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ABSTRACT Shape from Focus (SFF) is one of the passive techniques to recover the shape of an object under
consideration. It utilizes the focus cue present in the stack of images, obtained by a single camera. In SFF
when the images are acquired, the inter-frame distance, also known as the sampling step size, is assumed to be
constant. However, in practice, due tomechanical constraints, sampling step size cannot remain constant. The
inconsistency in the sampling step size causes the problem of jitter, and produces Jitter noise in focus curves.
This Jitter noise is not visible in images, because each pixel in an image (of the stack) will be subjected to
the same error in focus. Thus, traditional image denoising techniques will not work. This paper formulates
a model of the Jitter noise, followed by the design of system and measurement models for Kalman filter.
Then, the jittering problem for SFF systems is solved using the proposed filtering technique. Experiments
are performed on simulated and real objects. Ten noise levels are considered for simulated, and four for
real objects. RMSE and Correlation are used to measure the reconstructed shape. The results show the
effectiveness of the proposed scheme.

INDEX TERMS Shape from focus, shape reconstruction, Jitter noise, Noise Modeling, Kalman filter.

I. INTRODUCTION
Three-dimensional shape recovery using two-dimensional
images is a well-established research problem in com-
puter vision applications, robot and machine vision,
bio-informatics, medical imaging, consumer cameras,
microscopy, and so forth [1]–[6]. In recent years, many
techniques have been proposed to recover depth maps from
acquired images, as natural scenes under different conditions
produce different cues [7]. These cues are distinguished
from each other, and can be measured, depending on various
factors. One of these cues is focusing that is measured by
determining the blur-degree of the image. The method by
which object shapes within scenes are estimated, by accom-
modating focus cues bymeans of fixed-axis-multiple-images,
is referred to as shape from focus (SFF).

This area of research has progressed extensively in recent
years. All of SFF methods broadly consist of three main
steps; image acquisition, focus measure (FM) application,
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and shape improvement techniques, which are discussed
briefly below.

Shape from Focus systems are modeled by the simple lens
equation, given as:

1
f
=

1
u
+

1
v
, (1)

where f is the focal length of the imaging device, u is the
distance of the object point from the imaging device, and v is
the position of the object point where it is best focused by the
lens. Fig. 1 illustrates this.

In SFF, the image stack is acquired by manipulating one
of the factors of (1), while keeping the other two factors con-
stant. Conventionally, the images are acquired by changing
u of the system. An example of such type of system is an
optical microscope. In other systems, focus settings (focal
length f ) can also be changed to capture images. Exam-
ples of these systems can be found in [8]. Either f or u is
changed in small steps, and an image (of dimensions l × m)
is obtained, and stored in the image stack, giving the total
number of images as n. Changing v for image acquisition
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FIGURE 1. Focusing via Gaussian lens law.

is quite challenging, or mostly not feasible [9]. However,
whatever factor is manipulated, the magnification of the
imaging system should remain constant, while the depth of
field should be as shallow as possible [10].

When all the images are acquired, the result is an image
stack I of dimensions l × m × n, and each pixel in the stack
is represented by Pi,j(k), where 1 ≤ i ≤ l, 1 ≤ j ≤ m and
1 ≤ k ≤ n are the indices in the l, m, and n directions. Pi,j(k)
also represents the pixel curve along the optical axis. This is
shown in Fig. 2. The number of images (n) is given by:

n =
Udisplacement

1
, (2)

where 1 is the sampling step size. The step size expression
for change in u is provided in [9]. The main idea of SFF
is to estimate the shape of the object in consideration using
the focus cues present in the image stack. The sharpness of
focus in an image is measured by a sharpness criterion, called
the focus measure (FM) operator. After the image stack is
obtained, the FM is applied to each pixel, to measure the
amount of focus each pixel possesses, by the following:

2i,j(k) = F
{
Pi,j(k)

}
, (3)

where F is the FM transformation of pixel Pi,j(k) to obtain
the focus value2i,j in the k th image, and represents the focus
behavior or (in other words) the focus curve of the pixel.
There are numerous FMs proposed in the literature, sum-
marized by [8], each designed to suppress the out-of-focus
regions, and enhance the in focus points in each image.
For example, Sum of Modified Laplacian (SML) utilizes
squares of the second derivative of the images, Tenengrad or
Tenenbaum (TENG) utilizes the first derivative of the image,
and Gray Level Variance (GLVA) uses statistical method to
compute variance as focus measurement, whereas, Image
Curvature(CURV ) calculates image surface curvature. There
are other FMs such as Image Contrast (CONT ), 3D Laplacian

FIGURE 2. Image acquisition in SFF systems.

(GRA-3), Discrete Cosine TransformEnergy (DCTE), Spatial
Frequency (SFRQ), Sum of Wavelet Coefficients (WAVS),
and Steerable Filters (SFIL). The key role of FM in SFF
systems is to provide a sharp focus curve (in parallel to the
optical axis) for every object point in the image stack.

Conventionally, the initial depth map Di,j can be obtained
by maximizing the focus curve along the optical axis, and
obtaining the value of k where 2i,j(k) is the maximum
according to:

Di,j = argmax
k

(2i,j(k)). (4)

When the images are acquired, the shape of the object
is discretized into image frames, causing loss of informa-
tion between two consecutive frames. To address this issue,
many techniques have been proposed in the literature. The
traditional techniques used SML as focus measure and apply
Gaussian interpolation technique to compute intra-frame val-
ues for better focus [11], [12]. The other concept of focused-
image-surface and curved-focused-image-surface [13], [14],
utilizes piecewise curved surface approximation. Alterna-
tively, Neural Networks and Deep Neural Networks have also
been employed [2], [15], [16].

Kim et al. in [17] proposed a method to improve the
efficiency of neural networks by introducing a weight passing
method.Muhammad&Choi in [10] proposed amethod based
on Bezier Surface approximation. Ali et al. in [18] increased
the accuracy of 3D shapes by applying 3D weighted least
squares to enhance image focus volume. Ali et al. in [19] also
used the wavelet transform method to improve shape recon-
struction. Guided image filtering for depth enhancement in
SFF is proposed by [20]. Also, Ali et al. in [21] recovered
several 3D shapes by applying different FMs, and combining
their results into one final shape. Fan et al. in [22] used the
combination of 3D steerable filters on treating texture-less
regions. Since the reconstructed 3D shape quality in SFF
depends on the applied FM, another FM based on the analysis
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of 3D structure tensor of the image sequence is proposed by
[23]. Ma et al. in [24] proposed a method for depth recon-
struction that utilized non-local matting Laplacian along with
Markov RandomField. Yan et al. [25] utilized pulsed coupled
neural network to aggregate shape using focus. Jang et al.
in [26] proposed shape optimization through non-para-metric
regression.

The paper is structured as follows. Focus measurement
and focus curve models are discussed in next section fol-
lowed by motivation of the work. Section IV addresses Jitter
noise Modeling. Section V proposed the methodology, while
Section VI presents the Results and Discussion. Section VII
then concludes the work.

II. FOCUS MEASUREMENTS & FOCUS CURVE MODELS
The focus curves or the focus behavior (of every individual
pixel) depend on the FM used, the nature of cue the FM
utilizes, the camera (imaging device) parameters, and most
importantly, the image texture around that object point [8],
[9]. If the images are acquired properly, then these focus
curves are bell-shaped [12].

To approximate these bell-shaped focus curves, three mod-
els are used, namely, Gaussian Model [11], Lorentzian-
Cauchy Model [9], and Quadratic Model [27].

The Gaussian Model is given by:

2G(k) = AG exp

[
−
(k − BG)2

2C2
G

]
, (5)

the Lorentzian-Cauchy Model is given by:

2L(k) = AL
B2L

B2L + (k − CL)2
, (6)

and the Quadratic Model is given by:

2Q(k) = AQk2 + BQk + CQ, (7)

where the As, Bs and Cs are the parameters of each model.
The unification of these models into Quadratic Model have
been provided by [27]. If the logarithmic transformation is
applied to (5), and the equations are simplified, it transforms
to (7) [27], as follows:

log(2G(k))
2G→2Q
H⇒ log(AG)−

1

2C2
G

(k2 + B2G − 2BGk). (8)

Similarly, the reciprocal transformation, when applied to
(6) can result in (7) after simplification, as follows:

1
2L(k)

2L→2Q
H⇒

1

ALB2L
(B2L + k

2
+ C2

L − 2CLk). (9)

Fig. 3 shows the transformation of the Gaussian and
Lorentzian-Cauchy Models to the Quadratic Model.

This paper utilizes the Quadratic model (given in (7)) to
model the Jitter noise in SFF systems in the next section.
The Quadratic model provides computational advantage over
Gaussian and Lorentzian-Cauchy models, due to its simplic-
ity and robustness [27].

FIGURE 3. Quadratic transformation of Gaussian and Lorentzian-Cauchy
models.

III. MOTIVATION
In SFF, when the shape is discretized into image frames
by sampling the object in scene, the step size for sampling
is presumed constant [9]. Although shape from focus has
been thoroughly investigated in recent years, there still exist
several insufficiently solved problems that impact the perfor-
mance of the system. One of these problems is the unstable
or non-constant sampling step size. This can be due to the
mechanical structure of the imaging device and lens-focusing
methods. The resultant variation in the amplitude of the sig-
nal due to instability in sampling step size is referred to as
Jittering or Jitter noise.

Jang et al. in [28] proposed the removal of Jitter noise using
Kalman Filter. Since then, many variants of their method have
been proposed [29]–[33]. However, all of their methods used
scalar-models for Kalman filter (i.e., the system matrix was
taken as 1), and ignored the dynamic nature of focus cues.
For each step, multiple images were acquired to eliminate
the Jitter i.e., if there were n images (of dimensions l × m)
in the stack, they required 100 samples for each step, and
therefore, n × 100 samples were required for each focus
curve. This increases the complexity of the system, and huge
computational cost has to be paid. It also impacts the practical
use of their methods. Also, Jang et al. in [28]–[33] considered
only symmetric bell-shaped distributions for vibrational noise
in translational stage, and their designed measurement model
measures only a constant (each step position k). However,
in such case taking the mean of the measurement values on
every step position k can provide the similar results. The
authors have also considered the Jitter noise to have Normal
and Levy distributions [28], [31]; however, in practice, this
resultant Jitter noise due to the vibrational noise does not fol-
low (Normal or Levy) symmetric bell-shaped distributions.

In this paper, the nature of Jitter noise has been studied
and necessary conditions for approximating this noise are
proposed and discussed. Jitter noise in SFF systems is a
position dependent noise and varies according to the focus
position. The manuscript models Jitter noise and conclude
that it follows gamma (0) distribution (a non-symmetric
distribution) with a constant mean and position dependent
variance (discussed in Section IV). A Kalman filter is
then designed for removing this noise from SFF systems.
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The system matrix is formulated using the Taylor series,
followed by explanation and design of the measurement
model. The shape recovery expression is then provided. In the
proposed scheme, a single measurement is taken for each
step. Thus, for n images (of dimensions l × m) in the image
stack, the proposed method requires only n samples for each
focus curve, and utilizes 100 times less images as compared
to previous methods, providing better shape recovery results
in terms of correlation and RMSE (provided in Section VI).

IV. JITTER MODELING IN SHAPE FROM FOCUS SYSTEMS
In SFF systems, jitter occurs when there is uncertainty or
unevenness in the step size of u or f . In this section, we dis-
cuss the step size in both situations of image acquisition
i.e., change in object distance from the lens (1u), and change
in focal length of the imaging device system (1f ).
After this, we discuss types of Jitter, followed by the

proposed model for Jitter noise. The next section utilizes this
proposed Jitter noise model and Kalman filter to remove the
effects of jittering on focus curves.

A. STEP SIZE IN SFF IMAGE ACQUISITION
The step size expression for u is provided by [9]. In their
system, the object is moved towards (or away from) the
imaging device in small constant steps of 1u, by keeping
the focal length and magnification constant, and also keeping
the depth of field as shallow as possible. Their simplified
expression for 1u (step size) is provided as follows:

1u =
DoF
4× ρ

, (10)

where DoF is the depth of field of the system, and
ρ = 2.9957, as provided by [9]. Equation (10) provides the
maximum limit for1u. The ideal example of such systems is
an optical microscope.

The images can also be acquired by changing the focal
length of the system in small, constant increments of1f [34].
In this type of image acquisition for SFF, the object is held
static in front of the imaging device, and the device focal
length is changed. Mostly, auto-focusing algorithms utilize
this type of technique for searching for the best focal lens
position for a single point. This can also be used for depth
and shape estimation of the object under consideration [35].

In both the above cases, an image is stored at every step to
obtain a stack of images, as discussed in Section I.

B. MODELING JITTER IN SFF
To model the jitter, consider again the Quadratic function,
as follows:

g(k) = a2k2 + a1k + a0, (11)

where a2, a1 and a0 are the equation parameters, g(k) is the
quadratic function, and 1 ≤ k ≤ n represents the sample
points of this function. The step size is1k = k− (k−1), and
is considered as 1.

To model Jitter noise, consider the uncertainty in step size
as, ε ∼ N (0, σ 2

ε ), then (11) can be written as follows:

g(k + ε) = a2(k + ε)2 + a1(k + ε)+ a0. (12)

Rewriting (12), by expanding the squared terms and sim-
plifying using the Taylor series, the following equation is
derived:

g(k + ε) = a2k2 + a1k + a0 + ε(2a2k + a1)+ ε2a2. (13)

Using (11) and (13), following is obtained:

g(k + ε) = g(k)+ εg′(k)+ ε2
g′′(k)
2

. (14)

Equation (14) shows that the noise on the RHS of the
equation is multiplied to the first and second derivatives of
the function, concluding that the Jitter noise in SFF systems
depends on the slope and concavity of the focus curves. If ε is
Normal (N (0, σ 2

ε )), ε
2 will follow a chi-square distribution.

Equation (14) can be rewritten as:

g(k + ε) = g(k)+ ηkN + ηkχ , (15)

where ηkN and ηkχ are given by the following:

ηkN = εg
′(k) = ε(2a2k + a1), (16)

and,

ηkχ = ε
2 g
′′(k)
2
= ε2a2, (17)

where ηkN is normally distributed with mean µN = 0 and
variance σ 2

N = (2a2k + a1)2σ 2
ε . Meanwhile, ηkχ follows

gamma (0) distribution, withmeanµχ = a2σ 2
ε , and variance

σ 2
χ = 2a22σ

4
ε . Therefore, the total resultant noise η will have

mean µη = a2σ 2
ε and variance as σ 2

η = (2a2k + a1)2σ 2
ε +

2a22σ
4
ε . Derivation of the mean (µη) and variance (σ 2

η ) is
based on the standard manipulations with probability theory
formulas and properties of expectations.

The value of the variance of ηkN (σN ) will be different at
every k th step, and will become zero at:

k = −
a1
2a2

. (18)

The direction of ηkχ will always be towards the concavity
of the function.

The range (Rχ ) of ηkχ depends on g
′′(k). If g′′(k) > 0, then

0 < εχ < ∞; similarly, if g′′(k) < 0, then −∞ < εχ < 0;
and if g′′(k) = 0, the effect of this noise is zero. However,
the physical limitations and restrictions of the imaging device
restrict εχ < 1k . The noise factor of ηkχ will remain
throughout the function g(k + ε); however, the sign of ηχ
will depend on the sign of g′′(k), and will always be towards
the concavity of the function.

For the values of k other than (or near to) the value given
in (18), ηkN will be more significant for ηkχ . But as the
function approaches the value given in (18), the effect of ηkN
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diminishes, while the contribution of ηkχ becomes signifi-
cant. However, if the variance of ε, given by:

σε ≤
1

6
, (19)

is chosen, the effect of ηχ can be ignored, making ηN the
only contribution to the noise, and the resultant noise will be
Normal. However, if the condition given in (19) is violated,
then ηkχ can play a significant role, and thus cannot be
ignored. The combination of both ηkN and ηkχ results in a
non-Normal noise.

V. THE PROPOSED METHODOLOGY
In the previous section, Jitter noise is modeled, and explained
in detail. In this section, the proposed method is presented.
The proposed scheme can be applied in two ways, before FM
(as pre-FM application, i.e., on pixel curves Pi,j(k)), or after
FM (as post-FM application, i.e., on focus curves 2i,j(k)).
To fully remove the Jitter noise from the pixel/focus curves,
the Kalman Filter is designed as follows:

A. KALMAN FILTER DESIGN
To model and design the Kalman filter, the proposed method
in this manuscript utilizes the cubic equation to design
the system, and measurement equations for the filter to
remove the Jitter noise from the pixel/focus curves. Although
quadratic equation can also be utilized, cubic equation gives
the system model more robustness and flexibility, since the
cubic equation is of higher degree than quadratic equation.
The system and measurement models are derived in the fol-
lowing sections.

1) SYSTEM MODEL
In order to derive the system model for Kalman filter appli-
cation, the cubic equation is considered and is given as:

hk = a3k3 + a2k2 + a1k + a0, (20)

where a0, a1, a2, and a3 are the coefficients of the equation,
and hk is the cubic function. The first, second, and third
derivatives of (20) are:

h′k = 3a3k2 + 2a2k + a1,

h′′k = 6a3k + 2a2,

h′′′k = 6a3. (21)

Using the Taylor series again, the equation for hk+1 is
written as:

hk+1 = a3(k + 1)3 + a2(k + 1)2 + a1(k + 1)+ a0. (22)

By expanding the powers in (22) and rearranging the fol-
lowing is obtained:

hk+1 = a3k3 + a2k2 + a1k + a0 + 3a3k2

+ 2a2k + a1 + 3a3k + a2 + a3. (23)

Utilizing (20) and the set of equations in (21); (23) can be
rewritten as:

hk+1 = hk + h′k +
1
2
h′′k +

1
6
h′′′k . (24)

Using (24), and repeating the process for h′(k + 1), h′′(k +
1), and h′′′(k + 1), a similar set of equations can be obtained
for the set of hk , and its derivatives:

hk = hk−1 + h′k−1 +
1
2
h′′k−1 +

1
6
h′′′k−1,

h′k = h′k−1 + h
′′

k−1 +
1
2
h′′′k−1,

h′′k = h′′k−1 + h
′′′

k−1,

h′′′k = h′′′k−1. (25)

Thus, utilizing this set of equations in (25), the system
equations for the Kalman filter can be written as:

Xk = AXk−1 + ωk , (26)

where A is the system state matrix, Xk is the state vector. The
predicted state noise at k is given by ωk ∼ N (0,Q), and h
represents the focus curve (2i,j(k)) or pixel curve (Pi,j(k))
values. The manuscript assumes that there is no system noise
and the only noise present is due to jitter in measurements,
therefore, Q (the process covariance matrix) is assumed to
have a very small value but not 0. Then, state vector Xk , and
system matrix A are given by:

Xk =


hk
h′k
h′′k
h′′′k

 , A =


1 1

1
2

1
6

0 1 1
1
2

0 0 1 1
0 0 0 1

 .
The system covariance equation is provided by:

9−k = A9k−1AT + Q, (27)

where 9−k is the predicted (estimated) covariance matrix at
k , 9k−1 is the predicted covariance matrix at k − 1, and Q is
the process covariance matrix, respectively.

2) MEASUREMENT MODEL
The next step in the proposed methodology is to design
the measurement model for the Kalman filter. For this pur-
pose, (20) is rewritten using the Taylor series and the steps
explained in Section IV, as follows:

hk+ε = a3(k + ε)3 + a2(k + ε)2 + a1(k + ε)+ a0, (28)

by rearranging, and utilizing (21), the following is obtained:

hk+ε = hk + εh′k +
ε2

2
h′′k +

ε3

6
h′′′k . (29)

Utilizing the condition explained in (19), the ε2 and ε3

factors can be ignored, resulting in a simplified measurement
model, as follows:

Yk = CXk + ηk , (30)
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TABLE 1. Summary of Kalman Filter equations for proposed scheme (as pre/post FM application).

where Yk represents the measurements of the pixel curve or
focus curve of pixel Pi,j(k) after FM application at the k th

image, C is the state measurement matrix (given as C =[
1 0 0 0

]
) and ηk is the noise in measurement due to jitter,

as modeled in Section IV.
As the filter can be applied in two ways:

• when applied before FM (as pre-FM application), i.e., on
pixel curves, then: Yk = Pi,j(k),

• or when applied after FM (as post-FM application),
i.e., on focus curves, then: Yk = 2i,j(k).

3) UPDATED STATES AND KALMAN GAIN
The Kalman gain is computed on every step using (31) as:

Kk = 9
−

k C
−1 [C9−k CT

+ R
]−1

, (31)

where Kk is the Kalman gain at k , and R is the measurement
covariance matrix. The optimal state estimate is computed
using the following:

X̂k = X̂−k + Kk [Yk − CX̂
−

k ],

9k = (I − KkC)9
−

k , (32)

where X̂−k = AX̂k−1.

B. SHAPE RECOVERY
After the nth step iteration for the focus curve is completed,
the depth for every pixel is recovered to obtain the shape of
the object under consideration. As presented in the previous
section, the filter can be applied in two ways, pre- or post-
FM application.

If the filter is applied as pre-FM application then before
recovering the depth map, FM is applied on P̂i,j(k) to obtain
2̂i,j(k) using (3). However, if the filter application is post-FM,
then the depth map can be recovered directly using 2̂i,j(k).

For every object point i, j the coefficients of (20) (around
k∗) are estimated using the following:

M̂i,j =
[
4i,j(k∗)

]−1
8i,j(k∗), (33)

where k∗ is the position where 2̂i,j(k) is maximum, and is
obtained by the following:

k∗ = argmax
k

(2̂i,j(k)). (34)

In (33), the vector M̂i,j represents the collection of param-
eters of hk , 8i,j(k∗) are the values of 2̂i,j(k) around k∗, and
4i,j(k∗) is the coefficient matrix; all for i, j object point and
defined as follows:

M̂i,j =


â0
â1
â2
â3

 , 8i,j(k∗) =


2̂i,j(k∗)

2̂i,j(k∗ − 1)
2̂i,j(k∗ − 2)
2̂i,j(k∗ + 1)

 ,

4i,j(k∗) =


1 k∗ k∗2 k∗3

1 (k∗ − 1) (k∗ − 1)2 (k∗ − 1)3

1 (k∗ − 2) (k∗ − 2)2 (k∗ − 2)3

1 (k∗ + 1) (k∗ + 1)2 (k∗ + 1)3

 .
The refined and filtered depth (KDi,j) for every Pi,j is then

recovered by:

KDi,j =
(
−
â1
2â2

)
i,j
. (35)

VI. RESULTS AND DISCUSSION
This section analyzes the experimental results, and discusses
them in detail. The section is divided into three subsections.

First, details of the experimental setup are provided, fol-
lowed by the depthmap and shape assessment criteria, and the
metric measures used. Later the detail analysis of the affects
of Jitter noise on SFF is provided at the end of the section.
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TABLE 2. Summary of experimented objects.

A. EXPERIMENTAL SETUP
Experiments for shape reconstruction analysis are performed
on seven objects. Table 2, provides a summary of the objects
used in the 3D shape analysis. Ten simulated datasets of
simulated cone are generated with different lens positions and
Jitter noise levels using camera simulation software (AVS).
The details of AVS are provided in [8], [36], [37]. TheMatlab
code used can be downloaded from [8]. All the datasets
consist of 97 images with 360×360 pixels. The AVS software
is provided with the depth map, texture image, and camera
parameters. The texture map consists of concentric circles of
two alternating black and white stripes. The depth maps and
the texture images used for image generation via AVS for all
sequences of Simulated Cone are the same. The difference
in each dataset is the uncertainty in step size 1u to generate
the sequences, in order to study the effect of Jitter on shape
reconstruction. The values of variance σε in 1u are (0, 0.1,
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0).

The real datasets contain real objects, Real Cone, Real
Plane, LCD-TFT Filter, Groove, Coin, and Image-I. These
image sequences were originally in gray-scale. Fig. 4 pro-
vides the ground truths of Simulated and Real cones. Fig. 5
shows the 10th frame of each image sequence. These image
sequences have been widely used by many researchers
including [19], [38]–[42].

Images of Real Cone were taken using the CCD camera
system, [13], with dimensions of 200 × 200 × 97. The Real
Plane image sequence is also obtained in a similar way, and
contains 87 image frames eachwith a size of 200×200 pixels.
Sixty images of the LCD-TFT filter were taken by the micro-
scopic control system (MCS), with each image consisting of
300× 300 pixels.
The coin sequence consists of magnified images of Lin-

coln’s head from the back of a US penny. The LCD-TFT
filter images were microscopic images of an LCD color filter.
These images were also obtained by means of MCS. The
system consisted of a personal computer integrated with a
frame grabber board (Matrox Meteor-II) and a CCD camera
(SAMSUNGCAMERASCC-341) mounted on amicroscope
(NIKONOPTIPHOT-100S). Computer software acquired the
images by controlling the lens position through a stepper
motor driver (MAC 5,000), possessing a 2.5 nm minimum
step length. All the images being stored in sequence at every
step were captured by varying the object plane.

The sequence of Image-I is the letter I engraved in a
metallic surface. This sequence consists of 60 images, and

FIGURE 4. Ground truth of simulated Cone and real Cone.

was also obtained via the same system under magnification
of 10×. The dimensions of this image sequence are 300×300
pixels.

The Groove image sequence is of a V-groove engraved in a
metallic surface. The dimensions of this image sequence are
300× 300 pixels, with 60 images.

B. METRIC MEASURES
The shape reconstruction quality is the characteristic that
measures the perceived difference between the reconstructed
shape and the ideal shape. As the difference increases,
the quality of shape reconstruction reduces. In this article,
the quality of the depth map obtained by using different focus
measures under various levels of Jitter noise is analyzed.
In the ideal case, the obtained depth map is indistinguishable
from the original map, and the difference is zero, hence,
the quality of the map is at its maximum. Several quality met-
rics have been provided in the previous literature [43]. In this
manuscript, RMSE and correlation are used to compare the
proposed method combined with various FM operators under
different levels of Jitter noise.

Root Mean Square Error (RMSE) is the square root of
the variance of the residuals of the data under observation.
This indicates how close the perceived shape is to the orig-
inal shape. A lower value of RMSE indicates better results,
written as:

RMSE =

√√√√ 1
(l × m)

l∑
i

m∑
j

(
Gtruei,j − D

obtained
i,j

)2
(36)

where Gtrue is the ground truth, Dobtained is the obtained
depth map, and l × m are the dimensions of the depth maps.
The higher the value of RMSE , the larger the error in shape
reconstruction; for better results, the value should be close to
zero.

Correlation, or Pearson Correlation, is a linear relationship
or similarity measure between two shapes [44], given by:

ρGD =
cov(Gtrue,Dobtained )

σGσD
(37)

where cov is the covariance, and σ 2
G and σ 2

D are the variances
of Gtrue and Dobtained , respectively.

C. EXPERIMENTAL RESULTS AND DISCUSSION
For experimentation, ten well-known FMs, namely, Sum of
Modified Laplacian (SML), Tenenbaum (TENG), Grey Level
Variance (GLVA), Image Curvature (CURV), Image Contrast
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FIGURE 5. 10th frame of image sequence of each experimented object. (top row: right to left) Simulated Cone with σε = 0 and σε = 2.0, Real Cone, Real
Plane and LCD-TFT, Groove, Coin and Image-I.

TABLE 3. Comparison of proposed method with previous methods using SML, GLVA and TENG with Jitter noise (σ2
η = (2a2k + a1)2σ2

ε + 2a2
2σ

4
ε ), σ2

ε = 0.1.

FIGURE 6. Correlation and RMSE using SML as FM with different values
of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without using

Kalman filter, with filter as pre-FM step and filter as post-FM step. The
dotted line shows the linear trend of the data.

(CONT), 3D Laplacian (GRA3), DCT Energy Ratio (DCTE),
Spatial Frequency (SFRQ), Sum of Wavelet Coefficients
(WAVS), and Steerable Filters (SFIL) are used.

The experiments are first performed on the Simulated Cone
image sequence with values of variance σ 2

ε in 1u of (0, 0.1,
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0), with all the ten

FIGURE 7. Correlation and RMSE using TENG as FM with different values
of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without using

Kalman filter, with filter as pre-FM step and filter as post-FM step. The
dotted line shows the linear trend of the data.

above-mentioned FMs. Tables 4 to 13 list the results of these
experiments.

In Table 3 the proposed method is compared with previous
methods provided by Jang et al. in [28]–[33]. The results
are provided for σ 2

ε = 0.1. The first method is a scalar
Kalman filter method, followed by scalar version of modified
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FIGURE 8. Shape reconstruction of Simulated Cone using SML as FM. (left-right) Jitter variance 0, 1.0 and 2.0
(top-bottom) SML only (3D shape and its cross-section), Kalman Filter before SML (3D shape and its cross-section),
Kalman Filter after SML (3D shape and its cross-section).

Kalman filter method, ANNF method, MCCKF method and
IMCCKF method. All of these methods use 100 iterations
per step. RMSE and correlation results are provided in the
table use SML, GLVA and TENG FMs. Results of proposed

filtering technique (before and after FMs) are also shown.
The proposed scheme utilizes only single measurement for
each step. The RMSE results of proposed technique are better
for all the FMs as compared to previous methods. Whereas,
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FIGURE 9. Shape reconstruction of Simulated Cone using TENG as FM. (left-right) Jitter variance 0, 1.0 and 2.0
(top-bottom) TENG only (3D shape and its cross-section), Kalman Filter before TENG (3D shape and its cross-section),
Kalman Filter after TENG (3D shape and its cross-section).

the correlation results of the proposed scheme are better or
comparable to other methods. Only the correlation values of
IMCCKFmethod are better than proposedmethod as they use
more data, but their RMSE results are poor in comparison to

proposed scheme. This is due to the fact that the proposed
scheme utilizes only the basic Kalman filter model. The
results can be further improved if advance variants of Kalman
filter are used with proposed scheme.
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FIGURE 10. Correlation and RMSE using GLVA as FM with different values
of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without using

Kalman filter, with filter as pre-FM step and filter as post-FM step. The
dotted line shows the linear trend of the data.

TABLE 4. RMSE and Cor. for shape reconstruction using SML with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

For further experimentation, each level of noise and
FM, three scenarios are considered: FM only (i.e., with-
out proposed filter), proposed filtering as a pre-processing
step, (i.e. applied before FM), and proposed filtering as a
post-processing step, (i.e. applied after FM). Each table has
seven columns, with the σ 2

ε in the first column, followed by
one column each for correlation and RMSE for each scenario.

Table 4 along with Fig. 6 show the results of shape
reconstruction for Simulated Cone under various levels of
Jitter noise. The solid lines with markers show the corre-
lation and RMSE values, whereas the dotted lines show

FIGURE 11. Correlation and RMSE using WAVS as FM with different
values of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without

using Kalman filter, with filter as pre-FM step and filter as post-FM step.
The dotted line shows the linear trend of the data.

TABLE 5. RMSE and Cor. for shape reconstruction using TENG with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

the general linear trend of the data. From the table and
the figure, it is clear that when SML is used without the
proposed scheme, as the noise level increases, the results
become poorer. At lower noise levels, the values of cor-
relation are similar for all three scenarios, whereas, when
the noise levels increase, the correlation values without the
proposed filter decrease sharply at 11.6%. The decrease in
correlation values with the use of filter as pre- or post-step is
merely 0.22% and 0.23%, respectively. The RMSE values of
shape reconstruction when using SML start with 7.339 and
increase at high rate of 17.95%, whereas the RMSE values
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TABLE 6. RMSE and Cor. for shape reconstruction using GLVA with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

TABLE 7. RMSE and Cor. for shape reconstruction using WAVS with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

TABLE 8. RMSE and Cor. for shape reconstruction using CONT with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

when using the proposed scheme start at the lower value of
6.952 and 7.194 and decrease at 13.94% and 7.69% with
increase in noise levels. The graphs and tables clearly show
that when the proposed scheme is applied as pre- or post-step,
the results are better, as compared to just using SML. Fig. 8
represents the shape reconstruction of Simulated Cone using
SML under various noise levels in all three scenarios, along
with the cross-sections of these shapes. The blue line in the
cross-section figures represents the ground truth for simu-
lated cone.

Table 5 and Fig. 7 provide the results of shape reconstruc-
tion when TENG is used as FM. A similar trend is observed,
as the values of correlation at lower noise levels are similar for
all three scenarios, whereas, when the noise levels increase
the correlation values without the filter decrease sharply at
0.83%. The decrease in correlation values with the use of
filter as pre/post step is merely 0.18% and 0.19%. The RMSE

TABLE 9. RMSE and Cor. for shape reconstruction using GRA3 with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

TABLE 10. RMSE and Cor. for shape reconstruction using DCTE with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

TABLE 11. RMSE and Cor. for shape reconstruction using SFRQ with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

values of shape reconstruction when using TENG start with
7.315 and increase at 9.43%, whereas the RMSE values when
using the proposed scheme start at the lower value of 6.829
and 6.912 and decrease at 1.27% and 7.25% with increase in
noise levels. The graphs and tables clearly show that when the
proposed scheme is applied as pre- or post-step, the results are
better, as compared to just using TENG. Fig. 9 represents the
shape reconstruction of Simulated Cone using TENG under
various noise levels in all three scenarios, along with the
cross-sections of these shapes.

Table 6 and Fig. 10 give the results of shape reconstruction
when GLVA is used as an FM. When noise level increases
and the GLVA is used without filtering, the correlation levels
decrease by 0.83%. The correlations with filter in both pre-
and post-application remain similar with decrease of 0.015%
over the increase of noise from 0 to 2.0.When no filter is used,
the RMSE values show a similar trend of 10.86% increase,
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FIGURE 12. Shape reconstruction of Simulated Cone using GLVA as FM. (left-right) Jitter variance 0, 1.0 and 2.0
(top-bottom) GLVA only (3D shape and its cross-section), Kalman Filter before GLVA (3D shape and its cross-section),
Kalman Filter after GLVA (3D shape and its cross-section).

and when proposed technique is used, about 3% and 10%
decrease.

Table 7 and Fig. 11 provide the results of WAVS as FM
under all three scenarios of FM and the proposed method

application. As noise increases, the correlation of WAVS
decrease at the rate of 1%, but when combined with the
proposed technique, with the increase in noise, it increases
at 0.7%. However, at lower values of noise, the WAVS with
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FIGURE 13. Shape reconstruction of Simulated Cone using WAVS as FM. (left-right) Jitter variance 0, 1.0 and 2.0
(top-bottom) WAVS only (3D shape and its cross-section), Kalman Filter before WAVS (3D shape and its
cross-section), Kalman Filter after WAVS (3D shape and its cross-section).

or without filtering behaves similar. The trend in RMSE
values also suggests that WAVS combined with the proposed
technique offers better performance. The shape reconstruc-
tion results are provided in Fig. 12 and Fig. 13, respectively.

Table 8 and Fig. 14 show the RMSE and correlation results
when using CONT as an FM. In all three scenarios, it behaves
poorly. Table 9 and Fig. 15 provide the results of the shape
reconstruction of simulated cone when GRA3 is used as the
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FIGURE 14. Correlation and RMSE using CONT as FM with different
values of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without

using Kalman filter, with filter as pre-FM step and filter as post-FM step.
The dotted line shows the linear trend of the data.

TABLE 12. RMSE and Cor. for shape reconstruction using CURV with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

FM. As the noise increases and only GRA3 is used, the cor-
relation values decrease at the rate of 0.8%. When GRA3 is
combined with the proposed scheme, the correlation values
almost remain consistent, with the trend of 0.2% decrease
over increase in noise levels. When the proposed method is
used, the RMSE values for GRA3 are lower. Tables 10 to 13
provide the results of DCTE, SFRQ, CURV, and SFIL FMs.
The RMSE and correlation values have similar trend to the
other FMs. The combinations of all these FMs with the
proposed method show better correlation values and lower

FIGURE 15. Correlation and RMSE using GRA3 as FM with different
values of variance of Jitter noise σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ; without

using Kalman filter, with filter as pre-FM step and filter as post-FM step.
The dotted line shows the linear trend of the data.

TABLE 13. RMSE and Cor. for shape reconstruction using SFIL with
different levels of variance of Jitter noise (σ2

η = (2a2k + a1)2σ2
ε + 2a2

2σ
4
ε ).

RMSE values, as compared to using FMs only. The RMSE
and Cor. graphs are shown in Fig. 16 and Fig. 17, respectively.
Table 14with Fig. 18 and Fig. 19, show the similar compar-

ison of Real Cone with and without the proposed scheme for
Jitter noise variance ση affected by 0 ≤ σ 2

ε ≤ 0.75. The table
and graphs clearly suggest the effectiveness of the proposed
scheme. The correlation values across noisy conditions for
the proposed scheme are higher as compared to using FM(s)
only, whereas the RMSE values are lower. Figures 20 to 22
represent the shape construction of Real Cone with and with-
out the proposed scheme. The reconstructed shapes when

102534 VOLUME 9, 2021



H. Mutahira et al.: Sampling-Noise Modeling & Removal in SFF Systems Through Kalman Filter

FIGURE 16. Correlation and RMSE using DCTE and SFRQ as FM with different values of variance of Jitter noise
σ2
η = (2a2k + a1)2σ2

ε + 2a2
2σ

4
ε ; without using Kalman filter, with filter as pre-FM step and filter as post-FM step. The dotted line

shows the linear trend of the data.

FIGURE 17. Correlation and RMSE using CURV and SFIL as FM with different values of variance of Jitter noise σ2
ε ; without using

Kalman filter, with filter as pre-FM step and filter as post-FM step. The dotted line shows the linear trend of the data.
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FIGURE 18. Correlation for Real Cone with different TENG, SML,
GRA3 and CONT with different values of variance of Jitter noise
σ2
η = (2a2k + a1)2σ2

ε + 2a2
2σ

4
ε ; with and without using proposed filter.

The dotted line shows the linear trend of the data.

using the proposed scheme are smoother as compared to the
ones reconstructed using FM(s) only, as these shapes have
surface-roughness produced due to jitter, and FMs cannot
remove this alone.

FIGURE 19. RMSE for Real Cone with different TENG, SML, GRA3 and
CONT with different values of variance of Jitter noise
σ2
η = (2a2k + a1)2σ2

ε + 2a2
2σ

4
ε ; with and without using proposed filter.

The dotted line shows the linear trend of the data.

Fig. 23 and Fig. 24 represent the shape reconstruction
for Real Plane, LCD-TFT filter, Image-I, and Coin, using
SML, GLVA, TENG, DCTE, and WAVS FMs, with FM
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FIGURE 20. Shape reconstruction of Real Cone using different FMs, without using proposed filtering technique. (left-right) σ2
ε = 0, σ2

ε = 0.1, σ2
ε = 0.25,

σ2
ε = 0.5, σ2

ε = 0.75. (top-bottom) SML, GLVA, TENG, DCTE.

FIGURE 21. Shape reconstruction of Real Cone using different FMs, with using proposed filtering technique as pre-step. (left-right) σ2
ε = 0, σ2

ε = 0.1,
σ2
ε = 0.25, σ2

ε = 0.5, σ2
ε = 0.75. (top-bottom) SML, GLVA, TENG, DCTE.
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FIGURE 22. Shape reconstruction of Real Cone using different FMs, without using proposed filtering technique as post-step. (left-right) σ2
ε = 0, σ2

ε = 0.1,
σ2
ε = 0.25, σ2

ε = 0.5, σ2
ε = 0.75. (top-bottom) SML, GLVA, TENG, DCTE.

FIGURE 23. Shape reconstruction of (top-bottom) Real Plane and LCD-TFT using (left-right) SML, GLVA, TENG, DCTE and WAVS.

only and the proposed filter used as post-FM application.
In Real Plane reconstructed shape, the similar smoothness
phenomenon (as Real Cone) can be observed in Fig. 23. The

roughness in shape, due to jittering when using only FM
is smoothed by the filter i.e., the jitter effect is removed.
In LCD-TFT filter, the cylindrical shape of the filter is
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FIGURE 24. Shape reconstruction of (top-bottom) Image-I and Coin using (left-right) SML, GLVA, TENG, DCTE and WAVS.

FIGURE 25. Shape reconstruction of Groove using proposed technique as pre/post-filtering, (left-right) SML, GLVA, TENG, DCTE and WAVS.

preserved, and the surface around it is smoothed by the
filtering process. In the case of Image-I dataset, not much
difference can be observed visually, as the jitter in this
sequence is quite low. In the case of Coin sequence a depth
abnormality can be observed also in Fig. 23 near the ver-
tical axis of 175 value in shape reconstruction using all
FMs, whereas, when the proposed filter is applied, it is
removed.

The Groove image sequence is a challenging problem in
shape reconstruction [2]. The sides and center of this image
sequence are over-exposed, resulting in texture degradation,

which is critical in SFF systems. The slopes in the middle
are the only ones that exhibit the change in focus levels.
Fig. 25 shows the shape reconstruction of Groove using dif-
ferent FMs, along with the proposed filter applied as pre- and
post-FM.

The results presented in the tables, graphs and recon-
structed shapes in the manuscript clearly show that the Jitter
noise affects the overall accuracy of the SFF systems, and
can be removed by applying the proposed filtering technique
using Kalman filter. The proposed scheme shows promising
results.
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TABLE 14. RMSE and Cor. for Real Cone shape reconstruction using FMs
with different levels of variance of Jitter noise
(σ2
η = (2a2k + a1)2σ2

ε + 2a2
2σ

4
ε ).

VII. CONCLUSION
In SFF when the shape of the object is discretised into image
frames, constant inter-frame distance is assumed. However,
in practice, this inter-frame distance is prone to errors.
This is due to mechanical errors in gear assembly of the
translational-stage or lens-focusing-assembly of the imaging
device. This can cause errors, which are referred to as Jitter
noise in the literature. Jitter noise is not visible in images,
because each pixel in an image will be subjected to the
same error in focus. Thus, using traditional techniques of the
denoising of images will not work.

In this paper, Jitter noise is first modeled and the mean and
variance of this noise are formulated. It is also shown that this
Jitter noise is dependent on the first and second derivatives of
the focus/pixel curves, and follows gamma distribution. The

design of the system and measurement models for the pro-
posed scheme using Kalman filter are presented and applied
to the focusing curves to remove this noise. The proposed
scheme can be applied in two ways, as pre-FM application or
post-FM application. Unlike previously proposed techniques
for Jitter noise removal in SFF systems, the proposed scheme
utilizes single measurement for each step, and utilizes the
dynamic approach with Kalman filter. Thus, it is faster and
more accurate as compared to its predecessors.

The experiments are performed on seven objects: one sim-
ulated and six real. Ten noise levels are tested on the simulated
object, and four levels on the real objects. Both pre- and
post-applications are tested and the results are presented.
The RMSE and correlation are used as metric measures. The
experiments show the effectiveness of the proposed scheme.
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