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ABSTRACT Image transforms are necessary for image and video compression. Analytic transforms are
powerful in compacting natural signals for wider exploitation. Various methods have been introduced to
represent such data as a small number of bases, and several of these methods use machine learning, usually
based on sparse coding, to outperform analytic transforms. They show sufficient data compaction abilities.
However, thesemethods focus only on data compaction and reconstruction performance, without considering
computational issues during implementation. We introduce a new framework for a more efficient transform
based on a two-dimensional discrete cosine transform (DCT) and its characteristics. We aimed to improve
the data compaction ability of transforms to levels better or similar to that of the DCT and other data-driven
transforms, with fast and efficient implementation. We focused on the properties of the DCT, including
horizontal and vertical directional information, and approximated its direction using the transform. Our
framework was designed by rotating some of the DCT bases to fit this direction. As expected, our framework
achieves a transform design with minimized computation for efficient implementation. It does not require
an iterative algorithm or brute-force methods to find the best transform matrix or other parameters, thereby
making it much faster than other methods. Our framework is 10 times faster than the steerable DCT (SDCT)
and twice as fast as the eight-level SDCT with minimum performance reduction. Experimental validation
with various images indicates that the proposed method sufficiently approaches the performance of the other
transforms despite faster implementation.

INDEX TERMS Directional discrete cosine transform, discrete cosine transform, image transformation,
image compression, sparse coding transform.

I. INTRODUCTION
Sparsity is an important issue in image processing, which
involves expressing the input image using only a small
amount of information, while minimizing the loss of original
information as much as possible. Analytic transforms, such
as the discrete cosine transform (DCT) and Karhunen-Loeve
transform (KLT), represent natural signals more sparsely.
By using an appropriate transform, many natural signals can
be represented by a small number of large transform coef-
ficients and a large number of extremely small coefficients.
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approving it for publication was Victor Sanchez .

This has made image transform a long-standing staple in
various image compression applications [1], [9]–[11]. The
KLT is known as an optimal transform in Gaussian processes.
In other words, if the input signal follows a Gaussian process,
it exhibits optimal data compaction performance. However,
it requires high memory resources to calculate the eigen-
vectors of the covariance matrix, and the algorithm is slow;
therefore, instead of the KLT, the DCT is widely utilized in
various fields because of its good performance, which is close
to that of the KLT [8], and faster implementation algorithm.

Sparse coding is a technique used to design an appropriate
dictionary, based on the input signal, and express this signal
with the smallest number of dictionary atoms. This method is
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similar to existing transforms in that it represents the input
signal with minimal basis [2], [3]. In sparse coding-based
transform, general characteristics can be learned from data
beyond restricted conventional constraints. For example,
the KLT is optimal for Gaussian processes, and the DCT
exhibits good performance for horizontally and vertically
directed patches, whereas sparse coding-based transform
involves direct learning from the input data and the generation
of an optimal transform matrix based on the input data.
Therefore, many studies have proposed transforms based
on sparse coding, which outperform existing analytic trans-
forms [4], [5], [15]–[17]. The object of sparse coding has
considerable commonalities with that of the transform; thus,
transform techniques using sparse coding show better perfor-
mance than existing analytic transforms, such as the DCT and
the KLT.

Sparse coding techniques are based on an overcomplete
dictionary [4], [5], [17]. Generally, in an overcomplete dic-
tionary, the number of columns is considerably greater than
the number of rows. Therefore, the dictionary has redundant
properties and can make the input signal sparser. Owing to
this characteristic, the data compression can be improved.
However, for sparse coding based on an overcomplete dic-
tionary, finding an appropriate dictionary is generally a
nondeterministic polynomial time-hard problem. Therefore,
iterative optimization methods, such as the alternating direc-
tion method of multipliers (ADMM) [20] and augmented
Lagrange multipliers (ALM) [21], and brute-force algo-
rithms, such as basis pursuit [18] and orthogonal matching
pursuit [19], are simultaneously used to estimate the approx-
imate value. This inevitably requires considerable time and
memory resources for learning. In addition, the overcomplete
dictionary is not a square matrix and does not have to be
orthogonal. Thus, it does not have the same basis as the
transform and has no inverse transform. Because of these
problems, this method cannot replace the existing analytic
transforms regardless of its capabilities.

To overcome this problem and to design transforms that
are more similar to existing transforms, studies on orthog-
onal dictionaries have been conducted [4]–[6]. The sparse
orthonormal transform(SOT) is a transform based on orthog-
onal dictionary sparse coding [4], [5]. Sezer et al. devel-
oped this transform with the same characteristics as existing
analytic transforms, such as the DCT and KLT, based on
orthogonal sparse coding. They theoretically proved that the
transform matrix of SOTs is the same as that of the KLT,
which is known to be the most optimal, in Gaussian processes
and superior to that of the KLT in non-Gaussian processes [5].
In addition, by using an orthonormal dictionary, the com-
putation speed of each iteration is faster than that of over-
complete dictionary-based methods. However, SOTs cannot
replace analytic transforms. They also require optimization
algorithms, which need thousands of iterations to update the
sparse coefficients and dictionary. Therefore, it is difficult to
apply this method in real-world applications because of the
problems faced by sparse coding techniques.

As mentioned above, the existing sparse coding-based
transforms are superior to the existing transforms in terms
of compacting data but require a large amount of com-
putation and memory resources. This problem has pre-
vented sparse coding-based transforms from being utilized
in real-world applications, despite their good performance.
In [5], the authors mathematically proved that the SOT out-
performs KLT in general cases. The foundation of our works
is to approximate the transform better than the KLT. However,
because the transform is based on the sparse coding, its com-
putational burden is high. In [16] and [36], a method of dictio-
nary learning, involving the product of a base dictionary and
another matrix, was proposed. Based on this method, the SOT
was obtained by expressing the DCT matrix and a rotation
matrix [25]. Although the method was developed to express
the transform matrix in a compact manner, the computational
requirements are increased because the rotationmatrix is used
like another dictionary. In addition, to compact the rotation
matrix, L0 constraints must be added, which prevents the use
of the fast optimization used in [5]. From this existing publi-
cation, we assume that if the rotation matrix is approximated,
an approximated transform better than the KLT can be gen-
erated without iterative computations. However, the general
n-dimensional rotation matrix has n(n-1)/2 angles, and thus
we need to restrict the number of angles to be computed in
a reasonable manner. Methods to restrict the rotation matrix
have been presented previously [22]–[24]. Fracastoro et al.
proposed a directional linear transform that is not based
on the sparse coding method and called it steerable DCT
(SDCT) [22]–[24]. The authors also configured the trans-
form into a DCT matrix and a rotation matrix, but unlike
Hou et al. [25], the DCT rotation was limited to pairs of bases
with the same complexity. When we visualized the basis
in [22], we observed that the direction of bases is also rotated
in the same angle as that of the rotation matrix. Our work fol-
lows the methods presented in [22]–[24] to limit the number
of basis pairs to be rotated, thereby not computing all cases.
More details regarding the angle computation are discussed in
Section III. This study developed a framework to approximate
an SOT that is better than the KLT by approximating the
rotation matrix.

The DCT has a fast implementation method, and this
it can be calculated with fewer operations and provides a
basis for enabling suboptimal sparse representation. How-
ever, the basis images of the DCT provide optimal com-
paction for patches with dominant edges in the horizontal
and vertical directions and the energy compaction capability
is much lower in the case of patches with the same ori-
entation in different directions [37]. In other words, if the
DCT basis image can be adjusted according to the direction
of the edge of each patch, a transform that can replace the
existing transforms with only a few additional computations
can be created. As mentioned earlier, the DCT basis already
contain information about the horizontal and vertical edges
of each image patch (Fig. 1). Using this, we can infer the
direction of the edge with minimal computation [30]–[32].
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Therefore, if the direction of the dominant edge is calculated
and a rotation matrix that rotates the bases to the calculated
angle is achieved, a new transform basis can be generated
by multiplying the matrix by the DCT matrix. In addition,
the framework for making this transform can be applied in
real-world application because it only adds a small compu-
tational burden to the DCT, which has a fast implementation
algorithm.

Our contributions can be summarized as follows:

• Instead of iterative optimizations or other complexmath-
ematical algorithms that require many computations and
high memory usage, we only compute the principal
angle with pre-computed DCT coefficients. We design a
simple but improved transform with higher energy com-
paction and a few additional parameters. Through this
transform, images can be represented by fewer bases.

• We use and modify the concept of the rotation matrix
in the SDCT to generate a faster framework than the
SDCT and the SOT with slightly lower performance at
high compression ratio.

• Because our transformfits the basis to the dominant edge
direction, our visual experiments shows fewer block
artifacts than the DCT.

• Through experiments, we verify that our transform
has better performance than previous analytic methods,
with fast implementation and sufficiently similar perfor-
mance to recently developed methods.

The remainder of this paper is organized as follows:
Section II describes other recently proposed transforms with
good performance. Section III explains our proposed method
and the preliminaries used. In Section IV, we present our
experimental results and our analyses. Section V provides the
conclusions of our paper.

The main objective of this work is to design a new frame-
work to create a fast and efficient transform as an improve-
ment and substitute for the DCT and KLT. This work only
focuses on the transform itself, but with appropriate coding
design, our work could have real image and video codec
applications, such as JPEG or HEVC.

II. RELATED WORKS
For the past few decades, there have been many attempts to
make data-driven transforms achieve better performance than
analytic transforms. They exploit various machine-learning
methodologies to compact the input data. In this section,
we introduce the recent works based on two different
approaches.

A. SPARSE CODING-BASED TRANSFORMS
In [4] and [5], SOTs were designed via an orthogonal sparse
coding methodology. Sezer et al.[4], [5] formulated a trans-
form with an orthonormal matrix and an L0 norm constraint
to the transform coefficients.

min
G,c

{
‖x-Gc‖2 + λ ‖c‖0

}
(1)

where c is the sparse transform coefficient and G is the SOT.
To find the optimal G, they used iterative optimization of
G and c with the orthogonal Procrustes problem, as it pro-
vides a faster solution than other overcomplete matrix-based
methods.

These existing publications indicate that SOTs are the
principled extensions of KLTs because their transforms are
theoretically reduced to KLTs in Gaussian processes, via the
following proposition.
Proposition 1 [5] (SOT vs. KLT in Gaussian Processes):

Suppose the signals of interest are obtained as realizations of
a zero-mean Gaussian process. Then, the SOT is equal to the
KLT.

They also showed that SOTs outperformed the KLT in
non-Gaussian processes.

Hou et al. factorized the SOT matrix to the rotation matrix
and DCT basis matrix [25]. They attempted to create a sparse
transform matrix for memory efficiency by saving only the
sparse rotation matrix, because the DCT matrix can be calcu-
lated via mathematical formulation. The proposed approach
relies on the results in [16] and [26]. To make compact bases,
an L0 norm constraint is added to the rotation matrix.

min
R,c

{
‖x-TRc‖2 + α ‖c‖0 + β ‖R‖0

}
s.t. RTR = RRT = I , det(R) > 0, (2)

where T is the DCT matrix and R is the rotation matrix.
This produces a transform that has a large number of

zeros and similar performance to that of the original SOTs in
experiments. However, the data compaction and convergence
speed remain unaffected. The convergence speed remains
relatively slow because they could not exploit a fast orthogo-
nal sparse coding scheme owing to the L0-constraint for the
compact bases. They used the augmented Lagrangemultiplier
method to make the rotation matrix sparse, resulting in slower
convergence.

Rusu et al. introduced two orthonormal transformmethods
based on Householder reflectors [13] and Givens factoriza-
tion [12]. In [13], the transformwas created from the products
of a few Householder reflectors. In [12], Rusu and Thompson
built a transform using the products of Givens rotations and
expanded it into a non-orthogonal transform. Both transforms
were designed for fast implementation and low computational
complexity. In both factorization methods, the number of
parameters to be calculated was reduced.

B. DIRECTIONAL DISCRETE COSINE TRANSFORMS
There have been many attempts to instill directional infor-
mation into the DCT. The two-dimensional DCT (2D-DCT)
consists of two separate 1-D DCTs applied along the vertical
and horizontal directions, respectively. Therefore, this DCT
is optimal to represent images that have dominant horizon-
tal or vertical edges rather than dominant edges in other
directions. Zheng and Fu referred to directional prediction
modes in H.264 and developed a directional DCT [27].
In [27], the authors did not apply the 1-D DCT along the
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horizontal or vertical direction. Instead, the transform was
performed along one of several predefined directions. They
defined eight directional modes. Utilizing this development,
Drémeau et al. [28] extended and exploited this directional
DCT to create a set of bases using bintree segmentation and
rate-distortion optimization.

Fracastoro et al. exploited directional information in the
DCT in a different way. They proposed the SDCT [22], [23]
based on the graph Fourier transform [29] framework. The
graph Fourier transform is defined by the eigenvectors of
graph Laplacians. In image processing, an image can be
regarded as a graph because each pixel is seen as a node of
the graph, and the adjacency of pixels can be described as the
edges. When an image is considered as a four-way-connected
square grid graph, the graph transform, with all weights equal
to one, has the same formulation with the 2D-DCT. The
eigenvalues of this Laplacian are larger than one, and thus,
the 2D-DCT is not a unique basis. The two bases highlighted
in the red box in Fig. 1 show this visually. They have the same
eigenvalues with a multiplicity of 2. Fig. 1 shows that the two
eigenvectors are orthogonal but related, because they identify
the same frequency, but in different directions.

Using this property, the SDCT rotates the eigenspaces
spanned by the corresponding eigenvectors as follows:[

v(k,l)
′

v(l,k)
′

]
=

[
cos θk,l sin θk,l
− sin θk,l cos θk,l

] [
v(k,l)

v(l,k)

]
(3)

where 0◦ ≤ θk,l ≤ 90◦, v(k,l)
′

and v(l,k)
′

are the bases of the
SDCT.

Masera et al. generalized the SDCT to any 2D separable
transform [24]. A 2D separable transform can be defined by
the Kronecker product of a 1D transform. Then, Masera et al.
substituted v(k,l) and v(l,k) into (3), based on 2D separable
transforms. By replacing all the pairs with the rotated ones,
they designed a new directional transform. Similar to the
previous SDCT, the diagonal directional bases, shown in the
diagonal images in Fig. 1, are not rotated.

In this section, the recent transforms that provide better
performance than DCT were introduced. However, they have
some drawbacks that need to be addressed for their real-world
application. In the next section, we propose a framework for
designing a novel transform by utilizing the DCT coefficients
and their bases, with a few additional computations.

III. PROPOSED METHOD
A. PROBLEM DEFINITION
In the previous section, we introduced the development of
several transforms. These efforts achieved better performance
than analytic transforms, such as DCT and KLT, but have
not been adopted in real-world applications because they
require an additional optimization algorithm to determine
their optimal basis and parameters. SOTs [4], [5] formulate
their problem using (1). They require two unknown variables,
G and α; thus, an iterative optimization algorithm is required
to find the optimal transform. In addition, the algorithm is

FIGURE 1. Bases of two-dimensional discrete cosine transform. Each
basis is linearly independent. The bases in the red boxes have the same
frequent basis.

sensitive to the regularization parameter, lambda; therefore,
it must exploit other algorithms to invoke additional compu-
tations to find the best value.

The transform matrix of the SDCT [22], [23] is formulated
as follows:

V (θ ) = VR(θ ) (4)

where θ is the set of angles in (3). It also requires finding the
optimal θ to minimize the reconstruction error and depends
on brute-force methods and minimization algorithms in a
rate-distortion (RD)-optimized manner.

These methods generate good transforms that fit the input
data well in terms of data compaction, because of their good
optimization algorithms. However, to compute the basis, they
have drawbacks in terms of computational cost and time.

In this section, we propose a novel framework to generate
a transform to achieve good data compaction close to that of
existing transforms, without heavy computations. We call it
the ‘‘Partially rotated DCT’’(PRDCT). To design the PRDCT,
we exploit the characteristics of the DCT and generate inser-
tion angles for the rotation matrix. Before testing the pro-
posed PRDCT, we present the details of the methods used.

B. PRELIMINARIES
1) EDGE ORIENTATION IN THE DCT DOMAIN
As the DCT is popular in image compression applica-
tions, it is important to analyze and extract information
of images in the compressed domain for fast implemen-
tation [30]–[32], [40]. In particular, Shen and Sethi [31]
designed an edge model in the DCT domain, based on the
characteristics of the DCT. The bases of the DCT represent
the horizontal and vertical directions or the diagonal direc-
tions made by their combinations. The two directional bases
have the same edge complexity, according to their order. This
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is well illustrated in the bases shown in Fig. 1. The bases in the
red box show the same complex edge information in different
directions. Shen and Sethi [31] directly extracted low-level
features, such as edge orientation, edge offset, and edge
strength, from DCT compressed images. Kim and Han [32]
proposed a verification method of discontinuity based on the
DCT properties and a technique to evaluate it in a compressed
domain [32].

We introduce the four metrics that Shen and Sethi [31]
suggested for edge orientation, with coefficients based on the
8 x 8 block DCT, as follows:

tan θ =

(
7∑

v=1

C0v

)
/

(
7∑

u=1

Cu0

)
(5)

tan θ =

(
7∑

v=1

H0v

)
/

(
7∑

u=1

Hu0

)
(6)

tan θ = C01/C10 (7)

tan θ = H01/H10 (8)

where C0v and Cu0 are the DCT coefficients corresponding
to the first row and column bases in Fig. 1, respectively, and
H0v andHu0 are the coefficients from the compressed stream,
via Huffman decoding.

This previous study heuristically demonstrated that these
metrics provide a reasonable estimation of edge orientation
compared with the Sobel edge operator, and the metric is not
affected by edge strength. Kim and Han [32] also showed
via experiments that the metric in (1) was precise enough to
estimate directions with few errors.

C. PARTIALLY ROTATED DISCRETE COSINE TRANSFORM
In Section II, some recent works on transforms were intro-
duced. We highlighted that they do not only show improve-
ments over analytic transform, but also havemajor drawbacks
that prevent their fast and simple implementations.

To avoid this problem, it is inevitable that iterative
optimization techniques and brute-force methods must be
eliminated. In particular, iterative methods often require hun-
dreds or thousands of iterations, taking up a large amount
of time. To reduce the time, we focused on utilizing the
DCT and its coefficients. Our work is based on the under-
standing that if the 2D-DCT contains sufficient directional
information, we can compute reasonable values using which
the DCT bases should be appropriately rotated. To this end,
we propose a novel framework to create a transform that
does not require any constraints, such as predefined sparsity
(the number of retained coefficients) or excessive compu-
tation. We acknowledge that such constraints and computa-
tions make powerful transforms, but they are unsuitable for
real-world applications.

Our work starts with the ideas of compact bases-SOT [25]
and SDCT [22], [23], in which a transform matrix is derived
by multiplication between a basis matrix and rotation matrix.
Before introducing our proposed method, we show that the

framework, in which the transform matrix is made from the
DCT matrix and rotation matrix, is reasonable.
Lemma 1: Given a DCT matrix in Rn×n, there exists a

rotation matrix R that satisfies the orthonormal transform
matrix H =DR equivalent to or better than theKLT, andwhich
has the same compaction properties with the SOT matrix in
Proposition 1.

Proof:We denote a matrix G in Rn×n as an SOT matrix.
We prove this lemma through Proposition 1 by showing
that there is a matrix H with the same performance as G.
Following the rotation criterion in [38], we assume that R
satisfies the condition RRT = 1 and det(R) = 1.
Considering an orthonormal matrix A:

A = D−1G

Then

det(A) = det(D−1)det(G) = det(D)det(G).

i) det(G) = det(D)
Because G and D are both orthogonal, det(G) = det(D) =

1 or det(G) = det(D) = −1. In both cases, det(A) = 1
and AAT = 1 because A is orthonormal. Using the rotation
criterion in [38], we can set the rotation matrix R = A. Then
we can define

H = DR = DD−1G = G.

ii) det(G) 6= det(D)
In this case, det(A) = −1. Let B be the diagonal matrix

with diagonal elements diag(B) = [−1, 1, . . . , 1]. Because
det(A) = −1 and det(B) = det(B) = −1, we can set a
rotation matrix R = AB. Then

H = DR = DAB = GB.

Let hi and gi denote column vectors of H and G. For
image patch X, X =

∑
i cihi and X =

∑
i digi where

ci and di are scalar. For simplicity, we assume c1 >

c2 > . . . > cn and d1 > d2 > . . . > dn. Then, the best
m-term approximation of X is X̂H =

∑
i≤m cihi and X̂G =∑

i≤m digi and each approximation error is
∥∥X − X̂H∥∥F =∑

i>m cihi and
∥∥X − X̂G∥∥F =∑i>m digi. Because H = GB,

hi = gi and ci = di for i > 1, these two errors are
mathematically identical. Thus, the two transform matrices
have the same data compaction capabilities.
Using this lemma, we theoretically verify the framework

to be defined by a DCT and a rotation matrix, such as the
compact bases-SOT [25]. The DCT can be implemented
using a fast algorithm, if we design the rotation matrix effi-
ciently, the transform can be generated quickly. However,
generating a general n-dimensional rotation matrix requires
complex optimizations, as in [25] or the calculation of n(n−1)2
Givens rotations with each angle [12], [39]. However, this
is computationally equivalent to other optimization-based
transforms [4]–[6]. Therefore, simple implementation of
rotation matrix is important for a fast and efficient transform.
By approximating the rotationmatrix using a small number of
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angles, we can efficiently generate a transform matrix similar
to KLT in terms of energy compaction.

We use Fig. 2 to estimate the angles that best describe the
characteristics of the image patches. Fig. 2 shows the results
of rotating the bases by a particular angle using (3), which
also represents the directional edges. The DCT is known for
its good performance with respect to horizontal and vertical
information, based on the basis images in Fig. 1. In [37],
even in special cases where the image was very smooth and
had discontinuities that existed only vertically or horizontally,
the DCT was shown to represent the data slightly more com-
pactly than the KLT. Based on these results, we designed a
new framework to create transform matrix by computing the
rotation matrix using the dominant direction of each patch.

FIGURE 2. Basis images of (a) the SDCT with the same angle 20◦ for each
pair and (b) 45◦ for each pair.

We designed a new transform to solve the problem by
simply inserting two steps into the 2D-separable DCT pro-
cedures; approximating the direction and rotating the bases.
First, we estimated the main orientation, based on the char-
acteristics of the 2D-DCT. As mentioned above and shown
in Fig. 1, the bases of the 2D-DCT contain directional
information along the vertical and horizontal directions. For
some metrics in the 2D-DCT, we exploit the methodologies
presented in [32], which were explained in Section III-B,
(5) to (8).

We defined new equations to estimate the angles, based on
Equations (5) to (8). We divided the equations into two cases,
based on the ratio between the energy of the low-frequency
components and the DC component. The ratio was formu-
lated as follows:

Elow =

√∑
(u,v)∈[0,1] C

2
uv√∑

(u,v)∈[0,n−1] C
2
uv

(9)

Eq. (9) indicates the distance between the edge and the center
of the patch. Fig. 3 shows patches with different Elow values.
Fig. 3 (a) and (b) show Elow values lower than 0.90. These
figures present edges that are further away from the center.
In contrast, the edges in Fig. 3 (c) and (d) with high Elow
values are located near the center of the patch.

The range of the angle is restricted from 0◦ to 90◦ because
each basis already has a 90◦-rotated pair. Because the sign of

the DCT coefficients indicates the direction of the edge from
center(left or right) with the corresponding basis, we con-
strained the range of direction using the signs of the first two
AC coefficients. We formulated the direction as follows and
set the threshold th of Elow to 0.90, in the experiments:

θ =



tan−1(

∣∣∣∣C01

C10

∣∣∣∣)
where C01C10 ≥ 0 and Elow > th

tan−1(

√∑n
v=1 (C0v)2√∑n
u=1 (Cu0)2

)

where C01C10 ≥ 0 and Elow < th

90◦ − tan−1(

∣∣∣∣C01

C10

∣∣∣∣)
where C01C10 < 0 and Elow > th

90◦ − tan−1(

√∑n
v=1 (C0v)2√∑n
u=1 (Cu0)2

)

where C01C10 < 0 and Elow < th

(10)

Then, we found the best set of pairs for each patch to rotate
it by a particular angle. We rotated the vector spaces spanned
by pairs with specific frequencies and complexities, instead
of all pairs. For our pre-computed angles, we classified the
basis vectors into five groups based on their complexity and
direction. We attempted to find the best pairs for two sizes of
blocks, 8×8 and 4×4. A visual description of our separation
is shown in Fig. 4. Based on [30], [31], we assume that the
calculated angle reflects the dominant orientation but does
not include the complicated details inside the patches. In other
words, in caseswhere only the low-frequency components are
rotated, they fit more compactly than in cases where all the
bases are rotated. The details and comparative experiments
are explained in Section IV-B and Fig. 9. We heuristically
verified our assumption and found the detailed set to be
rotated using Figs. 8 and 9. In case of 8× 8 blocks, the set in
which the pairs colored blue and yellow in Fig. 4 are rotated is
the best, but in case of 4×4 blocks, rotating all bases showed
the best performance.

The method of rotating a space formed by two row vectors
can be defined by the Givens rotation matrix. Eq. (3) explains
the rotation for two vectors. It can also be described in another
n2-dimensional form:

Rij =


Ii−1

cos θ sin θ
Ij−i−1

− sin θ cos θ
In2−j

 ∈ Rn2×n2 (11)

where i and j are indexes of the row vectors and n is the size
of the blocks.

Let � be a set of pairs to be rotated, and i and j be the
indexes of the vectors in�. The total rotation matrix can then
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FIGURE 3. Examples of patches with different Elow in equation (9). They have different edge patterns by Elow . Elow = (a) 0.8813 (b) 0.8974 (c) 0.9926
(d) 0.9917.

FIGURE 4. Classification of 2D-DCT basis. (a) 8× 8 block DCT and
(b) 4× 4 block DCT. We classify the basis into 5 groups. The navy block
indicates the DC coefficient. The diagonal terms are shown in orange. The
blue blocks indicates bases with the lowest frequency. The yellow blocks
represent second-leveled complicated basis. The other bases are shown
in gray because we do not compare them indivisually.

FIGURE 5. Rotation matrix for the 4× 4 DCT matrix. If θ is known,
the matrix can be made directly without any computations.

be computed as follows:

R(θ ) =
∏

(i,j)∈�

Rij (12)

Fig. 5 shows R(θ ) for 4× 4 blocks. The figure shows that
R(θ ) is only easy to generate if we know the angle because it
can be parameterized by only one variable θ .
Then, the final transform matrix is simple to implement.

We designed the matrix by multiplying the rotation matrix
and the 2D-DCT matrix.

H = R(θ )T (13)

where H is our proposed transform matrix, T is the 2D-DCT
matrix and θ is from (10).

The basis images of H are visualized in Fig. 6. For more
efficient implementations, two methods to reduce computa-
tional complexity are optional. First, the coefficient calcula-
tion can be worked in a separable way in the same manner
as in [24]. Non-separable transforms require more arithmetic
operations, such as addition and multiplication. Therefore,
separation sharply decreases complexity. Second, the com-
putation of the rotation matrix can be replaced by predefined
forms, as shown in Fig. 5. Only if an index table for the
location of θ is available can the matrix be generated directly
without any computation. Our algorithm is summarized in
Algorithm 1 and Fig. 6.

Algorithm 1: Implementation of Partially Rotated
Discrete Cosine Transform
Input: Input image X, Block size n
Output: Transform matrix H
1. Convert image X to n× n patches x;
2. Set T to n× n DCT matrix;
3. Compute the DCT coefficients, C = TxTT ;
4. Compute Elow using (9);
5. Compute the angle θ using (10);
6. Compute the rotation matrix R(θ ) using (11) and (12);
7. Apply the rotation matrix R(θ );

IV. EXPERIMENTS
A. IMPLEMENTATION DETAILS
We experimentally tested with our methods using the four
images in Fig. 7. To create equivalent environments for com-
parison, we resized the images to 256 × 256 pixels before
applying the transforms. To measure the performances of
different transforms, we focused on energy compaction by
comparing image quality with the number of used coeffi-
cients. We compared our method with the KLT, SOTs in [4],
SDCT in [24], and DDCT in [27]. To make an equivalent
comparison, we attempted to find the optimal values and
basis for each transform. SOTs are dependent on the λ in
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FIGURE 6. Block diagram of Algorithm 1.

FIGURE 7. Basis of our transform for (a) 4× 4 and (b) 8× 8 blocks with
θ = 45◦.

their formulation and the optimal λ varies with the num-
ber of bases used. λ is set to be optimal for each sparsity.
In subsection B-2, we attempted to find the best λ with a
step size of 0.01. In subsection B-3, the step size of λ was
set to 0.1. Then, given the parameter, we implemented the
optimization for SOTswith sparse coding formulations. Like-
wise, SDCT has a different optimal θ for each number of
retained coefficients. Therefore, we attempted to find the best
value from 0 to 90 for each number of retained coefficients.

Furthermore, the DDCT in [27] was designed using eight
intra prediction modes of H.264. For achieving the best per-
formance, we found the best mode for each patch using an
exhaustive method.

In the proposed method, quantization is not required in
the searching step, because we calculate the angle using
only (10). However, for efficient transmission in real com-
pression applications, we sufficiently utilize the quantization
in the next encoding scheme to reduce the side information.

Before performing the experiments, we identified the best
sets of pairs to be rotated using (9). In subsection B-1,
we present the best basis set. Then, using the set, we compare
our transform with other transforms.

B. EXPERIMENTAL RESULTS
1) PERFORMANCES FOR DIFFERENT SETS
OF ROTATED VECTORS
To identify the best basis pairs to be rotated, we set four
groups: (1) only the first column and row, except the DC coef-
ficients (blue in Fig. 4 and ‘‘Rotating 1’’ in Figs. 9 and 10);
(2) only the second column and row except the diagonal coef-
ficients (yellow in Fig. 4 and ‘‘Rotating 2’’ in Figs. 9 and 10);
(3) combined first and second columns and rows, except the
DC and diagonal coefficients (blue and yellow in Fig. 4 and
‘‘Rotating 1&2’’ in Fig. 9 and 10); (4) all the pairs, except
the DC and diagonal coefficients (blue, yellow and gray
in Fig. 4 and ‘‘Rotating all’’ in Figs. 9 and 10).

Fig. 9 shows the 4 × 4 comparisons. From these obser-
vations, rotating all pairs produces the best performances.
Rotating only two columns and rows shows similar, but
slightly lower, performances. This is because there is only
one component in ‘‘Rotating all’’ not contained in ‘‘Rotating
1&2’’ and a few high-frequency components in small patches.

Fig. 10 shows the 8 × 8 results. The result differ from the
4×4 results. The results show that, at lower number of bases,
‘‘Rotating 1&2’’ produces the best performances. At a higher
numbers of bases, there are some cases in which ‘‘Rotating 1’’
has similar peak signal-to-noise ratios (PSNRs), depending
on the images. Generally, we chose ‘‘Rotating 1&2’’ as the
best option for our transform.At all levels, ‘‘Rotating all’’ was
lower than the two former groups, unlike in the 4 × 4 block
experiment. This is reasonable because, for larger blocks,
a greater amount of information is present, including more
complicated directional information.

2) QUALITATIVE COMPARISONS
In this subsection, we compare the DCT, KLT, SOT [4],
SDCT [24], DDCT [27], and our method in terms of energy
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FIGURE 8. Test images.

FIGURE 9. PSNR(dB) versus the number of retained coefficient with
different sets to be rotated for 4× 4 blocks.

compaction. For the SDCT, we compare all angles from 0◦

to 90◦ for each number of bases used. This is close to that
of the SDCT, which is similar to the ground truth for our
proposed method, when smaller numbers of coefficients are
retained (small values in the x-axis in Figs. 11 and 12). This
is because, in such cases, the high frequency components are
not often used and the low frequency components are usually
retained. The graphs in Figs. 11 and 12 show the objective
quality, in PSNR (dB), for each number of retained bases.
The results show that our methods are similar to the SDCT at
a low number of retained coefficients. The KLT shows higher
performance with one retained coefficient, but when a greater
number of coefficients are used, it shows lower performance.
We also identify that the proposed method has considerably
better performance than the original DCT for small block

FIGURE 10. PSNR(dB) versus the number of retained coefficient with
different sets to be rotated for 8× 8 blocks.

sizes because the directional information is simple. The SOT
is theoretically better for data compaction than other analytic
methods, as shown in Fig. 12 (a), (b), and (c). This is expected
because the transform is learned and trained directly from the
input data. In Fig. 12 (d), however, the SOT shows poorer
performance than the other transforms. We infer the result
stems from the choice of λ in (1). When choosing this param-
eter, we limited the range from 0.01 to 0.9, with a step size
of 0.01. The performance of the SOT is extremely sensitive
to λ, with little variation. A poor choice gives worse results
than any other transforms. Therefore, to enable an optimal
transform via SOT, an additional algorithm is required to find
the λ parameter. In Fig. 12 (b), our PRDCT shows relatively
similar performance to that of the SOT, but the performance
of PRDCT lower in Fig. 12 (c). This can be attributed to the
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FIGURE 11. Objective quality comparison: PSNR(dB) versus the number of retained coefficients for 4× 4 blocks;.

FIGURE 12. Objective quality comparison: PSNR(dB) versus the number of retained coefficients for 8× 8 blocks;.

characteristics of images in Figs. 8 (b) and (c). The image of
peppers is composed of patches with simple and clear direc-
tions but the image of Lena includes more complex patches
in the hair and feathers that do not have a definite dominant
direction. In [22], it was shown that SDCT and DDCT have
similar performance in terms of the PSNR. In small sparsity
cases, most of the PSNR results of our method are higher than
that of the DDCT and other methods. Our method generally
provides good performance in cases with small target sparsity
and simple directional data.

Fig. 13 shows the structural similarity index mea-
sure (SSIM) comparison results. The PSNR is a good mea-
surement of image quality but cannot always guarantee good
quality. Therefore, we tested our methods using the SSIM
index. The SSIM results show a similar tendency to the
PSNR, but the performance is more similar to the SDCT
(the semi-ground truth for small numbers of retained coef-
ficients) than to the objective measurement. This means that
our method accurately reflects the edge information, which
usually indicates the main orientation of the block. For all
cases, the PRDCT outperformed the DCT and sufficiently
approximated the performance of the SDCTwithout complex
optimization or computations.

As mentioned above, unlike the 2D-DCT, which shows
the optimal bases for the horizontal and vertical sides, our
method is designed by rotating the DCT basis in the major

direction. To show that our method achieves good data
compaction performance for diagonal patches, we visually
compare various directional patches in Fig. 14. The images
shown in Fig. 14 were reconstructed using four transform
coefficients for 8 × 8 blocks. By comparing (c) and (e),
we note that our method reconstructs the image with fewer
block artifacts. Thus, the proposedmethod exhibits better per-
formance in terms of SSIM than PSNR and for uncomplicated
directional data, such as small patches or simple directional
textures, than large or complex data.

For a more subjective quality comparison, we present the
mean opinion score (MOS) in Fig. 15. Experiments were
conducted for two sparsity levels, 3 and 5, with 8×8 patches.
In Fig. 15, we can observe that while our method and SDCT
have similar mean values, the SOT presents low scores that
are different from the PSNR results. Although the SOT can
reconstruct images with small errors, it creates block arti-
facts that hinder the subjective quality. The proposed method
achieved a higher score than DCT, and this result is consistent
with Figs. 13 and 14.

3) PROCESSING TIME
The main contribution of our algorithm is that our approach
is robust to fast implementation. To verify this contribution,
we compared the processing times of the implementa-
tions. For equivalent comparisons, all algorithms were
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TABLE 1. Comparison of operation times among transforms for different images of 256× 256. Our method is faster than the SDCT by a factor of 10 or
more.

FIGURE 13. Subject quality comparison: SSIM versus the number of
retained coefficient for 8× 8 blocks.

implemented using MATLAB R2019a in Windows 10 Edu-
cation on the same computer, equipped with an Intel
i7-9700 CPU and 32-GB RAM. Masera et al. [24] proposed

angle quantization for their SDCT to improve the implemen-
tation efficiency. Therefore, we compared two versions of
the SDCT. The first is the non-quantized SDCT (‘‘SDCT’’
in Table 1), and the second is the ‘‘SDCT-Q,’’, which is
an SDCT implemented using eight-level angle quantization.
We performed 10 experimental trials for each image and
block size using these approaches. The average values and
errors are listed in Table 1. The bold text indicates the
best implementation times. For all images and block sizes,
the results show that our approach can achieve the fastest
processing times. For 4× 4 blocks, the SDCT requires about
2.6 to 2.7 s, but the proposed method requires only approx-
imately 0.22 s. For 8 x 8 blocks, the SDCT requires similar
times as that for 4 x 4 blocks, but the proposed method only
requires approximately 0.08 s. The SOT implementation time
varied widely depending on the image but was higher than
our proposed method in all cases. In short, at minimum, our
method consumes a tenth of the time required for SDCT and
half of that needed for the eight-level quantized SDCT.

4) COMPUTATIONAL COMPLEXITY
To compare real complexity, we calculated the number of
operations, i.e., multiplications and additions for a dataset
X = (x1, x2, . . . , xN ) with xi of size n × n. In this
section, we do not consider vectorization operations.We refer
to [41], [42], and [43] for KLT, DCT, and SOT, respectively.
The number of operations required to calculate KLT matrix
is (n4 + 3n2)N + 9n6. The number of operations for SOT is
2n4N + n2sN + 21n6 for one iteration. The KLT and SOT
are computed by non-separable methods, where transform
matrices are applied to vectorized data. Two non-separable
transforms are applied by the multiplication of a matrix of
size n2×n2 and a vector of size n2×1 forN data. The number
of operations is (2n4 − n2)N . Reference [42] presents a fast
one-dimensional DCT algorithm. The number of operations
of one-dimensional DCT is 2n log n−n + 2. Because we
use a separable two-dimensional DCT, n one-dimensional
DCTs are computed in two ways, i.e., the row and column
transforms for N data. An SDCT algorithm consists of DCT
computations and the application of the rotation matrix for
each quantization level to the entire data. The number of
operations for the DCT is equal to that for the conventional
DCT, and the application of the rotation matrix requires n3
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FIGURE 14. Visual comparison for Barbara for 8× 8 blocks with four transform coefficients. Our method and SDCT result in less block artifacts
than block-based DCT. Furthermore, the proposed method is 10 times faster than the SDCT and twice as fast as than the quantized version.

FIGURE 15. Mean opinion score (MOS) for each method. (a)-(c) represent the results where images are reconstructed using three coefficients.
(d)-(f) indicate the results obtained using images reconstructed by five coefficients.

TABLE 2. Number of operations of each methods. The operations are computed for n× n image patches. T indicates iterations for convergence of SOT
and s is the target sparsity. Q indicates quantization level.

multiplications and n2(n− 1) additions. The total number of
operations is (2n(n log n− n+ 2)+ n3)QN .
For the proposed method, the operations are performed

according to Algorithm 1. Eq. (9) requires n2 + 3

multiplications, n2 + 1 additions, and 1 division. Eq. (10)
requires 2(2n − 1) multiplications, 2(2n − 2) additions, and
1 division for the worst case. Application of the rotation
matrix requires n3 multiplications and n2(n − 1) additions.
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The total number of operations is (4n2 log n + n3 + 8n +
1)N . For simplicity, Table 2 indicates the largest order of
operations. Compared to other methods, except for original
DCT, the proposed method requires less operations.

V. CONCLUSION
In this paper, we propose a novel image transformation frame-
work that can efficiently approximate SOTs using the char-
acteristics of 2D-DCT coefficients and their basis functions.
Existing transformmethods produce good energy compaction
but require a long time and considerable resources because of
their iterative optimizations. These necessarily result in heavy
computational burdens (such as in the SOT) or rely on prior
information (e.g., the angle of the SDCTs and regularization
parameters such as λ in(1)), which require additional com-
putation. To minimize these burdens, our method does not
require any prior information or high-computational iterative
methods. By exploiting the properties of 2D-DCT, we can
address the aforementioned issues with only a few addi-
tional computations and parameters. In addition, this method
reduces the block artifacts that usually occur in block-based
2D transforms. Our experiments verify that our method per-
forms well in objective and subjective quality comparisons.
In addition, we show that our approach can be implemented
faster than other recent approaches. In Table 1, we observe
that our proposed method only requires a tenth of the time
compared of the SDCT and half that of SDCT-Q. Our method
requires about 0.08 s, while the SDCT requires 2.6-2.7 s
and SDCT-Q requires about 0.3 s with a minimum reduc-
tion of reconstruction errors. This is achieved by eliminating
time-consuming computations and approximating the direc-
tion and rotation matrix.

This study focused on image compression and defined
an appropriate angle and basis set for rotation. In the DCT,
a large amount of information tends to be concentrated on a
basis with low complexity at the front. Therefore, by using
this basis, the direction of the dominant edge can be esti-
mated and only basis sets with low complexity rotated. If this
method is applied to other applications in the future, there is
potential to create a new transform basis using an appropriate
angle estimation method and basis set.

Our work has limitations in that it only focuses on a high
level of sparsity, i.e., cases in which only a small number
of coefficients are retained. In such cases, the energy com-
paction of our method is better than that of the original DCT.
However, our transforms contain pairs that do not rotate (the
gray blocks in Fig. 4 (a)), which means that our transform
only performs at similar or slightly higher levels than the
original DCT in case with a large number of retained coef-
ficients. This is not a problem typically because the goal
of the transform requires only a small number of bases, but
this could be an issue in other applications. In future works,
we will attempt to determine the value of angles larger than
one, to better describe other levels of sparsity and contain
more complex directional information.
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