only suitable for the filtering problem when the observation
systems contain both immediate observation and delayed
observation.

As modelling errors are generally unavoidable, robust state
estimators have attracted the attention of many scholars,
such as H2/∞ filtering, set-valued estimation and guaran-
teed cost designs. However, most state estimation methods
have limitations. For example, the estimator in [29] is only
suitable for systems with additive uncertainties, and the esti-
mator in [29] requires the system parameters to be differen-
tiable to the model uncertainties. In particular, a framework
based on regularized least squares (RLS) is proposed in [6]
for robust filter design, compared with them, this estimator
has a wider range of applications. It is also suitable when
model uncertainties affect the system matrix in arbitrary
form.

In the state delay systems, the traditional Kalman filter
method can not be directly applied. Therefore, in this paper,
the original system is transformed into a systemwithout delay
based on the method of state augmentation. Then, based on
the sensitivity penalty method, a robust state estimator is pro-
posed and its iterative process is further derived. In particular,
this algorithm has a similar form and fast recursive calcu-
lation characteristics to the standard Kalman filter. Finally,
numerical simulations are applied to verify the performance
of this algorithm.

In addition, in this paper, based on the relationship between
Kalman filter and regular least squares problem, while con-
sidering the effects of model errors, and we obtain a state
estimator by improving the cost function of the RLS problem.
Numerical simulations show that the proposed state estimator
performs better than the kalman filter based on nominal
parameters. Furthermore, when the model error is not present
and the design parameter is equal to 1, the estimator is

degenerated to a standard Kalman filter, which is also the
worst case for the estimator.

The rest of this paper is organized as follows. In Section 2,
the discrete-time linear state space model with determin-
istic control input and state delay is given and the model
transformation is carried out by using the state augmentation
method. In Section 3, the robust state estimation algorithm
is proposed based on the sensitivity penalty method and
the derivation is given. The effectiveness of the algorithm
is verified by numerical simulation examples in Section 4.
Finally, Section 5 concludes this paper.

In the following description, given a column vector z and
a positive-definite matrix W , ‖z‖ and ‖z‖W are defined to
denote the Euclidean norm and its weighted version, that is√
zT z and

√
zTWz. Rn denotes the n-dimensional Euclidean

space, Rn×m shows the n×m real matrix, In means the n× n
identity matrix, 0n×m expresses the n × m Euclidean space,
E [∗] indicates the mathematical expectation of a random
variable, cov (a, b) represents the covariance of a and b.

II. SYSTEM DESCRIPTION AND MODEL
TRANSFORMATION
A. STATE SPACE MODE
Consider the following liner discrete-time uncertain system
with d-steps state delay:

xi+1 = A1i (εi) xi + A2i (εi) xi−d + B1i (εi) ui
+B2i (εi)wi, d > 0,

yi = Ci (εi) xi + vi, i ≥ 1,

(1)

where i= 0, 1, · · · denotes the discrete temporal variable,
d is the number of delay steps. Moreover, xi ∈ Rn is the
state of the i moment, ui is the deterministic external input
signal, wi is the process noise, vi is the measurement errors,
and yi ∈ Rm is the measurement output of the i moment,
A1i (εi) ,A2i (εi) , B1i (εi) ,B2i (εi) and Ci (εi) are differen-
tiable functions of the system parameter model error εi that
is changes with time i and composed of L real-value scalar
uncertain εi,k , k = 1, 2, 3 . . . .L. It is also assumed that the
L model error is independent of each other. In engineering,
zero-mean Gaussian white noise is usually applied to simu-
late wi and vi. That is, for all of the following i, k are{

E (wi) = 0,E (vi) = 0,Cov (wi, vi) = 0,
Cov (wi,wk) = Qiδik , Cov (vi, vk) = Riδik ,

(2)

Moreover, uncorrelated random variables x0 − E(x0),wi
and vi satisfy the following relations:

E


 x0 − E(x0)wi

vi

 ∗
 x0 − E(x0)wk

vk

T


=

50 0 0
0 Qiδik 0
0 0 Riδik

 ,
E
[
(x0 − E (x0)) ∗ (x0 − E (x0))T

]
= 50, (3)
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Here, 50 > 0,Qi > 0,Ri > 0, and δik is the Kronecker
delta function that is equivalent to unit matrix when i = k ,
and otherwise it is a zero matrix, that is:

δi,k =

{
1, i = k,
0, i 6= k.

(4)

Moreover, the process noise and the measurement noise
are in the equation of state and the measurement equation,
respectively. Although, in practical engineering, even if the
process noise and measurement noise of the continuous time
system are not related, the covariance of the process noise
and measurement noise of the discrete time system obtained
after sampling cannot be zero, the above assumptions are
very close to the actual situation. Therefore, in engineering,
in order to calculate simply, it is assumed that the two noises
are white noise, obey the zero-mean Gaussian white noise
distribution, and they are independent of each other.

Specially, the model considers deterministic external
inputs and state delays compared to the system (1)
and [29], [30]. Obviously, when the external input and state
delay of the system are zero, the system (1) become a
standard state-space model. Moreover, the model error εi
the way that affects the system parameter matrix can be
‘‘arbitrary’’ in system (1), which makes system (1) closer
to the dynamic behavior of the actual system than the model
described in [29], [30].

B. MODEL TRANSFORMATION
By using the method of state-augmentation, an augmented
state Xi =

[
xTi xTi−1 · · · x

T
i−d

]T
is introduced, then the

system is converted to the following equivalent model:{
Xi+1 = Āi (εi)Xi + B̄1i (εi) ui + B̄2i (εi)wi,
yi = C̄i (εi)Xi + vi, i ≥ 1,

(5)

in which:

Āi (εi) =


A1 i (εi) 0n×n · · · 0n×n A1 i (εi)

In 0n×n
In 0n×n

. . .
...

In 0n×n

 , (6)

B̄1i (εi) =
[
BT1i (εi) 0n×dn

]T
, (7)

B̄2i (εi) =
[
BT2i (εi) 0n×dn

]T
, (8)

C̄i (εi) = [Ci (εi) 0m×dn] . (9)

The state augmentation method is simple and has strong
applicability. In this paper, we only consider the existence
of constant state delay in the system. Based on the method
of state augmentation, we just need to change the parameter
matrix to extend the time-delay variable to a new state vari-
able, that is, the state augmentation method expands the delay
variable to the state variable of the system (1), and finally
the original system is transformed into a system without

delay. Here, the system dimension changes from the original
n increases to n(n + d). In addition, as the degree of time
delay increases, the computational burden of this system will
indeed increase accordingly. But generally speaking, in actual
production, the degree of time delay will not be too large, so
the impact of this problem is not very serious.

III. DESIGN OF ROBUST STATE ESTIMATOR
A. THE DERIVATIVE PROCESS OF ROBUST
STATE ESTIMATOR
In order to obtain robust state estimator of the system (1),
X̂i|j and Pi|j are defined to denote the optimal estimate and
estimated error covariance matrix of Xi based on the measure-
ment output yl |

j
l=0. Moreover, according to [30], the Kalman

filter can be interpreted as the solution of a RLS problem:

X̂i+1|i+1 = Āi (0) X̂i|i+1 + B̄1i (0) ui + B̄2i (0) ŵi|i+1, (10)(
X̂i|i+1
ŵi|i+1

)
= arg min

Xi,wi

[∥∥∥Xi|i − X̂i|i∥∥∥2
P−1i|i
+ ‖wi‖2Q−1i

+
∥∥yi+1 − C̄i (0)Xi+1∥∥2R−1i+1] , (11)

Problem (11) can be interpreted as follows: given an initial
estimate X̂i|i for Xi, it can be improved by incorporating the
additional date that is provided by the next moment measure-
ment yi+1 to obtain the optimal estimate X̂i|i+1 for Xi.

Considering that the systemmodel error will cause the esti-
mation performance deterioration, first, the following matri-
ces respectively as,

αi = col
{
Xi − X̂i|i,wi

}
,

9i = R−1i+1,8i = diag
{
P−1i|i ,Q

−1
i

}
,

Hi(εi, εi+1) = C̄i+1 (εi+1)
[
Āi (εi) , B̄2i (εi)

]
,

βi(εi, εi+1) = yi+1 − C̄i+1 (εi+1)
(
Āi (εi) X̂i|i + B̄1i (εi) ui

)
,

Then bring the above defined matrix into Equation (11),
we can obtain a cost function of an improved RLS problem
as follows,

J (αi) =
∥∥∥Xi|i − X̂i|i∥∥∥2

P−1i|i
+ ‖wi‖2Q−1i

+
∥∥yi+1 − C̄i+1 (0)Xi+1∥∥2R−1i+1

= ‖αi‖
2
8i
+ ‖Hi(0, 0)αi − βi (0, 0)‖29 i, (12)

Next, we design the following innovation process,

ei(εi, εi+1) = yi+1 − C̄i+1 (εi+1) Āi (εi) X̂i|i
−C̄i+1 (εi+1)

[
Āi (εi) , B̄2i (εi)

]
αi (13)

The new cost function is replaced by Equation (14),

J (αi) = γi
[
‖αi‖

2
8i
+ ‖Hi (0 , 0) αi − βi (0 , 0)‖29i

]
+ (1− γi)

L∑
k=1


∥∥∥ ∂ei(εi,εi+1)∂εi,k

∥∥∥2
+

∥∥∥ ∂ei(εi,εi+1)∂εi+1,k

∥∥∥2
| εi = 0
εi+1 = 0

,

(14)
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According to [29], the Kalman filter can be interpreted
as a solution to a RLS problem. If we don’t consider the
model error, we can obtain a cost function of an improved
RLS problem, as follows (12). Meanwhile, as modelling
errors are generally unavoidable, considering that the system
model error will cause the estimation performance deterio-
ration, we introduce innovation process and obtain new cost
functions for the RLS problem, as follows (14). That is,
the difference between (12) and (14) is whether to consider
the impact of model errors. At the same time, the numerical
simulation results also prove its effectiveness.

In addition, this paper is a robust state estimation based
on sensitivity penalty. Firstly, the innovation process (12)
and deviation reveals the contribution of model error to pre-
diction error, meanwhile, considering the deterioration of
performance caused by nominal estimation performance and
model error. Secondly, when there is no model error and the
design parameters γ =1, the state estimator corresponding to
Equation (14) degenerates into a standard Kalman filter.
Furthermore, we define the following matrices:

Si =
[
STi,1 (0, 0) S

T
i,2 (0, 0) · · · S

T
i,L (0, 0)

]T
,

T1i =
[
T T1i,1 (0, 0) T

T
1i,2 (0, 0) · · · T

T
1i,L (0, 0)

]T
,

T2i =
[
T T2i,1 (0, 0) T

T
2i,1 (0, 0) · · · T

T
2i,L (0, 0)

]T
,

where

Si,k (εi, εi+1) =

 ∂C̄i+1(εi+1)
∂εi+1,k

Āi(εi)

C̄i+1(εi+1)
∂Āi(εi)
∂εi,k

T ,
T1i,k (εi, εi+1) =

 ∂C̄i+1(εi+1)
∂εi+1,k

B̄1i(εi)

C̄i+1(εi+1)
∂B̄1i(εi)
∂εi,k

T ,

T2i,k (εi, εi+1) =

 ∂C̄i+1(εi+1)
∂εi+1,k

B̄2i(εi)

C̄i+1(εi+1)
∂B̄2i(εi)
∂εi,k

T ,
Here, k = 1, 2, · · · , L. Meanwhile, according to the above

definition matrices and Equation (13), we can easily get the
equivalent equation as follows,

L∑
k=1

(∥∥∥∥∂ei(εi, εi+1)∂εi,k

∥∥∥∥2 + ∥∥∥∥∂ei(εi, εi+1)∂εi+1,k

∥∥∥∥2
)
|
εi = 0
εi+1 = 0

=

{ ([
Si T2i

]
αi + SiXi|i + T1iui

)T
×
([
Si T2i

]
αi + SiXi|i + T1iui

) } , (15)

Apparently, bring (15) into (14), we can get that (16), as
shown at the bottom of the page.

From the matrices 8i and 9i, we can know that when
0 < γi ≤ 1, the cost function is a strict convex function,
and the global unique minimum value αiopt can be obtained
by counting the partial derivative in Formula (16), so we can
get (17), as shown at the bottom of the page.

The convex function has an important property: for a con-
vex function, any minimum of the convex function is also
a minimum, the local minimum is the global minimum, and
the strict convex function has at most a minimum. Although,
generally speaking, it is difficult to find the minimum value
of the function by counting the partial derivative of the func-
tion, Equation (16) is a strictly convex function, so in the
0 < γi ≤ 1 range, there is a global unique minimum.
Then make the partial derivative zero, we can get (18), as

shown at the bottom of the next page.
From Equation (14), we can realize, the deviation of

ei(εi, εi+1) and yi+1 − C̄i+1 (0)
[
Āi (0) X̂i|i+1 + B̄1i (0) ui +

B̄2i (0) ŵi|i+1
]
reveals the contribution of model error to pre-

diction error of X̂i|i based on yi+1, meanwhile, considering the
deterioration of performance caused by nominal estimation
performance and model error, the parameters γi usually adopt

J (αi) = γi
[
‖αi‖

2
8i
+ ‖Hi (0 , 0) αi − βi (0 , 0)‖29i

]
+ (1− γi)


([
Si T2i

]
αi + SiX̂i|i + T1iui

)T
×

([
Si T2i

]
αi + SiX̂i|i + T1iui

)


= γi

[
αTi 8iαi + (Hi (0 , 0) αi − βi (0 , 0))T

×9i (Hi (0 , 0) αi − βi (0 , 0))

]

+ (1− γi)


αTi

[
Si T2i

]T [ Si T2i
]
αi

+ αTi

[
Si T2i

]T (SiX̂i|i + T1iui
)

+

(
SiX̂i|i + T1iui

) [
Si T2i

]
αi

+ X̂i|iSTi T1iui + uTi T
T
1iSiX̂i|i + u

T
i T

T
1iT1iui

 , (16)

∂J (αi)
∂αi

=

{
2γi8iαi + 2γiHT

i (0, 0)9iHi (0, 0) αi − 2γiHT
i (0, 0)9iβi (0, 0)

+2 (1− γi)
[
Si T2i

]T [ Si T2i
]
αi + 2 (1− γi)

[
Si T2i

]T (SiX̂i|i + T1iui
)}

, (17)
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empirical value, in practical application, it will be adjusted
according to the relative amplitude of model error.

Next, estimate the initial state X0 based on the above
description, let λi = (1− γ )i /γi, and the influence of εi+1 is
not considered in the derivation.

Let e0(ε0) = y0 − C̄0 (ε0)X0, its cost function is defined
as follows:

J (α0) = γ0

[
‖α0‖

2
5−10
+
∥∥y0 − C̄0 (0)X0

∥∥2
R−10

]
+ (1− γ0)

L∑
k=1

(∥∥∥∥∂e0(ε0)∂ε0,k

∥∥∥∥2
)
|εi=0, (19)

where

50 = E
[
(x0 − E (x0)) ∗ (x0 − E (x0))T

]
,

Then make the partial derivative zero, we can get
C̄T
0 (0)R

−1
0 y0, as shown at the bottom of the page.

Simplified upper formula, we can get the initial state of the
state estimator as follows:

X̂0|0 =
(
5̂−10 + C̄

T
0 (0)R

−1
0 C̄0(0)

)−1
C̄T
0 (0)R

−1
0 y0, (20)

where

5̂0 =

(
5−10 + λ0

L∑
k=1

(
∂C̄T

0 (ε0)

∂ε0,k

)(
∂C̄0(ε0)
∂ε0,k

)
|ε0=0

)−1
,

If we further define the following matrix relationship:[
I 0

λiT T2iSiP̂i|i I

][
P−1i|i 0
0 Q−1i

][
I λiP̂i|iSTi T2i
0 I

]

=

[
P−1i|i 0
0 Q−1i

]
+ λi

[
Si T2i

]T [ Si T2i
]
, (21)

Then, define αiopt as col
{
X̂i|i+1 − X̂i|i, ŵi|i+1

}
, we can get

(22) by substituting (21) into (18),[
I 0

λiT T2iSiP̂i|i I

][
P−1i|i 0
0 Q−1i

][
I λiP̂i|iSTi T2i
0 I

]
+

[
ĀTi (0)
B̄T2i (0)

]
×C̄T

i+1 (0)9iC̄i+1 (0)
[
Āi (0) B̄1i (0)

] [ X̂i|i+1 − X̂i|i
ŵi|i+1

]

=

[
ĀTi (0)
B̄T2i (0)

]
C̄T
i+1 (0)9i

 yi+1 − C̄i+1 (0)

×

[
Āi (0) X̂i|i+1
+B̄1i (0) ui

]
−λi

[
Si T2i

]T (SiX̂i|i + T1iui) , (22)

Here, it is not difficult to obtain the following equation by
the matrix theory,[

I 0
λiT T2iSiP̂i|i I

]−1
=

[
I 0

−λiT T2iSiP̂i|i I

]
,[

I −λiP̂i|iSTi T2i
0 I

] [
I λiP̂i|iSTi T2i
0 I

]
= I ,

Then, multiply
[
I 0; λiT T2iSiP̂i|i I

]−1
on the left side of

Equation (22) and simplify it, we can get (23), as shown at
the bottom of the next page.

In order to simplify upper formula, define matrices
T̂2i, Ĥi, B̂2i, and X̃i|i+1 respectively as T2i − λiSiP̂i|iSTi T2i,
C̄i+1 (0)

[
Āi (0) B̂2i (0)

]
, B̄2i (0) − λiĀi (0) P̂i|iSTi T2i and

X̂i|i+1 + λiP̂i|iSTi T2iŵi|i+1, we can get([
P̂−1i|i 0
0 Q̂−1i

]
+ ĤT

i 9iĤi

)[
X̃i|i+1 − X̂i|i

ŵi|i+1

]
= ĤT

i 9i

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui + Āi (0) X̂i|i

))
−λi

[
STi
T̂ T2i

] (
SiX̂i|i + T1iui

)
, (24)

Then, define the following variable X̃i+1|i+1 =

Āi (0) X̃i|i+1 + B̄1i (0) ui + B̂2i (0) ŵi|i+1, in order to obtain
the expression of X̃i|i+1 and ŵi|i+1, Equation (24) is divided
into the following two equations,([

P̂−1i|i 0
]
+ ĤT

i 9iĤi
) [ X̃i|i+1 − X̂i|i

ŵi|i+1

]
= ĤT

i 9i

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui
+Āi (0) X̂i|i

))
−λiSTi

(
SiX̂i|i + T1iui

)
, (25)([

0 Q̂−1i
]
+ ĤT

i 9iĤi
) [ X̃i|i+1 − X̂i|i

ŵi|i+1

]
= ĤT

i 9i

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui + Āi (0) X̂i|i

))
−λiT̂ T2i

(
SiX̂i|i + T1iui

)
, (26)

(
8i + HT

i (0, 0)9iHi (0, 0)+
(
1− γi
γi

) [
Si T2i

]T [ Si T2i
])
αiopt

= HT
i (0, 0)9iβi (0, 0)−

(
1− γi
γi

) [
Si T2i

]T (SiX̂i|i + T1iui
)
. (18)

C̄T
0 (0)R

−1
0 y0 =

(
5−10 + C̄

T
0 (0)R

−1
0 C̄0(0)+

(1− γ0)
γ0

×

L∑
k=1

(
∂C̄T

0 (ε0)

∂ε0,k

)(
∂C̄0(ε0)
∂ε0,k

)
|ε0=0

)
X0,
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Then Equation (25) can be simplified as follows:

P̂−1i|i
(
X̃i|i+1 − X̂i|i

)
+ ĀTi (0) C̄

T
i+1 (0)R

−1
i+1C̄i+1 (0)

×

(
Āi (0) X̃i|i+1 − Āi (0) X̂i|i + B̂2i (0) ŵi|i+1

)
= ĀTi (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0)

×

(
B̄1i (0) ui + Āi (0) X̂i|i

))
−λiSTi

(
SiX̂i|i + T1iui

)
,

Continue to simplify above formula, we can get (27), as
shown at the bottom of the page.

Again, Equation (26) can be simplified as follows,

Q̂−1i ŵi|i+1 + B̄T2i (0) C̄
T
i+1 (0)R

−1
i+1C̄i+1 (0)

×

(
Āi (0) X̃i|i+1 − Āi (0) X̂i|i + B̂2i (0) ŵi|i+1

)
= B̄T2i (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui
+Āi (0) X̂i|i

))
−λiT̂ T2i

(
SiX̂i|i + T1iui

)
,

Continue to simplify above formula, we can get

ŵi|i+1 = Q̂iB̂T2i (0) C̄
T
i+1 (0)R

−1
i+1

×

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui + Āi (0)

×X̃i|i+1 + B̂2i (0) ŵi|i+1

))

−λiQ̂iT̂ T2i
(
SiX̂i|i + T1iui

)
, (28)

Then, bring Equation (27) and (28) into the definition of
X̃i+1|i+1, Equation (29) is obtained (29), as shown at the
bottom of the page.
In order to simplify upper formulas, we define matrices

Âi (0) ,Pi+1|i and B̂1i (0) respectively as,

Âi (0) =
(
Āi (0)− λiB̂2i (0) Q̂iT T2iSi

) (
I − λiP̂i|iSTi Si

)
,

B̂1i (0) = B̄1i (0)− λi
(
Āi (0) P̂i|iSTi + B̂2i (0) Q̂iT̂

T
2i

)
T1i,

Pi+1|i = Āi (0) P̂i|iĀTi (0)+ B̂2i (0) Q̂iB̂
T
2i (0) ,


[
P̂−1i|i 0
0 Q̂−1i

]
+

[
ĀTi (0)

B̄T2i (0)− λiT
T
2iSiP̂i|iĀ

T
i (0)

]
×C̄T

i+1 (0)9iC̄i+1 (0)
[
Āi (0)

B̄2i (0)− Āi (0)
×λiP̂i|iSTi T2i

]

[
X̂i|i+1 − X̂i|i + λiP̂i|iSTi T2iŵi|i+1

ŵi|i+1

]

=

[
ĀTi (0)

B̄T2i (0)− λiT
T
2iSiP̂i|iĀ

T
i (0)

]
C̄T
i+1 (0)9i

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui + Āi (0) X̂i|i

))
−λi

[
STi

T T2i − λiT
T
2iSiP̂i|iS

T
i

] (
SiX̂i|i + T1iui

)
, (23)

X̃i|i+1 = X̂i|i + P̂i|iĀTi (0) C̄
T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0)

(
B̄1i (0) ui + Āi (0)
×X̃i|i+1 + B̂2i (0) ŵi|i+1

))
−λiP̂i|iSTi

(
SiX̂i|i + T1iui

)
, (27)

X̃i+1|i+1 = Āi (0) X̃i|i+1 + B̄1i (0) ui + B̂2i (0) ŵi|i+1

= B̄1i (0) ui + Āi (0)
(
X̂i|i + P̂i|iĀTi (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

))
− λiĀi (0) P̂i|iSTi

(
SiX̂i|i + T1iui

)
+B̂2i (0)

(
Q̂iB̂T2i (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

))
− λiB̂2i (0) Q̂iT̂ T2i

(
SiX̂i|i + T1iui

)
= B̄1i (0) ui + Āi (0) X̂i|i + Āi (0) P̂i|iĀTi (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

)
−λiĀi (0) P̂i|iSTi

(
SiX̂i|i + T1iui

)
+
ˆ̄B2i (0) Q̂iB̂T2i (0) C̄

T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

)
−λiB̂2i (0) Q̂iT̂ T2i

(
SiX̂i|i + T1iui

)
= B̄1i (0) ui + Āi (0) X̂i|i +

(
Āi (0) P̂i|iĀTi (0)
+B̂2i (0) Q̂iB̂T2i (0)

)
C̄T
i+1 (0)R

−1
i+1

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

)
−λi

(
Āi (0) P̂i|iSTi + B̂2i (0) Q̂iT̂

T
2i

) (
SiX̂i|i + T1iui

)
(29)
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Then, bring them into Equation (29), we can get the fol-
lowing expressions,

X̃i+1|i+1
= Āi (0) X̃i|i+1 + B̄1i (0) ui + Pi+1|iC̄T

i+1 (0)R
−1
i+1

×

(
yi+1 − C̄i+1 (0) X̃i+1|i+1

)
−λi

(
Āi (0) P̂i|iSTi +B̂2i (0) Q̂iT̂

T
2i

) (
SiX̂i|i + T1iui

)
,

(30)(
I + Pi+1|iC̄T

i+1 (0)R
−1
i+1C̄i+1 (0)

)
X̃i+1|i+1

= Pi+1|iC̄T
i+1 (0)R

−1
i+1yi+1

+

(
B̄1i (0)− λi

(
Āi (0) P̂i|iSTi + B̂2i (0) Q̂iT̂

T
2i

)
T1i
)
ui

+

(
Āi (0)− λi

(
B̂2i (0) Q̂iT̂ T2i + Āi (0) P̂i|iS

T
i

)
Si
)
X̂i|i,

(31)

Finally, based on matrix inverse lemma we can get(
I + Pi+1|iC̄T

i+1 (0)R
−1
i+1C̄i+1 (0)

)−1
= I − Pi+1|iC̄T

i+1 (0)
(
C̄i+1 (0)Pi+1|iC̄T

i+1 (0)+ Ri+1
)−1

×C̄i+1 (0) ,

and define variable

Pi+1|i+1 = Pi+1|i − Pi+1|iC̄T
i+1 (0)R

−1
e,i+1C̄i+1 (0)Pi+1|i,

we can get(
I + Pi+1|iC̄T

i+1 (0)R
−1
i+1C̄i+1 (0)

)−1
Pi+1|i

=

[
P−1i+1|i + C̄

T
i+1 (0)R

−1
i+1C̄i+1 (0)

]−1
= Pi+1|i+1

X̃i+1|i+1
= Pi+1|i+1C̄T

i+1 (0)R
−1
i+1

×

(
yi+1 − C̄i+1 (0)

(
ˆ̄B1i (0) ui + ˆ̄Ai (0) X̂i|i

))
+

(
ˆ̄B1i (0) ui + ˆ̄Ai (0) X̂i|i

)
.

Here, Equations (27) and (28) are similar to the time
measurement update of the robust state estimator in the lit-
erature [29] and [32], means we can designate X̃i+1|i+1 as
X̂i+1|i+1, then the derivation process is completed.
Through the above derivation, we can know that, there are

three differences between this paper and its [29] and [32].
Firstly, we add an item related to the control input. When
the control input equals zero, the robust state estimator in
this paper degenerates into the estimator in [29] and [32].
Secondly, we consider the existence of constant state delay
in the system. Moreover, the estimator in [29] is only suitable

for systems with additive uncertainties, while the estimator
in [32] requires the system parameters to be differentiable to
the model uncertainties. The model error described in this
paper can be closer to the dynamic behavior of the actual
system.

B. THE ITERATIVE PROCESS OF ROBUST STATE
ESTIMATOR
• Initialization.

P0|0 =
(
5̂−10 + C̄

T
0 (0)R

−1
0 C̄0(0)

)−1
,

X̂0|0 = P0|0C̄T
0 (0)R

−1
0 y0,

where,

5̂0=

(
5−10 +λ0

L∑
k=1

(
∂C̄T

0 (ε0)

∂ε0,k

)(
∂C̄0(ε0)
∂ε0,k

)
|ε0=0

)−1
,

• Parameter modification.

T̂2i = T2i − λiSiP̂i|iSTi T2i,

P̂−1i|i = P−1i|i + λiS
T
i Si,

B̂2i (0) = B̄2i (0)− λiĀi (0) P̂i|iSTi T2i,

Âi (0)=
(
Āi (0)−λiB̂2i (0) Q̂iT T2iSi

) (
I−λiP̂i|iSTi Si

)
,

B̂1i(0)=B̄1i (0)−λi
(
Āi (0) P̂i|iSTi +B̂2i (0) Q̂iT̂

T
2i

)
T1i,

Q̂−1i = Q−1i + λiT
T
2i

(
I + λiSiPi|iSTi

)−1
T2i,

(32)

• State estimation and covariance matrix updating.

Pi+1|i = Āi (0) P̂i|iĀTi (0)+ B̂2i (0) Q̂iB̂
T
2i (0) ,

Re,i+1 = Ri+1 + C̄i+1 (0)Pi+1|iC̄T
i+1 (0) ,

Pi+1|i+1=Pi+1|i − Pi+1|iC̄T
i+1 (0)R

−1
e,i+1C̄i+1 (0)Pi+1|i,

X̂i+1|i+1= B̄1i (0) ui+Âi (0) X̂i|i+Pi+1|i+1C̄T
i+1 (0)R

−1
i+1

×

[
yi+1−C̄i+1 (0)

(
B̂1i (0) ui+Âi (0) X̂i|i

)]
.

(33)

IV. NUMERICAL SIMULATION
In this section, aiming at the above for time-delay discrete lin-
ear system, some numerical simulations are used to compare
the performances of the robust state estimator and the Kalman
filter, where the Kalman filter includes the effects based on
actual and nominal system parameters. Based on experimen-
tal results to verify the availability and wide applicability of
this robust state estimator.
Consider the following uncertain linear discrete time sys-

tem with deterministic control inputs and two-step state
delays as follows,

{
xi+1 = A1i (εi) xi + A2i (εi) xi−d + B1i (εi) ui + B2i (εi)wi, d > 0,
yi = Ci (εi) xi + vi, i ≥ 1,
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FIGURE 1. The model error ε and input signal ui are fixed.

FIGURE 2. The input signal ui is fixed.

in which, suppose the system parameters are as follows,

A1i (εi) =
[
0.9802 0.0196
0.0000 0.9802

]
+

[
0.0198
0.0000

]
×ε ×

[
0.0000 5.0000

]
,

A2i (εi) =
[
−0.2802 0.0060
0.0000 −0.2802

]
+

[
0.0198
0.0000

]
×ε ×

[
0.0000 5.0000

]
,

B1i (εi) =
[
1.0000 0.0000
0.0000 1.0000

]
+

[
0.0198
0.0000

]
×ε ×

[
0.0000 5.0000

]
,

B2i (εi) =
[
1.0000 0.0000
0.0000 1.0000

]
,

Ci (εi) =
[
1.0000 −1.0000

]
,

Ri = 1.0000,Qi =
[
1.9608 0.0195
0.0195 1.9605

]
,

50 = =

[
1.0000 0.0000
0.0000 1.0000

]
.

In these numerical simulation examples, it is assumed that
the model error εi is constant, and each of the uncertain
parameter is contracted, that is, it belongs to the interval
[−1, 1]. Moreover, assuming that the initial state is zero,

the disturbance wi and vi produced in accordance with a
normal distribution, the known deterministic control input is
fixed or generated according to normal distribution. More-
over, in order to ensure the accuracy of the simulation results,
in the simulation experiment, 1 × 103 pair input and output
data is generated for state estimation, and set up 500 simula-
tion experiments. Then the statistical average of the variance
of the estimation error at each moment is approximately
equal to the average of the square of the Euclidean distance
from the actual state value to its estimated value, that is

E
∥∥∥Xi − X̂i|i∥∥∥2 ≈ 1

5006
500
j=1

∥∥∥Xi − X̂ (j)i|i ∥∥∥2.
In the first group of simulation experiments, the model

error εi and control input signal ui are fixed, ε = −0.8508
and ui = [1.0; 0.1], respectively. Figure 1 (a) represents a
change in the estimation error variance with time and filter
design parameters γ .

Moreover, as we can see, when the design parameters
γ take the empirical value probably 0.8, the performance
difference between the robust filter in this paper and the
Kalman filter based on actual parameters is only 1dB, which
is 15dB higher than that based on nominal parameters. From
Figure 1 (b), the same conclusion can be obtained.
At the time of i = 500, design parameters take values

between 0.00 and 1.00, it can be seen from Figure 1 (b) that
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FIGURE 3. The model error ε and input signal ui are not fixed.

the performance of the robust state estimator is better than the
Kalman filter based on nominal parameters, and the optimal
design parameter γ is probably 0.86.

In the second set of simulation experiments, the model
error ε is not fixed, each experiment model error ε is ran-
domly generated by the intercepted normal distribution, mean
and variance are 0.0 and 1.0, respectively, while external
input signals ui is fixed and ui = [1.0; 0.1]. Moreover,
the amplitude difference cannot be greater than 1.0. If the
amplitude of the model error is greater than 1.0, it is removed
and regenerated until the amplitude meets the requirements.

At the time of i = 500, design parameters take values
between 0.00 and 1.00, it can be seen from Figure 2 (b) that
the robust state estimator corresponding to design parameters
in a wide range γ performs better than the kalman filter based
on nominal parameters.

In the third set of simulation experiments, the model errors
ε and control inputs ui are not fixed, where the known deter-
ministic input signal is randomly generated according to the
intercept normal distribution, and its mean and variance are
[1.0; 0.1] and [1.0, 0.0; 0.0, 1.0], respectively, meanwhile,
each experiment model error ε is randomly generated by
the intercepted normal distribution, mean and variance are
0.0 and 1.0. Moreover, the amplitude difference can not be
greater than 1.0. If the amplitude of the model error is greater
than 1.0, it is removed and regenerated until the amplitude
meets the requirements.

At the time of i = 500, design parameters take values
between 0.00 and 1.00, it can be seen from Figure 3 (b) that
the robust state estimator corresponding to design parameters
in a wide range γ still performs better than the kalman filter
based on nominal parameters.

It can be seen from Figures 1 to 3 that the robust state
estimator based on sensitivity penalty can bring good robust
performance. The optimal design parameters γ can make
the performance of the robust estimator close to that of the
Kalman filter based on the actual parameters.Moreover, since
the robust estimator is a continuous function of the design
parameters, so there are a lot of choices for the parameters γ

in the design process, which is very meaningful in the design
of the actual filter.

V. CONCLUSION
This paper has discussed the robust state estimation prob-
lem for discrete-time linear state space models with uncer-
tain parameters, deterministic control input and d-step state
delay. A robust state estimation algorithm based on sensitivity
penalty is proposed. Numerical simulations indicate that the
robust state estimator based on sensitivity penalty has nice
estimation performance, so the estimator has great applica-
tion potential.
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