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ABSTRACT This work proposes a new morphological random walker (MRW) method for hyperspectral
anomaly detection. The proposed method introduces a morphology-based objective function into a random
walker (RW) algorithm, sufficiently exploiting spatial morphological property and spatial similarity of HSIs
for detection. TheMRWmethod comprises twomajor stages. Firstly, we employ the extendedmorphological
profiles (EMPs) and different operations to extract the spatial morphological property of HSIs. Second,
according to the morphological property, we construct a morphology-based objective function. This function
is incorporated into the RW-based optimization model, encoding the spatial similarity of HSIs in a weighted
graph. Two factors determine the class of test pixels, including the spatial morphological information learned
by EMPs, and the spatial correlation among adjoining pixels modeled by the weighted graph. Since the
two factors are well considered in the MRW method, the proposed method illustrates outstanding detection
performances for several widely used real HSIs.

INDEX TERMS Hyperspectral images, anomaly detection, random walker, extended morphological pro-
files, morphological property.

I. INTRODUCTION
Hyperspectral images (HSIs) can identify spectrum differ-
ences of different ground objects [1]–[4]. Based on this
advantage, HSIs have been employed in many applications,
including scene classification, change detection, and anomaly
detection [2], [5]–[8]. Among these applications, hyperspec-
tral anomaly detection has attracted lots of attention [9] due
to its significance in precision agriculture [10], mineral dis-
covery [11], and military defense [12]–[14].

Over the past decades, numerous methods have been
developed for anomaly detection in HSIs [15]–[18]. In gen-
eral, we can divide these detection approaches into three
major categories. One category of approaches is based on
statistical modeling [19]. Statistical modeling techniques
have a close relationship with the Gaussian distribution.
The well-known Reed-Xiaoli (RX) method [19] employs a
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multivariate Gaussian model to characterize the background
information. Anomaly targets are detected by estimating
the Mahalanobis distance of a pixel vector to the back-
ground. Furthermore, several improved RX-based methods
have been proposed [20]–[25], such as weighted-RX [21],
kernel-RX [22], and cluster kernel-RX (CKRX) [24]. These
methods usually can generate outstanding detection results.
Moreover, several robust statistical modeling techniques have
been proposed, including robust no-linear learning-based
detection method [26], and random-selection-based detection
method [27].

Instead of estimating statistical models, many researchers
pay attention to geometrical modeling methods [30] for
hyperspectral anomaly detection. These methods judge that
background pixels can be constructed by some main pixels,
whereas anomalies cannot. The sparse representation-based
[31]–[33], collaborative representation-based [34], [35],
and the low-rank representation-based detectors [36]–[38]
have been developed in recent years. The collaborative
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representation detector (CRD) [34] captures the differ-
ence between a test pixel and its surrounding pixels. The
background joint sparse representation detection (BJSRD)
method [31] is proposed to utilize the redundant back-
ground information and deal with the complicated mul-
tiple background classes. Moreover, a spectral unmixing
and dictionary-based low-rank decomposition method [37]
explores the low-rank prior information of background,
and distinguishes the sparse anomalies from the low-rank
background. Moreover, some deep learning-based detectors
[39]–[41] are also employed to detect anomalies. Thesemeth-
ods can separate targets from the background, by extracting
high-level features. The detection results are generated by
constructing a trained convolution neural network (CNN)
model [39].

These methods have achieved an effective detection per-
formance by exploring spectral-spatial information in HSIs.
Therefore, in this paper, the motivation is that how to make
more efficient use of spectral-spatial information in HSIs
for hyperspectral anomaly detection. In the case of scene
classification, numerous spectral-spatial feature extraction
methods [1], [44] have been proposed to enhance the clas-
sification performance via capturing morphological property
in images, such as attribute profiles (AP) [45], [46], extinc-
tion profiles (EP) [47], [48], morphological profiles (MP)-
based methods [49], [50], and its extended versions (EMP)
[51], [53]. Among these methods, the EMP has drawn lots
of attention. Because it could fully exploit the spatial mor-
phology property. In addition, the random walker (RW) algo-
rithm [54], [55] has been widely used in hyperspectral image
classification, since it can effectively explore spatial similar-
ity information of the image. For example, Kang et al. [56],
[57], and Cui et al. [58] develop RW-based methods to
explore the spectral-spatial information of HSIs for classi-
fication. The RX-based methods usually require the user to
label some target samples. It means theymay not be employed
directly in the unsupervised anomaly detection field.

To exploit spectral-spatial information in anomalies
effectively, this paper introduces a morphological random
walker (MRW) technique, jointly capturing the spatial mor-
phological property and spatial similarity information inHSIs
for hyperspectral anomaly detection. The MRW technique
comprises two major stages. First, EMPs and different oper-
ations extract the spatial morphological property in HSIs.
Then, according to the morphological property, we construct
a morphology-based objective function, and incorporate this
function into the RW algorithm for detection. The main con-
tribution of this paper is to propose an effective anomaly
detection method, jointly capturing both the morphology
property of anomaly objects and the spatial similarity among
adjoining pixels simultaneously.

The rest of this work is presented as follows. We review
the EMP feature extraction method and the RW algorithm
in section II. We introduce the MRW method in Section III.
Experimental results are presented in Section IV. Last, con-
clusions are given in Section V.

II. RELATED WORKS
A. EMP
Amorphological profile (MP) [49] is constructed by employ-
ing a series of morphological opening and closing with struc-
turing elements (SEs) on the principal components (PCs).
When MPs on several PCs are integrated, the EMP can be
generated. Specifically, there are two fundamental morphol-
ogy operators, i.e., erosion and dilation. Opening and closing
are combinations of erosion and dilation. However, two oper-
ations may change some intrinsical structures in the image,
which may produce some fake objects. In [51], [52], geodesic
morphology and reconstruction are introduced, which make
opening and closing satisfy the following assumption. If the
structure of the image fails to contain the SE, it would be
removed. Conversely, it would be preserved. Therefore, it is
necessary to employ SEs in different sizes. A MP consists
of the opening profile (OP) and the closing profile (CP).
We define the OP at the pixel x of the image I as a
n-dimensional vector,

OPi(x) = γ
(i)
R (x) ∀i ∈ [0, n], (1)

where γ (i)
R means the opening by the reconstruction with

the SE of the size i, and n is the total number of openings.
Similarly, the CP at the pixel x of the image I is also a
n-dimensional vector,

CPi(x) = φ
(i)
R (x) ∀i ∈ [0, n], (2)

where φ(i)R means the closing by the reconstruction with the
SE of the size i. The MP of the image I is a (2n + 1)-
dimensional vector by combining the OP and the CP,

MP(x) = [CPn(x), . . . ., I (x), . . . ,OPn(x)]. (3)

Therefore, an image can generate a multiband image.
We note that the MP is just constructed by employing a
PC in HSIs, which may lose some spectral information.
In [51], it is suggested to use several PCs of the HSI, which
contains the most important spectral information in the HSI.
When MPs on several PCs are integrated, the EMP feature
will be generated. The EMP is a [m(2n + 1)]-dimensional
vector,

EMP(x) = [MPPC1 (x), . . . .,MPPCm (x)], (4)

where m is the number of retaining PCs.

B. RW
The RW algorithm is originally designed for image segmen-
tation [54], [55]. This algorithm can group the pixels of the
image X into various classes [56]. First, some pixels Q are
labeled from X . These pixels serve as the seeds, with at least
one pixel of each class. The seeds are defined as (X =
[xTM , x

T
U ], where x

T
M and xTU are the marked seed nodes and

the unmarked nodes, respectively).
Then, the RW model defines an image as a graph G =

(V ,E) with vertices v ∈ V and edges e ∈ E . Vertices are
pixels in the image, and edges contact two adjoining pixels.
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FIGURE 1. Flowchart of the proposed MRW detection method.

Each edge eij links the ith and jth pixels based on a weight
ω(eij) = e−β(vi−vj)

2
, and β is a parameter. We define a n× n

Laplacian matrix L as,

Lij =


di, if i = j
−ω(eij), if i and j are adjacent pixels.
0, otherwise

(5)

Then, let pl = [pl1, . . . , p
l
n] represent the probability vector

of X for class l. It is decomposed as pl = [(plM )T , (plU )
T ]. plM

represents the seeds having a fixed value 0 or 1. pl can be
obtained by minimizing the Dirichlet integral [55]:

Dir[pl] =
1
2
(pl)TL(pl)

=
1
2

[
(plM )T (plU )

T
] [ LM B

B LU

][
plM
plU

]
. (6)

We differentiate Dir[pl] with plU , and the critical point is
found as:

plU = −L
−1
U BT plM . (7)

With the labeled pixels plM , we can calculate the energy
function shown in (6), by solving a series of linear equa-
tions [54].

III. PROPOSED MRW APPROACH
Fig.1 displays the flowchart of the MRW method. It consists
of two major stages. First, EMP and differential operations
capture the spatial morphological property of HSIs. Then,
according to the spatial morphological property, we construct
a morphology-based objective function and incorporated it
into the RW algorithm, encoding the spatial similarity of
HSIs in a weighted graph. The detection result is obtained
by jointly exploiting the spatial morphological information
learned by EMPs and the spatial correlation among adjoining
pixels modeled by the weighted graph.

A. EXTRACTION OF THE MORPHOLOGICAL PROPERTY OF
ANOMALIES
First, the spectral dimension of an input HSI I is reduced by
performing the principal component analysis (PCA) [61]. The
EMP of the I is obtained as follows,

EMP(x) = [MPPC1 (x), . . . .,MPPCm (x)]. (8)

where m is the number of retained PCs. An example of MP
is illustrated in Fig. 1 (the number of opening/closing is
set as 1 and the corresponding structure size setting to 2).
Given an HSI [see Fig. 2(a)], we estimate the MP of its first
PC . The first PC of HSI and the resulting morphological
operations are shown in Fig. 2(b)-(d). We use the opening and
closing transforms to separate bright (see Fig. 2(c)) and dark
(see Fig. 2(d)) structures from the image. The bright/dark is
brighter/darker than the adjoining pixels features [52].

Then, to capture the spatial morphology property of
anomalies, the differential operations compute the differences
between eachMP and the corresponding PC [60]. In Fig. 2(e)
and (f), due to the difference between anomalies and back-
ground pixels on bright and dark structures, the morphology
property of anomalies (such as shape, size, and location)
could be explored. The differential map semp is a 2nm dimen-
sional vector,

semp = [smp
PC1 , . . . , s

mp
PCm ]. (9)

smpPCs = [|CPn(PCs) − PC
s
|, . . . , |OPn(PCs) − PC

s
|]

s ∈ [0,m]. (10)

where smpPCs represents the sth differential map in the sth PC .
|OPn(PCs) − PCs

| is the morphological feature of the bright
objects (see Fig. 2(e)), and |CPn(PCs) − PCs

| is the morpho-
logical feature of the dark objects (see Fig. 2(e)). To obtain
the fused morphology features P = (P1,P2), the differential
maps are fused, in which P1i ∈ [0, 1] represents the probabil-
ity that the ith pixel pertains to the anomalies.

P1 =
1

2nm
semp. (11)
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where P1 represents the initial detection map (e.g.,
in Fig. 2(g)), effectively reflecting the spatial morphology
property in HSIs.

B. MRW-BASED OPTIMIZATION
To further capture spectral-spatial information in HSIs
for hyperspectral anomaly detection, we construct a
morphology-based objective function, and incorporate this
function into the RWmodel. Thus, in this letter, the proposed
algorithm could fully exploit the spatial morphological prop-
erty in HSIs and spatial similarity information of adjoining
pixels. Specifically, we construct a new morphology fitting
constraint µ

2 (pl − Y )T (pl − Y ), restricting the Dirichlet
integral [54] to be as close to the prior anomaly distribution
as possible [60]. Then, we incorporate the morphology fitting
constraint into (4), and the final detection result is estimated
as follows,

Dir[pl] =
1
2
(pl)TL(pl)+

µ

2
(pl − Y )T (pl − Y ), (12)

where µ denotes a controlling parameter. The second term is
a morphology fitting constraint. Y means a pixel-wise indi-
cation vector, which inherits the values of P. The proposed
method is estimated in a pixel-wise manner. pl and Y are v×1
vectors. L means a v× v matrix. v is the number of pixels in
the image.

To generate the first term (spatial similarity term), we con-
struct a weighted graph G = (V ,E) based on the first PC
of the HSI [60]. In this graph, V represents pixels in the first
PC . E means edges that link the pixels. ω(eij) = e−β(vi−vj)

2

is defined for each edge eij to characterize the intensity
difference between the adjoining pixels in G. To generate
the second term (spatial morphological term), the initial
detection map P is employed to estimate the pixel-wise
indication vector in (12). The morphological fitting con-
straint in (12) can provide a prior morphology property of
HSIs. Therefore, it could better generate detection perfor-
mance. To choose seeds from the P1, a threshold thigh is
defined,

thigh =
mean(I )+ max(I )

2
, (13)

which are utilized to select pixels with YU > thigh as anoma-
lies seeds. These seeds are defined as plM . Thus, the matrix
decomposition of (12) is as follows,

Dir[pl] =
1
2

[
(plM )T (plU )

T
] [ LM B

B LU

][
plM
plU

]
+
µ

2
(
[
plM
plU

]
−

[
Y lM
Y lU

]
)T (
[
plM
plU

]
−

[
Y lM
Y lU

]
). (14)

Since the seeds are generated from the initial detection
map automatically, MRW needn’t user interaction, which has
more practicability in hyperspectral anomaly detection.

Then, plM and plU are combined as pl . p1 represents
anomaly possibility, and we reshape it to a matrix Sfinal . The
same size of the input image as the final detection result.

FIGURE 2. (a) False color composite of the hyperspectral image, (b) first
PC , and the MPs obtained with (c) opening profile and (d) closing profile,
(e) morphological feature of the bright objects, (f) morphological feature
of the dark objects, (g) fused morphological feature of anomalies class,
and (h) final detection result.

FIGURE 3. San Diego data set. (a) False color image of the whole scene
and (b) the reference detection map.

In Fig. 2(h), errors in the anomalies and background areas can
be removed effectively. Moreover, the boundaries between
anomalies and background areas become more accurate. The
reason is that, aside from the morphological property in HSIs,
the spatial correlation among adjacent pixels is also consid-
ered in the MRW-based method.

IV. EXPERIMENTS AND DISCUSSION
A. DATA SETS
Some real hyperspectral data sets, including the San Diego,
ABU-Beach, and ABU-Urban data sets [18], are employed to
assess the performance of the MRW detector. These images
can be download on this website.1

1) SAN DIEGO DATA SET
This data set is captured by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor. It is over the San
Diego airport area, CA, USA. This data set comprises
100 × 100 pixels with a spatial resolution of 3.5 m per
pixel. It has 189 spectral channels in the wavelength range
of 0.37-2.51 um. In this data set, we consider three airplanes
as the anomaly targets. The test image and the corresponding
reference detection map are displayed in Fig. 3.

2) ABU-BEACH AND ABU-URBAN DATA SETS
The second and third data sets include three test images
respectively. These images are manually extracted from the

1http://xudongkang.weebly.com
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TABLE 1. Some features of the ABU-Beach data set.

TABLE 2. Some features of the ABU-Urban data set.

FIGURE 4. ABU-Beach data set. The images in upper row are color
composites of data sets, and the images in the lower row are their
corresponding reference detection maps.

AVIRIS web site.2 In Table 1 and 2, some information of
these data sets is listed. These images are obtained by the
AVIRIS sensor. The test images and the corresponding ref-
erence detection maps are illustrated in Figs. 4 and 5.

To estimate the effectiveness of the proposed MRW detec-
tor, five widely used detection methods, RX method [19],
local RX (LRX) method [19], local kernel-RX (LKRX)
method [22], LRaSMD-basedMahalanobis-distance anomaly
detection (LSMAD) method [36], and attribute and
edge-preserving filtering-based anomaly detection (AED)
method [18] are used to compare. The detection results
are accessed by the receiver operating characteristic (ROC)
area under the curve (AUC) metric [33]. ROC curves are
generated based on true positive rate (TPR) and false positive
rate (FPR) with a threshold range of [0, 255]. At each possible
threshold, the detection result is binarized into 1 and 0 to
mean the anomaly target and background. A better detector
usually lies nearer the upper leftmost corner [63]. Moreover,
we also computed the AUC score to assess the performance of
these detectors. Generally speaking, an outstanding detection
model can obtain a high AUC value [64].

2http://ariris.jpl.nasa.gov

FIGURE 5. ABU-Urban data set. The images in upper row are color
composites of data sets, and the images in the lower row are their
corresponding reference detection maps.

B. PARAMETERS DISCUSSION
For the MRW detector, the main parameters include the num-
ber of PCs, i.e., m, and the parameters of the optimization,
i.e., β and µ. The AUC score is used to evaluate the detection
performances of the proposed method under different param-
eter settings. To generate the EMP, four openings and closings
are estimated for each PC , and the corresponding structure
sizes are set to 2, 4, 6, and 8.

Fig. 6 shows the AUC value of the MRW detector with
different values of β and µ. It can be observed that µ should
be lower than 10−3 and higher than 10−5, which can generate
the outstanding performance. Moreover, β should be higher
than 30. It is obvious that ω(eij) = e−β(vi−vj)

2
for adjacent

pixels tend to be 1 if β is small. Thus, the edge weights
fail to model the spatial similarity among adjoining pixels.
Conversely, ω(eij) will be close to 0 when β is large. Thus,
µ should be small to ensure the balance of two terms in (12).
Otherwise, the morphology term will play a significant role
in the detection, if µ is very large. In this situation, the final
detection result would be similar to the initial detection result.
In contrast, the spatial effect may cause the over-smoothed
detection map if µ is too small. Therefore, β = 50 and µ =
10−3 are set as the default parameters for the experiments.

102118 VOLUME 9, 2021



Z. Huang et al.: Hyperspectral Anomaly Detection With MRW

TABLE 3. Evaluation scores on the San Diego data set.

FIGURE 6. Influence of the parameters on AUC values with different
values of β and µ. (The experiment is performed on the San Diego data
set).

FIGURE 7. Influence of the parameters on AUC values with the values
of m.

Moreover, the number of PCs also is a significate parame-
ter for the MRW detector. Fig. 7 illustrates the average detec-
tion scores of the MRW method on three data sets, i.e., the
San Diego, ABU-Beach, and ABU-Urban data sets. As can
be observed, when PCs = 1, the accuracies of the proposed
method are relatively low. The useful spectral information
will be lost if the number of features PCs is small. In contrast,
the detection performance will decrease if PCs is larger than
5. This is because redundancy information will be produced
if the number of features PCs is large. We can find that
2 ≤ PCs ≤ 4 can obtain satisfactory AUC value for all
images. Therefore, we set PCs = 3 as the default parameter.

C. DETECTION PERFORMANCE
Experiments are performed on the San Diego, ABU-Beach,
andAUB-Urban data sets. Figs. 8-10 show the detectionmaps
obtained by different detection methods. For the LRX and
LKRX algorithm, the window size win is set to [3,19], and

wout is [5,13]. For the LSMAD algorithm, the cardinality k
is fixed to 0.005, and the rank r is changing from 1 to 20.
Furthermore, for the AED algorithm, two filtering parameters
σs and σr are set to 5 and 0.5 respectively.

For the San Diego data set, the obtained detection results
are displayed in Fig. 8. The proposed MRW method gives a
map where the anomalies are apparent. The RX method fails
to detect anomalies effectively. The LRX detector has a better
detection result than the RX detector. The LKRXmethod can
well detect the positions of anomalies, but the shape of the
objects is missing. For the LSMAD method, a part of back-
ground pixels are considered as anomaly targets. The MRW
and AED methods both can achieve good detection results.
TheMRWmethod obtainsmore accurate boundaries between
anomalies and background regions, since the AED method
is sensitive to parameters for image smoothness. Therefore,
some boundary regions may be over-smoothed when the
parameters are inaccurate. Besides, the AUC scores are pro-
vided in Table 3. The proposed MRW detector achieves a
score that is 5.2% higher than the RX detector, which is
a distinct improvement. It also confirms that the proposed
method can outperform the traditional detectors.

A main advantage of the MRW method is that its out-
standing detection performance in different scenes. For the
ABU-Beach image, the obtained detection results are shown
in Fig. 9(a)-(c). The MRM model can provide a distinguish-
able detection map, highlighting the anomalies in different
scenes. The AUC scores are illustrated in Table 4. It can be
concluded that MRW is a promising method for anomaly
detection in complex scenes.

The MRW method also can achieve outstanding detec-
tion performance, when HSIs contain serious noise. For the
ABU-Urban data sets, which are influenced by the serious
strip noise (see Fig. 5), the obtained detection maps are illus-
trated in Fig. 10(a)-(c). In Fig. 10(a), it is obvious that the RX
and LSMAD methods obtain a better detection performance
than LRX and LKRXmethods. Specifically, the LRXmethod
losses some anomaly pixels. Meanwhile, the LKRX method
fails to detect anomaly targets effectively. The corresponding
AUC scores are provided in Table 5. Although the AED
method can achieve higher detection scores than the RX and
LSMAD methods, it fails to reduce noise and suppress its
disturbing effectively. Compared with the AED method, it is
evident that the MRW method can perform better at noise
pixel suppression. The reason is that the proposed MRW
method can effectively exploit spatial correlations between
adjoining pixels to reduce the interference of noise.

Then. we further discuss the influence of the
MRW-optimization step in the proposed method. Specifi-
cally, the LRX detector is adopted to processing the initial

VOLUME 9, 2021 102119
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FIGURE 8. Detection maps obtained by different methods for the San Diego data set. (a) RX method [19], (b) LRX method [19], (c) LKRX method [22],
(d) LSMAD method [36], (e) AED method [18], (f) MRW method.

FIGURE 9. Detection maps obtained by different methods for the ABU-Beach data set.

TABLE 4. Evaluation scores on the AUB-beach data set.

TABLE 5. Evaluation scores on the AUB-Urban data set.

detection result in Section III-A. Fig. 12 displays the detec-
tion maps generated by the DEMPs, LRX, MRW, and
DEMPs + LRX methods, respectively. DEMPs represents

the initial detection result in the proposed method. It can
be observed that the MRW and DEMPs + LRX methods
produce better detection performance than others without

102120 VOLUME 9, 2021
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FIGURE 10. Detection maps obtained by different methods for the ABU-Urban data set.

FIGURE 11. ROC curves of different anomaly detection methods on three data sets. (From left to right: San Diego scene, ABU-Beach scene(a),
ABU-Urban scene(b)).

TABLE 6. Computing time (seconds) of various methods on the three data sets.

relying on the spatial morphology information in HSIs.
Fig. 13 illustrates that the MRW method has AUC = 0.9908,
which is better than others.

The corresponding ROC curves of different methods are
shown in Fig. 11. We can observe that the MRW method
usually has higher true positive rates. The computational
complexity of the proposed method is as followed. The main
running time is consumed by constructing the EMP feature,
performing differential operations, and estimating the MRW
optimization. Specifically, the EMP feature is constructed
by integrating MPs on several PCs. Each MP feature has

(2n + 1) band images. Thus, the computational complex-
ity of constructing the EMP feature is o((2n + 1)m). m
is the number of retaining PCs. Then, the computational
complexity of differential operations is o((2n + 1)σ ). σ
means the differential operation for each band in the EMPs
features. Last, we denote the number of pixels in HSIs
is v. For the MRW optimization step, the computational
complexity is based on the total input pixels v, and the
time-complexity of evaluating anomaly scores is o(vτ ). τ rep-
resents the Dirichlet integral operation in Eq. (14). Therefore,
the computational complexity of the proposed method is

VOLUME 9, 2021 102121
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FIGURE 12. Color detection maps obtained by four detectors for the San
Diego data set. (a) DEMPs. (b) LRX. (c) MRW. (d) DEMPs-LRX.

FIGURE 13. Detection accuracy evaluation of four detectors for the San
Diego data set.

o((2n + 1)(m + σ ) + vτ ). Furthermore, the running time
of different methods is reported in Table 6 (For AUB-Beach
and AUB-Urban data sets, the computing time is based on
calculating the average time of the corresponding three sub-
graphs). The programs of various methods are executed on
a computer with a 2.6-GHz CPU and 32-G memory, and the
software platform isMATLABR2017b. FromTable 6, we can
observe that the LRX and LKRX models take more running
time. Although the MRW method is not the most efficient
among the compared ones, it can obtain much better detection
results.

V. CONCLUSION
In this work, a novel MRW detector is presented for hyper-
spectral anomaly detection. The MRW detector consists of
two steps, i.e., extraction of the morphology property of
anomalies and MRW-based optimization. First, the extended
morphological profiles and differential operations are applied
to extract the spatial morphological property of HSIs. Then,
according to the morphological property, we construct a
morphology-based objective function and incorporate it
into the RW model for detection, jointly exploiting the

morphological property of anomalies and the spatial corre-
lations among adjacent pixels. Experimental results demon-
strated that the MRW algorithm could achieve outstanding
detection performances on three real HSI data sets.

The parameters empirically setting way is a limitation of
the proposed detector when it is employed in reality detec-
tion applications. Therefore, automatically choose optimal
parameters is the focus of our future works. Besides, apply-
ing MRW in other HSI applications will also be further
investigated (i.e., segmentation, visualization, and change
detection).
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