
Received April 29, 2021, accepted June 29, 2021, date of publication July 16, 2021, date of current version July 26, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3097823

Execution Repair for Spark Programs by Active
Maintenance of Partition Dependency
XIUPEI MEI , IMRAN ASHRAF , XIAOXUE MA , HAO ZHANG , ZHENGYUAN WEI,
HAIPENG WANG , (Graduate Student Member, IEEE), AND W. K. CHAN , (Member, IEEE)
Department of Computer Science, City University of Hong Kong, Hong Kong

Corresponding author: W. K. Chan (wkchan@cityu.edu.hk)

This work was supported in part by the General Research Fund (GRF) of Hong Kong Research Grants Council under Project 11214116
and Project 11200015; in part by the Innovation and Technology Fund of Hong Kong (HKSAR ITF) under Project ITS/378/18; in part by
the CityU MF_EXT under Project 9678180; and in part by the Strategic Research Grant of City University of Hong Kong (CityU SRG)
under Project 7004882, Project 7005216, and Project 7005122.

ABSTRACT Spark programs typically codify to reuse some of their generated datasets, called partition
instances, to make their subsequent computations complete in a reasonable time. At runtime, however,
the underlying Spark platformmay independently delete such instances or accidentally cause these instances
inaccessible to the program executions. Those instances will invalidate the computation assumption made
in writing these programs that such depending instances are present, which leads performance bloat and
even breaks the executions. In this paper, we present FAR, a novel and effective framework to handle such
performance bloat and actively repair the executions by maintaining the instance dependencies in Spark
program executions. FAR monitors the partition instance lifecycle activities at all levels, and determines
from the execution plan of the current Spark action in the current program execution on whether a partition
instance will have a dependency relation with a later one underlying the computation of that action. The
experimental results showed that with the active execution repairmechanism of FAR,when some dependency
partition instances were inaccessible, programs can achieve 7.3x to 67.0x speedup in re-generating them. The
results also interestingly revealed that the program executions actively repaired by FAR can run to successful
completion in environments with 1.7x-2.0x fewer available memory.

INDEX TERMS Debugging, execution repair, dataset dependency, big data.

I. INTRODUCTION
Programs running on a cluster of Spark nodes [2] are widely
used in practice [36]. They accept inputs containing an arbi-
trary number of records to compute results. These programs,
such as page rank [28] or hot topics [29], generate many
sets of intermediate datasets. Each of such sets is called a
data partition[2], where the partition instance contains the
actual data records for processing. Each data partition is
bound to an RDD (Resilient Distributed Dataset) [2], which
is the most important data structure used in program code.
Such a program manipulates RDD instances, thereby using
the corresponding data partitions to systematically compute
the results from its input through a sequence of Application
Programming Interface (API) calls. Nonetheless, keeping all
these intermediate partition instances is impractical.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hailong Sun .

To address the above problem, there are two levels of
strategies: platform and program. At any time, a program
execution σ holds a set π of partition instances.
At the platform level, a platform, hereafter denoted by

Sparkbase, may select and delete an existing instance of a data
partition D, say D1, from π to avail the memory occupied
by D1 for keeping a new partition instance for σ . If the
deleted instance D1 is latter required for generating other
partition instances in the remaining part of σ , Sparkbase will
check the dependency of partition D and apply an operation
sequence based on π to generate a fresh instance of D1

(denoted as D2) as its fixing strategy. In generating such an
instance D2, Sparkbase should ensure all the data partition
instances directly used to deriveD2 available first, but in some
cases, has to delete some other partition instances to create
space to keep the former instances. If such cycles of partition
creation and deletion are not maintained well, there will be
performance bloats, where the execution of a program will

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 101555

https://orcid.org/0000-0002-2677-4528
https://orcid.org/0000-0002-5603-0191
https://orcid.org/0000-0001-7745-7154
https://orcid.org/0000-0003-4419-660X
https://orcid.org/0000-0002-7410-393X
https://orcid.org/0000-0001-7726-6235
https://orcid.org/0000-0001-7654-5574


X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

be significantly compromised by excessive partition creation
and deletion of the same partition instances.

At the program level, with respect to D1 and its belonging
RDD instance R, application developers may add persistence
instructions (e.g., R.persist() and R.unpersist()) in their pro-
gram code C to retain or delete the corresponding partition
instances of R in an all-or-nothing manner. Program-level
strategies are unaware of operations done at the platform
level. Thus, the internal operations of Sparkbase may invali-
date any heuristics written in C that rests on the assumption
that D1 is always persistent for subsequent uses.

In this paper, we present FAR, a novel and effective frame-
work to handle a class of performance bloat that equivalent
partition instances of RDDs are excessively generated and
deleted. To the best of our knowledge, FAR is the first sys-
tematic approach to address this problem.

FAR is built atop two insights on programs for Big Data
processing. First, in a program execution σ , for each oper-
ation to produce a result (rather than an intermediate RDD),
each partitionD can precisely pair upwith a set of outstanding
uses (called budget) that must appear in current round of
execution by σ . Second, if the current instance forD is deleted
before fulfilling all such uses, Sparkbase will generate a new
instance of D.

The basic idea of FAR is to compute the budget of each
partition for each such operation in the evaluation phase of σ
to extract the dependency relation between partitions relevant
to the current operation.Moreover, during the concrete execu-
tion phase corresponding to the above evaluation phase, FAR
does the following: On handling the request of an instanceD1

of partition D, FAR adjusts the budget of each partition that
D depends on. When the budget of a partition is exhausted,
FAR instructs Sparkbase to delete the instance of that partition.
On contrary, if the budget of a partition D has not been
exhausted but no instance of it is found, FAR increases the
budget of each partition thatD depends on. FAR also instructs
Sparkbase to annotate D as reserve so that if a new instance of
D is generated, that instance will be kept rather than deleted
right after the current use.

FAR is designed with ease of use, high efficiency, and
versatility in mind. We have implemented FAR as a Spark
component. Application developers can simply insert pairs
of FAR’s API calls into each code region that leads to a
performance bloat in their program code (as illustrated in
Section IV.E) or enable it in the configuration file to make
Sparkbase use FAR as the default.

We evaluate FAR on six representative applications taken
fromGraphX [6] and GitHub repositories [7] with real-world
datasets as the evaluation benchmarks. We have compared
FAR to the state-of-the-practice Spark platform (i.e., referred
to as Sparkbase in this paper). Themain results show that (1) in
the scenarios of inaccessible dependency partition instances,
FAR can achieve 7.3x to 67.0x speedup in re-generating
them compared to Sparkbase, and (2) in memory stringent
scenarios, FAR can enable program executions to com-
plete successfully in environments with 1.7x to 2.0x fewer

available memory than Sparkbase. The result also shows that
for program executions that can run normally on Sparkbase,
FAR only incurred no more than 1.39% additional runtime
slowdown overhead over Sparkbase.

The main contribution of this work is threefold.

• This paper presents the first work, called FAR, to address
a class of performance bloat that the equivalent partition
instances are excessively produced.

• We show the feasibility of FAR by implementing it as a
Spark component and demonstrate its ease of use.

• This paper presents an evaluation of FAR and shows
that FAR is effective and efficient. The result also shows
that FAR can enable programs to run to completion in
situations unable to be handled by Sparkbase.

The rest of this paper is organized as follows. We firstly
revisit the preliminaries in Section II. Through a motivat-
ing example in Section III, we introduce the problem to be
solved by FAR, which is presented in Section IV, followed
by its evaluation and further discussion in Sections V and VI.
We review the related work in Section VII and conclude this
work in Section VIII.

II. PRELIMINARIES
A. THE SPARK FRAMEWORK
Spark [2] provides a runtime denoted as Sparkbase. It provides
dataset operations for applications to compute data records
modeled as Resilient Distributed Dataset (RDD) [2], where
each RDD instance represents a partitioned collection of
data records. Each data partition is an array for keeping data
records kept in the primary storage and second storage, which
we generally refer to as the memory in Spark.
Transformation (e.g., map, filter, join, and groupByKey)

and action (e.g., reduce, collect, count, first, and foreach) are
two kinds of dataset operations for Spark programs. When a
transformation T is applied on an RDD instance RX, a new
RDD instance RY is created. Each partition in RY depends
on one or multiple partitions of RX, which is determined by
the function type of T . During a program execution σ , all
the created RDD instances and the transformation relations
between them construct a lineage graph G [2].
Moreover, for each partition PY in RY, wemodel its depen-

dency as a 3-tuple (PY, < PX >, FT ), where the second
element is a set of partitions in RX that PY depends on
and the third element is a transformation function of T . All
the partitions and the dependency relations between them
construct a partition dependency graph GP.

Note that during the program execution, a partition P may
be materialized (i.e., populated with data records) zero or
multiple time(s) and each such operation produces a partition
instance. For ease of reference, we refer to the partition
instance of P with occurrence id i as Pi. Note that, for par-
tition P, all its partition instances are equivalent.

A typical program execution consists of two alternating
phases, the lineage graph construction phase and the con-
crete execution phase.

101556 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 1. State transitions of an RDD instance R shown as rounded
rectangles, with partitions shown as square rectangles. Partitions are
shaded if their instances are kept in memory.

During the lineage graph construction phase, by executing
transformation operations, σ creates a set of RDD instances
and appends them to the lineage graph Gσ . This process
continues until an action A on some RDD instance R is
invoked, which starts a concrete execution phase to compute
all the partitions of R. After the completion of A, σ starts the
next round of lineage graph construction phase.

The dataflow between partitions is modeled as a depen-
dency. For example, to generate P1Y of PY, whose dependency
is (PY, < PX >, FT ), Sparkbase will ensure all the partition
instances of its depending partitions in< PX > are accessible
followed by applying the function FT on them to produce P1Y.
If a partition, say PX, in< PX > is persistent (where the pos-
sible states of a partition are defined in the next subsection),
Sparkbase creates a dependency from the current instance,
sayP1X, ofPX toP1Y. On the other hand, if no partition instance
of PX is found, Sparkbase creates a dependency to PX to
indicate that it should generate an instance of PX. Therefore,
to ensure a partition to have a partition instance, there is
a dependency graph to end at either a partition instance or
a partition. In the latter case, a partition instance, say P2X,
is required to be generated so that the dependency now ends
at P2X. We refer to the above dependency generation as the
establishment procedure of dependency.

B. STATE TRANSITIONS OF RDD AND PARTITION
Fig. 1 depicts a state-transition diagram modeling the lifecy-
cle of an RDD instance in Sparkbase. Sparkbase provides two
RDD operations, persist 1 and unpersist to handle the reuse of
generated datasets. These operations, although happen during
the lineage graph construction phase and transit the states of
RDD instances in Gσ , are not recorded in the lineage graph
being constructed by Sparkbase.
When an RDD instance R is declared, R is created with the

ephemera state. When σ executes R.persist(), R′s state tran-
sits to reserved. A partition P of R is ephemera or reserved
(depicted as square rectangles with dashed or solid border) if
R is in ephemera or reserved state, respectively.

Consider the establishment procedure of dependency
(PY1, < PX >, FT1). When a partition instance P1X is
generated, suppose that PX is ephemera, P1X will be only
available within such procedure and is discarded after FT1 is

1In Spark, the cache operation is a synonym of persist. The difference
between them is syntactic.

completed. Alternatively, suppose thatPX is reserved,P1X will
be kept in the memory. We refer to the partition as persistent
(depicted as shaded rectangles) if its instance is already kept
in memory. As long as PX is persisted, the subsequent cre-
ation of other dependency will reuse P1X instead of generating
new instances of PX.

When R’s state is reserved and σ executes R.unpersist(),
R’s state transits to ephemera, and all its persisted partition
instances are deleted from the memory.

The operation sys.evict(P) models Sparkbase to select a per-
sisted partition P for reclaiming the memory space from P’s
occupation. When Sparkbase invokes sys.evict(P), its instance
Pi is deleted from the memory (and its memory occupation
is de-allocated), and P is changed to a reserved partition.
An intention behind the above design is to hide the deletion’s
impact on partition instance reuse in σ , which simplifies the
handling of such missing partition instances at the program
level. For instance, suppose that there is a persisted partition
P and Pi is kept for multiple uses in σ . After sys.evict(P) is
invoked, Pi is removed, and P transits to reserved. Upon the
next creation of some dependency instance that usesP,Pi+1 is
populated with new data records, and P transits to persistent
again. The newly generated Pi+1 is kept for possible use in
the subsequent part of σ .

III. MOTIVATING EXAMPLE
In this section, we present a motivating example.

The exemplified program implements the Floyd-Warshall
algorithm to find the shortest paths in a weighted graph [9].
Let function fSP(i, j, k) returns the shortest paths from vertex i
to vertex j using the vertices from the set {1, 2, . . . , k}. Thus,
fSP(i, j, 0) returns the weight of edge (i, j). For k = 1, 2, . . . ,
N , fSP(i, j, k) can be computed as follows:

fSP(i, j, k) = min(fSP(i, j, k − 1), fSP(i, k, k − 1)

+fSP(k, j, k − 1))

Hence, the shortest paths between all vertices can be
obtained by iteratively invoking fSP(i, j, k) of every vertex
pair (i, j) for k = 1, 2, . . . , N.
Fig. 2 and Fig. 3 show the implementation of the Shortest

Paths Program in Spark. In Fig. 2(a), updatePaths() is a
helper function. It accepts an RDD instance D which models
distances of all the paths, and returns a new RDD instanceD′,
which contains the distances that some of which are reduced
by passing through vertex k .

The k-th invocation of updatePaths() constructs a lineage
graph updatePathsk. Fig. 2(b) shows a simplified version of
it. The variableD represents a source RDD instance (denoted
as Dk−1) in updatePathsk . At line 8, σ uses Dk−1 to create
another RDD instance pathsToK (denoted as pathsToKk ).
The graph updatePathsk contains an edge from Dk−1 to
pathsToKk . This edge is labeled with filter(), which indicates
how each partition instance of pathsToKk can be computed
based on its dependency partitions inDk−1. For brevity, we do
not show the label. Other nodes and edges are similarly
created.

VOLUME 9, 2021 101557



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 2. Shortest paths program.

Fig. 3 shows four program versions of the Floyd-Warshall
algorithm. Each version uses the graph edges as the initial
paths, which is assigned to the variable D (at line 16, 23,
31, or 42). We refer such variable D as D0 and assume
each partition of D0 is persistent. We also denote the RDD
instance associating with variableD byDk after the k-th invo-
cation of updatePaths These four versions iteratively invoke
updatePaths() N times. They are different only on when and
which RDD instances to be set into which particular RDD
states.

In this example, each partition instance is assumed to take
O(1) space and each transformation function is assumed to
takeO(1) time. In this way, we can focus our discussion on the
number of dependency instances establishedwhen comparing
the effects of RDD state operations codified in these versions.
Since the actual calculation is at the data partition level,
in the sequel, again for simplicity, we suppose that each RDD
instance contains one partition. We describe the example at
the data partition level and use Dk for k = 0 to N to indicate
the RDD instance or partition interchangeably.

Version 1 is a straightforward implementation. A high-
level lineage graph created at line 18 through the loop at
lines 17–19 is depicted under the code in Fig. 3, where all
the nodes and edges produced in updatePaths() are hidden.
In the first iteration, at line 18, updatePaths() uses D0 to
compute D1. Since version1 has no RDD state operations,
the state ofD1 remains as ephemera. The lineage graph for the
program execution is extended with the graph UpdatePaths1
(see Fig. 2), which is depicted as a blue dashed arrow from
D0 to D1 in Fig. 3. Similarly, D2 to DN are returned by
updatePaths() from the remaining iterations (up to the third
iteration).

Since D1 to DN are ephemera, their instances will not be
shared among the creations of dependency instances. As such,
version1 presents a typical problem that suffers from a severe
performance bloat problem. For instance, when the collect
action is performed (line 20) on D3, version1 starts to estab-
lish the dependency of D3, which generated three instances

FIGURE 3. Four versions of the finding shortest paths program.

of D2: D1
2 to compute pathsToK3 at line 8, D2

2 to compute
pathsFromK3 at line 9, and D3

2 to compute D3 at line 11.
Similarly, each instance of D2 also triggers three instances
ofD1. Hence, the time complexity of version1 isO(3N). Since

101558 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

none of these instances is persisted, the space complexity of
persist partitions in version1 is O(1).
Version 2 marks each Dk for k = 1 to N to be reserved

(line 26). Therefore, after D1
k−1 has been generated, it can

be shared among the generations of D1
k and the nodes in

UpdatePathsk. Hence, the time complexity of version2 is
O(N). As D1

1 to D
1
N−1 are not deleted by version2 after their

uses, the space complexity of version2 is O(N). In general,
this is an impractical solution due to limited memory capacity
in a cluster node. Thus, through the platform-level strategy,
Sparkbase will sooner or later delete some partition instances,
irrespective to whether they will later be used in generating
D1
N . version2 thus suffers from another instance of the per-

formance bloat problem in program executions.
Version 3 iteratively deletesD1

k−1 from the immediate past
iteration after D1

k has been generated (lines 36–37). We note
that this coding style is advocated as a best practice to allevi-
ate performance issues [6]. Consider the loop at lines 32–38.
In the k-th iteration, at line 33, Dk−1 from the previous loop
is in the persistent state and assigned to variable prevD; at
line 34 and 35, Dk is returned by updatePaths() and is set
to reserved; at line 36, the collect() action generates D1

k ;
and at line 37, version3 deletes D1

k−1 and changes Dk−1
to ephemera. The time and space complexities for version3
are O(N) and O(1), respectively. The corresponding high-
level lineage graph for the execution point at the end of the
third iteration is depicted under the title of ‘‘No instance
re-generation’’.

Nonetheless, the above coding style becomes ineffective
when partitions are no longer persistent according to the plan
of version3. Consider the N-th iteration of loop 32–38 to
generate D1

N where D1
N−1 has been generated in the (N-1)-th

iteration. Suppose that D1
N−1 is deleted by Sparkbase to fulfill

the data population requests from the current task or other
tasks concurrently running on the same cluster node before
generating D1

N . The state of DN−1 will be changed from per-
sistent to reserved. In this case, whenD1

N is about to generate,
a new partition instance D2

N−1 has to be re-generated first.
Nonetheless, in the (N-1)-th iteration, after D1

N−1 has been
populated, D1

N−2 as well as all previous instances have been
deleted by version3. Thus, to re-generateD2

N−1, Sparkbase re-
computes every such depending partition based on the current
partition dependency graph (start from reloading the input
file to generate D2

0) in an ad hoc manner. Since each such
partition has been explicitly deleted by version3 via the use
of unpersist() operations and their states are thus ephemera
(see Fig. 1). Similar to version1, the time complexity of
version3 in this scenario becomes O(3N). The corresponding
high-level lineage graph is depicted under the title of ‘‘Need-
ing instance re-generation’’.

Version 4 is revised from version3 by adding a persist()
call at line 49 right after the unpersist() call at line 48. This
can be viewed as a possible patch added by a developer to
fix version3 after realizing the instance re-generation prob-
lem illustrated by version3. In this case, the persist() and

unpersist() calls issued in the iterations for k = 1 to N delete
the partition instances of D0 to DN−1 but transit their states
into reserved.

When there is no missing partition instance. version4 cre-
ates the same amount of dependency instances as version3.
The time and space complexities in this scenario are O(N)
and O(1), respectively. Consider the scenario of missing par-
tition instances encountered by version3. The re-generated
instances of D2

N−1 to D2
0 are shared among the dependency

establishments as D0 to DN−1 are marked as reserved at
line 49. However, although multiple instance re-generations
for the same partition can be avoided, each such instance
is kept persistently once generated. The space complexity
becomes O(N). Similar to version2, this is an impracti-
cal solution. Sparkbase will eventually delete some partition
instances, irrespective to the remaining needs and logics of
version4. It suffers from the performance bloat problem as
well.

IV. OUR PROPOSAL: FAR
In this section, we present FAR. FAR is built on top of
Sparkbase and realized as a Sparkbase component.

A. OVERVIEW
During the program execution, the partition states are dynam-
ically changed by the program, Sparkbase, and the sys-
tem environment. Program executes the coded management
instructions on RDD instances. When the system is going
to be out of memory, Sparkbase selects and deletes some
partition instances from thememory to reallocate thememory
space [8]. This technique is particularly appealing to enable
program executions to run to completion when the memory
is stringent. Nonetheless, it is inadequate. As we have pre-
sented via a series of programs in the motivating example
(Section III), the partition states will directly affect the cre-
ation of dependencies. During the creation procedure, failure
to establish the dependency relations with other partition
instances lead to severe performance bloat problem. A large
amount of time and space resources are wasted during such
procedure.

FAR is proposed to guard the creation of dependency
instances during the execution by creating a period for them
to share the equivalent partition instance. Among all possible
execution points in σ , FAR strategically chooses the exe-
cution point of each action invocation to identify partitions
with outstanding uses in each concrete execution phase with
respect to all the partitions belonging to the target RDD
instance of the dataset action (e.g., the RDD instance R in
R.collect()). It automatically tracks (i.e., reserves and deletes)
these identified partitions not only during the concrete exe-
cution phase but also whenever there is any ad hoc platform
deletion of any partition, which the latter further identifies
partitions for additional outstanding uses with respect to the
partition needed to be deleted. A new round of partition
generation may trigger a further round of partition deletion,

VOLUME 9, 2021 101559



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

and vice versa. FAR strives for a balance between (lazy)
partition retention and (lazy) partition deletion to advance
the state of the art to make Sparkbase able to serve a wider
spectrum of scenarios.

FAR provides two API functions, enableFAR() and dis-
ableFAR(), for application developers to enable and disable
FAR in their application code, respectively. It also provides a
configuration option in Sparkbase so that application develop-
ers need not to add FAR API calls to their code.

FAR maintains an analysis state 6σ for σ , where 6σ is
a triple 〈target, P, R〉, where target is the RDD instance
associating with the invoked dataset action in the current
concrete execution phase, P is the set of all persistent par-
titions kept in Sparkbase, and R is a map which stores the
budget on the outstanding uses (or budget for short) of each
partition involved directly or indirectly in computing target.
FAR consists of two core algorithms, which will be presented
in the next two subsections.

B. ALGORITHM 1: PARTITION IDENTIFICATION
On invoking a dataset action A (e.g., inst.collect()),
ONACTIONINVOKED(inst) in Algorithm 1 is called, where inst
is the RDD instance associating with A. For ease of reference,
we denote the set of partitions of inst by inst.partitions and
the set of all the direct dependency partitions of a partition p
by p.dependencies.
The procedure ONACTIONINVOKED() first keeps inst to

target (line 3). It retrieves from Sparkbase the set of all per-
sistent partition instances currently maintained by Sparkbase
and keeps their references in set P via function getPersis-
tentState() (line 4). It also recursively computes the number of
outstanding uses on each dependency partition starting from
inst.partitions by calling GETOUTSTANDINGUSAGE() (line 5),
which in essence traverses the partition dependency graph,
and keeps them inmap R. At line 6, it invokes CHECK(), which
checks the budges of each such partition, and reserves the
partition (line 29) if the partition is ephemera and its budget is
larger than one (lines 6-7), where persistPartition(part) marks
the part as reserved and sets the flag part.FAR to true.

The procedure GETOUTSTANDINGUSAGE() accepts a set of
partitions that each needs to be generated and returns the
additional budget of each dependent partition. It first creates a
map C to store the number of times each partition visited and
a queue Q to keep the partitions to be visited (lines 13–14).
Q is initialized with the partitions in parts. Then, the proce-
dure visits each partition d in Q. In each iteration, it checks
whether d is currently persisted in Sparkbase and whether d
has been visited before. If neither is the case, this indicates
that d will be generated in the current concrete execution
phase and its dependency partitions should be computed first.
So, the procedure adds all the dependent partitions of d to
Q for traversal (lines 17–19). Then, the procedure updates
the map C to keep a budget on d : If d is currently in C ,
its budget (denoted as C[d]) is incremented by 1; otherwise,
C[d] is set to 1 (line 20). As the partitions in parts are also
budgeted during these node visiting rounds, these initial visits

Algorithm 1: Partition Identification
FAR Analysis State: 6σ = 〈target, P, R〉
target: RDD - RDD instance of current execution phase
P: Set<Partition> - set of persistent partitions
R: Map<Partition, Int> - outstanding usage of each
partition

1 procedure ONACTIONINVOKED (inst)
2 Input : the RDD instance that the action is invoked on
3 target← inst
4 P← getPersistentState()
5 R← GETOUTSTANDINGUSAGE(inst.partitions)
6 for each part in R,
7 do: CHECK(part) end for
8 end procedure
9

10 procedure GETOUTSTANDINGUSAGE(parts)
11 Input: a list of partitions to generate
12 Output :

expected usage of other partitions in generating parts
13 C ←Map ()
14 Q← Queue(parts)
15 while Q 6= ∅:
16 d ← Q.pop()
17 if d is not in P and d is not in C then:
18 Q.append(d .dependencies)
19 end if
20 C[d]← C[d] + 1 if d in C else 1
21 end while
22 for each d in parts,do: C[d]← C[d] − 1 end for
23 return C
24 end procedure
25

26 procedure CHECK(part)
27 Input : a partition to check
28 if R[part] > 1 and part is ephemera then:
29 persistPartition(part)
30 end if
31 end procedure

are deducted from C to avoid duplicated budgeting (line 22).
The resultant C is returned.

C. ALGORITHM 2: PARTITION TRACKING
FAR monitors the state changes of partitions not only in
concrete execution phases but also whenever there is any need
of ad hoc deletion of partition instances. More specifically,
whenever an instance of a reserved partition has been gen-
erated, ONPARTITIONPERSISTED() is invoked (lines 1−12),
and whenever a persistent partition instance is deleted,
ONPARTITIONEVICTED() is invoked (lines 14−24).

ONPARTITIONPERSISTED: During the generation of part,
when a reserved partition part has been populated with
data by Sparkbase, FAR updates the budget on its persistent
dependency partitions and deletes their instances if their

101560 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

budgets have been exhausted: FAR first gets the actual usage
information by calling TRAVERSE(part) (line 3), which con-
ducts a reachability analysis starting from part and returns the
number of actual uses of each reachable persistent partition
instance inP. More specifically, in the procedure TRAVERSE(),
a map U and a queue Q are created to store the visit counts
of each visited partition and partitions pending to be visited
(initialized with part’s dependency partitions) (lines 35–36).
Then, the procedure iteratively takes a partition from Q to
visit until Q is empty (lines 37–43). During each visit on
partition d , it increases the actual use of d in U (denoted
as U [d]) by 1 (line 39). Then, it checks whether d has been
persisted. If this is not the case, d’s dependency partitions are
appended to Q for further visit (lines 40–42). Finally, U is
returned to the caller.

After the actual use count on each persistent partition is
computed and kept inU , FAR updates the budget on each par-
tition in R (lines 4–10). More specifically, for each partition
d in U , the budget R[d] is deducted by the actual use count
U [d] (line 5). If R[d] becomes 0, it indicates the budget on d
has been exhausted. If this is the case, the physical storage of
d is removed from memory via removePartition(d)2 (line 7),
where the actual deletion is left by Sparkbase, and d is also
removed from P (line 8). A special consideration is that
to avoid interference with the application logic, before the
marking for deletion on d , FAR also checks whether d is
reserved by itself beforehand. Otherwise, FAR will not mark
it for partition deletion. Finally, part is included in P (line 11).

ONPARTITIONEVICTED: The procedure firstly removes part
from P (line 16), and updates the budgets on the outstanding
uses of all other partitions if these partitions are directly or
indirectly dependency partitions of part (lines 17–24). More
specifically, FAR checks whether part’s budget (denoted as
R[part]) is positive, which indicates whether part is refer-
enced in the later part of the concrete execution phase. If this
is the case, FAR computes the budgets of the outstanding
uses on other partitions that part depends on by calling the
procedure GETOUTSTANDINGUSAGE (We note that at line 18,
as GETOUTSTANDINGUSAGE() accepts a list of partitions as
its input, part is packed into a list). After the latest budget
on each such partition, say d , is computed and kept in C ,
FAR increases the budget on d at line 20, and reserves d if
d is currently ephemera and will be used later via CHECK()
(line 21).

FAR also monitors failure exceptions during each con-
crete execution phase. Once a data loss event is triggered
by Sparkbase, FAR conducts a state refresh by calling the
ONFAILUREOCCURS() procedure before the default recov-
ery mechanism of Sparkbase is triggered. The purpose is
that the data loss invalidates FAR’s internal state for fur-
ther analysis. Hence, in ONFAILUREOCCURS(), P is firstly
re-computed (line 27), and R is re-calculated by calling
GETOUTSTANDINGUSAGE() with all partitions of the target
instance as input (line 28). Note that although all the parti-

2Please refer to Section V.A for the details of removePartition

tions are passed for analysis, the procedure only returns the
analysis results on those partitions that have not yet been
evaluated, as the partitions evaluated prior to the failure point
are skipped. Finally, each ephemera partition in R is marked
as reserved if its budget is still greater than one.

D. DISCUSSION ON DESIGN AND NOVELTY OF FAR
FAR has three aspects of novelty in its design.

First, FAR identifies and adjusts the budgets of relevant
partitions at hybrid levels: collectively at the lineage graph
level when each concrete execution phase starts and individ-
ually at the partition level when a persistent partition instance
is deleted by Sparkbase.
Consider a pure partition level strategy, which identifies

such a partition when the partition is persistent in memory or
marked as reserved. As illustrated in the motivating example,
a partition not marked as reserved in the application will not
be set into the reserved or persistent state. So, this strategy
could not meaningfully start the tracking process at all. Con-
sider another pure partition level strategy, which identifies
a partition to be persistent when the partition is ephemera.
Since most partitions in a typical program execution should
be ephemera (for instance, see version3 in the motivating
example, which reduces the space complexity from O(N) to
O(1)), this alternative strategy will invoke numerous rounds
of traversal on almost every partition instance. Moreover, if a
persistent partition has been deleted by Sparkbase, the state
of that partition will not be ephemera (see Fig. 1). Thus,
this alternative strategy cannot correctly handle system dele-
tion scenarios. It should also be noted that Sparkbase uses
a strategy at the pure partition level, which is shown to be
inadequate in Section V.

Consider a pure collective level strategy. A system deletion
on a partition of an RDD instance will lead each partition
of the RDD instance to trigger a round of graph traver-
sal, which produces redundant computation demands (note
that ONPARTITIONEVICTED() in Algorithm 2 uses a finer-
granularity, which suffices to serve that purpose). Besides,
to the best of our knowledge, FAR is the first technique to
propose handling these partitions. Since this strategy is built
on top of FAR, without FAR to lay down the groundwork,
it would be more difficult to be discovered.

Second, FAR chooses to (i) keep more persistent partition
instances (than Sparkbase) even when free memory locations
are in shortage and (ii) applies a partition deletion strategy
through Sparkbase (e.g., via ONPARTITIONEVICTED() of Algo-
rithm2). As a comparison, Sparkbase only chooses to delete
partitions. We can view that our strategy forms a kind of
two-player game (where FAR and its underlying Sparkbase
to represent two competing players) to find an equilibrium
feasible to both players (if possible), which is novel.

Last, but not the least, FAR simplifies the application
code by raising the level of code abstraction on handling
the persistence aspect of RDD instances from a procedural
programming approach to an annotation approach (e.g., via
enableFAR() and disableFAR() in the application code). It will

VOLUME 9, 2021 101561



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

Algorithm 2: Partition Tracking
FAR Analysis State: 6σ = 〈target, P, R〉
target: RDD - RDD instance of current execution phase
P: Set<Partition> - set of persistent partitions
R: Map<Partition, Int> - outstanding usage of each
partition

1 procedure ONPARTITIONPERSISTED(part)
2 Input : the partition persisted in memory
3 U ← TRAVERSE(part)
4 for each d in U do:
5 R[d]← R[d] – U [d]
6 if R[d] = 0 and d.FAR then:
7 removePartition(d) // delete the partition
8 P← P\ {d}
9 end if
10 end for
11 P← P∪{part}
12 end procedure
13

14 procedure ONPARTITIONEVICTED(part)
15 Input : a partition deleted by Sparkbase
16 P← P\ {part}
17 if R[part] > 0 then:
18 C ← GETOUTSTANDINGUSAGE([part])
19 for each d in C do:
20 R[d]← R[d] +C[d]
21 CHECK(d) // mark for retention
22 end for
23 end if
24 end procedure
25

26 procedure ONFAILUREOCCURS()
27 P← getPersistentState ()
28 R← GETOUTSTANDINGUSAGE(target.partitions)
29 for each part in R, do: CHECK(part) end for
30 end procedure
31

32 procedure TRAVERSE(part):
33 Input: a partition
34 Output : actual uses of partitions in generating part
35 U ← Map ()
36 Q← Queue(part.dependencies)
37 while Q 6= ∅:
38 d ← Q.pop()
39 U [d]← U [d] + 1 if d in U else 1
40 if d not in P then:
41 Q.append(d .dependencies)
42 end if
43 end while
44 return U
45 end procedure

be exemplified in Section E and will be used in our evaluation
on FAR in Section V. To the best of our knowledge, FAR is
the first framework to provide such supports to application
developers.

FIGURE 4. Enable FAR for version1.

E. EXAMPLES WITH FAR
This section illustrates how FAR works with the motivating
example in Section III.

On top of version1, application developers can simply
revise the code by inserting a pair of enableFAR() and dis-
ableFAR() API calls as illustrated in Fig. 4. The revised pro-
gram (version5) uses FAR to guard the dependency creations
during the execution between line 3 and line 9.

Like Section III, suppose that D0 is persistent. When the
collect() action at line 8 is invoked on Dk , the handler pro-
cedure ONACTIONINVOKED() of Algorithm 1 is invoked with
Dk to set up the analysis state of FAR: target is assigned
with the RDD instance DN , the persistent partition set P is
{D0}, and the expected uses in R is

⋃
k=1 to N {Dk−1 = 3,

pathToKk = 1, pathFromKk = 1, pathByKk = 1}. FAR
checks each partition in R, and invokes persistPartition() on
Di for i = 1 to N–1 (as D0 is persisted already) to change
these partitions into reserved state. Finally, it returns the
control back to the concrete execution phase of Sparkbase.

The budget onD1’s outstanding uses inR is 3, whichmeans
thatD1 will be used thrice during the computation and can be
removed after its third usage.

In the concrete execution phase, Sparkbase first starts the
computation from D0. Once D1

1 is generated, the procedure
ONPARTITIONPERSISTED() of Algorithm 2 is invoked withD1.
Based on the persistent partitions in P, FAR computes the
uses of each partition inU , which is {D0 = 3, pathToK1 = 1,
pathFromK1 = 1, pathByK1 = 1} (line 3 of Algorithm 2).
After deducting the uses from R, all the budgets in U
become 0. As pathToK1, pathFromK1 and pathByK1 are
ephemera, and D0 is not reserved by FAR, no partition
instance is removed (lines 4 –10 in Algorithm 2). Finally,
D1 is added to P, and P becomes {D0, D1}.
After D1 becomes persistent, D1

2 is then generated and
the procedure ONPARTITIONPERSISTED () is invoked again
with D2. The computed partition usage U is {D1 = 3,
pathToK2 = 1, pathFromK2 = 1, pathByK2 = 1}. After
deducting the uses from R, D1’s budget becomes zero. As D1
is reserved by FAR, FAR deletes D1

1 and changes D1 to
ephemera. Finally, P becomes {D0, D2}. The computations
on remaining partitions D3 to DN follow the same process.
Consider an alternative scenario where D1

2 is deleted by
Sparkbase before D1

3 is created. ONPARTITIONEVICTED() is
invoked with D2 as input. It firstly removes D2 from P. The

101562 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

budget on D2’s outstanding uses is 3, which indicates that D2
will be re-generated. FAR computes the new budget on D2
based on the current state kept in P (line 18 in Algorithm 2),
and the result is C = {D0 = 3,D1 = 3, pathToK1 = 1,
pathFromK1 = 1, pathByK1 = 1, pathToK2 = 1,
pathFromK2 = 1, pathByK2 = 1}. These budgets are added
to R, and the state of D1 is changed to reserved. In the rest
of the execution, D1 is persisted during D2

2’s re-generation.
ONPARTITIONPERSISTED() is invoked with D2 when D2

2 is
generated. The outstanding uses of other partitions are com-
puted and kept in U , where U = {D1 = 3, pathToK2 = 1,
pathFromK2 = 1, pathByK2 = 1}. As all D1’s budget has
been exhausted, D2

1 is deleted by FAR.
Therefore, by enabling FAR on top of version1 (to become

version5), its time and space complexity are O(N) and O(1),
respectively, regardless of whether or not partitions need to be
re-populated, which cannot be achieved by Sparkbase alone in
the four versions shown in Fig. 3, or any combination of them.

V. EVALUATION
In this section, we present the evaluation on FAR by compar-
ing it to the original Spark platformwith default configuration
(denoted as Sparkbase) [8]. We aim to answer the following
two key questions:
• RQ1: Can FAR effectively address the performance
bloat problem faced by Spark applications in situations
incurring the performance bloat problem?

• RQ2: Is FAR efficient compared to Sparkbase in the
scenario of normal program executions?

For RQ1, we consider two sub-scenarios which to the best
of our knowledge, are representative. Recall that a program
execution will start its concrete execution phase at each
encountered dataset action performed on an RDD instance.
During the creation of the related dependency instances, there
may be computation errors or system errors to prevent the
concrete execution phase to run smoothly. We refer to it
as the first sub-scenario (Scenario 1) by failing a program
execution when the concrete execution phase is about to start
as what Zaharia et al. did in their experiment [2].

Alternatively, the concrete execution phase can proceed,
but the underlying cluster nodes may have insufficient free
memory locations. In such cases, some partitions of a target
program execution will change their states from persistent to
reserved due to platform deletion of their instances. We refer
to it as the second sub-scenario (Scenario 2) by systemat-
ically varying the amount of available memory of executor
nodes.

We also note that during program development, a program
version may contain functional bugs (e.g., unable to process
a particular record with unexpected contents or in an unex-
pected format), resulting in program execution failure when
processing a test dataset. In typical Spark configurations,
when a failure occurs, the program version may intentionally
re-run for a few times (e.g., 4 times) before execution abor-
tion. When such a failure occurs in the course of establishing
a dependency, Sparkbase re-generates that instance. Thus, the

two sub-scenarios also help evaluate to what extent FAR can
assist application developers in testing and debugging their
programs incurring critical failures by reducing the runtime
of their executions involved.

It is also quite common that a particular program execution
may not encounter any performance bloat problem due to
dependency establishment failure, hence not triggering the
re-generation process of Sparkbase of corresponding partition
instances. Intuitively, the memory consumption required by
programs highly depend on the scale of the input that to
be processed. Therefore, although the capacity of underly-
ing infrastructure can be large, the overall resources and
the costs could become major issues when computing over
larger datasets and/or demanding more accurate results. For
instance, when running on a cloud computing platform, mul-
tiple big data applications may be parallelly executed on the
same cluster. The available resources become more elastic
and the platforms perform more interventions than private
clouds. Therefore, it is interesting to see how FAR performs
under stringent memory resource scenarios.

For RQ2, we consider the normal situation (Scenario 3)
that neither a system failure nor a memory resource shortage
occurs. Intuitively, in such situations, FAR will incur an
additional overhead in performing its state initialization and
more overheads during concrete execution phases. In RQ2,
we aim to evaluate whether FAR is efficient, i.e., whether
the overhead introduced by FAR is acceptable. To assess
the performance, we evaluate the runtime slowdown of FAR
under this scenario and compare it with Sparkbase.

The whole evaluation procedure taken around 120 hours.
All the evaluation results and the source code base of FAR
are available at https://github.com/FAR-Data/.

A. IMPLEMENTATION
We have prototyped FAR as a module in Spark frame-
work using the Scala language. When an execution started,
the Spark driver was launched on the master node and a
FARManager instance was created in it.
The manager got the schedule information (including jobs,

stages and tasks) from Spark’s DAGScheduler instance and
checked whether each partition was persistent by querying
the BlockManagerMaster instance. To do that, we modi-
fied DAGScheduler and Block-ManagerMaster and so that
FARManager was notified whenever any concrete execution
phase was about to start, any partition was generated or
removed. With such information, FARManager kept the out-
standing uses of each partition and performed its algorithms
accordingly.

Whenever FARManager needed to persist a partition,
it updated the state of such partition on the driver and
synchronized the changes to corresponding executors via
DAGScheduler. When FARManager needed to delete a par-
tition (removePartition() in Algorithm 2), it requested Block-
ManagerMaster to send removeBlockmessages to executors,
which removed the corresponding dataset.

VOLUME 9, 2021 101563



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

TABLE 1. Application benchmarks.

B. EXPERIMENTAL SETUP
1) ENVIRONMENT
The experiments were conducted on a server with 4 Intel
Xeon E7-4850 v3 CPUs and 512GB memory, and with
VMware ESXi [10], a bare-metal hypervisor running on it.
To approach the real-world environment, we set up a clus-
ter of 21 VM nodes on the server to run the experiments.
Each node was a virtual machine instance configured with
four vCPUs and 16GB memory, which is a commonly used
configuration provided by cloud computing services (such as
Amazon AWS3 and Microsoft Azure4) for general purpose
computing. This cluster configuration with 21 VM nodes was
the maximum number of VMs that we can create in our server
while keeping the server’s smooth running. Among these
nodes, one served as the master node running the Spark driver
process, and the other twenty nodes served as worker nodes
of Spark executor. Each executor process was configuredwith
4 cores and 14GB memory.

The JVM version was 1.8.0_231-b11 and the Scala version
was 2.11.8. HDFS shipped with Hadoop 2.7.3 was used to
keep data. We compiled Spark source code with version
2.4.4 on the above setting as Sparkbase. We then added the
implementation of FAR to this code base as a Spark compo-
nent and compiled it as FAR in the evaluation.

2) BENCHMARKS
We used six benchmarks in the experiments. All these bench-
marks are summarized in Table 1.

The Spark GraphX library is widely used in practice
and many of its programs were used in various previous

3 https://aws.amazon.com/ec2/instance-types/
4 https://azure.microsoft.com/en-us/services/virtual-machines/

work [25], [26]. We used all the non-trivial benchmarks
as our benchmarks: WeaklyConnectedComponents (WCC),
PageRank (PR), SVDPlusPlus (SVD++), and ShortestPath
(SP). We also used implementations of two commonly used
algorithms, GreedyMaximalMatching (GMM) and Breadth-
FirstSearch (BFS) from GitHub [7].
The above six benchmarks have also been widely used in

other works. In [6], the authors used PageRank and Con-
nectedComponents (an implementation to compute weakly
connected components in a graph) to evaluate the perfor-
mance of GraphX, Giraph and GraphLab [38], [39]. In [40],
four widely used applications, including BreadthFristSearch,
PageRank, SingleSourceShortestPath (which is a special case
of ShortestPaths in our motivating example) andWeaklyCon-
nectedComponent are used to evaluate the efficiency of their
work. We included all these benchmarks in our evaluation on
FAR. Besides, we added two more benchmarks to seek for
a wider generalization. All the benchmarks are using persist
(or cache) and unpersist operations to keep and discard the
intermediate datasets. In the experiment, we enabled FAR in
configuration file so that all the concrete execution phases are
protected to make fair comparisons.

3) DATASETS
We used two real-world datasets to evaluate the performance
of FAR on these benchmarks. For SP, WCC, PR, GMM and
BFS, we used the uk-2005-host graph dataset from Web-
Graph [11]. This dataset contained 39,459,925 nodes and
936,364,282 edges, and the graph was stored in a single file
with a size of 15.32GB. For SVD++, as it is a widely used
algorithm to build a recommendation system, we chose the
Netflix Prize dataset [12] to evaluate its performance. The
benchmark contained 100,480,507 ratings of 17,770 movies
made by 480,189 users. The rating file size was 2.43GB. Both
datasets were stored on HDFS and the data block size was set
to the default value (i.e., 64MB). They have also been widely
used in other works [13]–[15].

4) EXPERIMENTAL PROCEDURE
We set 3600 seconds as the timeout threshold for all the
experiments, which was one order of magnitude higher than
the time spent by these benchmarks to run to completion
successfully. Setting a threshold one order of magnitude
higher than the runtime needed to complete the baseline exe-
cution is a typical setting in software engineering experiments
(e.g., [43]). We regarded a program execution as timeout if its
total elapsed time of the execution larger than this threshold.

For answering RQ1 in Scenario 1, we applied the follow-
ing procedure: We firstly ran each benchmark on Sparkbase
because Sparkbase exhibited more constrained capacity in
handling the benchmarks. More specifically, at the start
of the concrete execution phase of the last dataset action
(i.e., the last Spark job of each program execution), we failed
one randomly chosen Spark executor, which caused the
datasets in that executor inaccessible by other executors. This
resulted in the following situation: all the partition instances

101564 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

on the failed executor were cleaned up and Sparkbase arranged
some other executors to re-generate the required missing
partition instances and continued to complete the program
execution. This strategy to fail a program execution was also
used in [2] and [6].

For each program execution that we failed its executor,
if the whole program execution did not finish before the
timeout threshold, we terminated the program execution, and
ended the experiments on this benchmark. Otherwise, we kept
the execution logs, increased the number of iterations (start-
ing from one) by one, and executed the benchmark. In short,
we systematically increased the number of iterations until
running a benchmark resulted in a timeout. As we are going
to present in Section C, Sparkbase can handle 12 iterations on
average on this set of benchmarks.

We then ran each benchmark on FAR using the same pro-
cedure. However, on each benchmark, FAR did not result in a
timeout in each of the first 20 runs (i.e., program executions
with one, two, . . . , 20 iterations). We also observed that the
differences in various metrics between Sparkbase and FAR
have become greater than an order of magnitude. We there-
fore ended the collection of statistics on FAR after the first
20 experiments on each benchmark. We note that using such
a gap in duration to end an experiment is a typical setting in
the experiments used in software engineering [44].

To answer RQ1 in Scenario 2, for each benchmark running
on each of Sparkbase and FAR, we systematically varied
the available memory that could be used by each executor.
More specifically, for each benchmark, we configured it with
20 iterations and set the available memory for each execu-
tor to be 14GB, 13GB,. . . , 1GB to execute the benchmark.
When each executor allocated with more than 8GB memory,
the system did not remove any partition instance during the
executions as there were sufficient memory locations for
persisted partition instances, and when the memory alloca-
tion set to 1GB, the executions failed with the OutOfMem-
oryError exception due to insufficient heap memory space.
Therefore, in this experiment, we only analyzed the data on
these trials with 8GB, 7GB, . . . , 2GB as the memory size of
each executor. To constrain the memory used by an executor,
we configured the spark.executor.memory parameter, limiting
executors to use no more than a certain amount of memory
on the node, and thus the memory locations for persistent
partition instances were also limited.

To answer RQ2, for each benchmark, we ran it for a fixed
number of iterations. To make all the experiments consis-
tent, we set the iteration number to 20, which was also the
same with experiments in RQ1. We ran each benchmark with
Sparkbase and FAR, respectively, for 20 times.

C. ANSWERING RQ1 THROUGH SCENARIO 1
For each program execution, we measured the total elapsed
time to complete the execution. Fig. 5 shows the results.
The upper plot is for Sparkbase and the lower one is for
FAR. In each plot, there are six lines, one line for each
benchmark. Each point indicates a program execution where

TABLE 2. Speedup observed before timeout.

FIGURE 5. Time spent (in seconds) on re-generation of partition
instances. The x-axis is the number of configured iterations.

the x-value represents the number of iterations configured in
the corresponding benchmark. The y-axis is the time spent
on handling inaccessible partition instances. The time spent is
calculated by tx – t ′x , where tx and t

′
x are the total elapsed time

spent by the program execution with and without triggering
re-generation of partition instances. Thus, the y-value of each
point represents the overhead to handle re-generations of such
inaccessible partition instances incurred by either Sparkbase
or FAR for these program executions.

We observed that in both plots, the overall trend is that
longer time is spent as x increases. However, after some point
of x-value, the time spent for Sparkbase increases rapidly,
and hits the timeout threshold (as indicated by the omissions
of points). More specifically, Sparkbase hits the timeout limit
after x = 5, 13, 13, 14, 14, and 16 for benchmarks SVD++,
PR, GMM, BFS, WCC, and SP, respectively. While for FAR,
the spent time increases gently without omission in the plot.
Also, on each benchmark, FAR takes either similar or much
less time than Sparkbase for the same x-value.
We have also computed the speedup achieved by FAR

over Sparkbase. Table 2 summarizes the results. The first
column represents the benchmark. We collected the time

VOLUME 9, 2021 101565



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 6. Dependency and partition instance histograms for BFS.

spent incurred by both Sparkbase and FAR for these program
executions without timeout. The 2nd–4th (5th–6th) columns
show themean (maximum) time spent by Sparkbase, FAR, and
the ratio of them in these executions.

Table 2 shows that compared to Sparkbase, enabling FAR
can achieve 3.7x to 13.2x mean speedup and 7.3x to 67.0x
maximum speedup for the six benchmarks. The average of
these mean and maximum speedups is 8.8x and 35.4x. The
improvement of FAR over Sparkbase is large.
To analyze whether there is significant difference between

FAR and Sparkbase in reusing partition instances, we further
analyzed individual program executions. We repeated the
experiment, but at this time, we inserted logging statements in
the source code to measure howmany times each dependency
had been established and how many partition instances had
been generated during each program execution.

We analyze the situations at the dependency level and the
partition instance level as follows.
At the dependency level, for each execution, we collected

the dependencies from GP, and grouped them into five cat-
egories by their establishment times (i.e., once, 2 – 9 times,
10 – 99 times, 100 – 999 times, and more than 999 times).
We computed a normalized histogram and the total number
of dependencies is scaled to 100%.

At the partition instance level, we recorded all the gen-
erated partition instances for each execution and grouped
them into five categories by the count of equivalent instances.
We summed up the total number of partition instances in each
category, normalized the histogram on them so that the total
number of partition instances is scaled to 100%.

To avoid overloading the readers, for brevity, we only show
the results of BFS in Fig. 6. The results of other benchmarks
are provided in Appendix I. Fig. 6 shows the normalized
histograms at dependency level (left) and at the partition
instance level (right) on the BFS benchmark, in which we use
different color depths to depict different categories. In each
plot, the upper and lower sections show the results from
program executions with FAR and Sparkbase, respectively.
The program executions resulted in timeout are shown as bars
with striped lines. The y-axis is the index of the program
execution to obtain the raw data.

In Fig. 6(a), the results show that for all these executions,
most dependencies (more than 95%) were established only
once. As the execution index increases, more dependencies

TABLE 3. Time spent (in seconds) with different executor memory
allocations.

were involved due to missing partition instances. For the
last executions from both FAR and Sparkbase, about 5% of
dependencies were established more than once. Only a tiny
part (less than 1%) was established more than 999 times in
Sparkbase.

However, although the difference is small between FAR
and Sparkbase in Fig. 6(a), failure to share partition instances
during the establishment of dependencies resulted in perfor-
mance bloat. Fig. 6(b) summarizes the findings. From the
section on FAR, we can see that most partition instances
(more than 90%) were grouped under the first category (i.e.,
each partition were generated only once), and all other parti-
tion instances were grouped under the second category (more
specifically, each one had less than three equivalent partition
instances). From the section on Sparkbase, as the execution
index increases, partitions were generatedmany times and led
to a large percentage of all partition instances. In the last row
for Sparkbase (before timeout), each partition had more than
999 equivalent partition instances, and accounts for 90% of
all instances.

D. ANSWERING RQ1 THROUGH SCENARIO 2
In Scenario 2, following [26], wemeasured the Runtime spent
by each execution as presented in Spark’s Web UI, which is a
web interface to monitor and inspect application executions.

Table 3 shows the time spent in each configuration with
different fraction of maximum available memory. From the
results, when each executor’s memory changed from 8 GB
to 5 GB, all program executions for both Sparkbase and
FAR finished without experiencing any timeout. Moreover,
the differences in time spent between the two techniques are
small, indicating that FAR had a comparable performance
as Sparkbase under less restrictive memory scenarios in the
experiment.

However, as the available memory situation became more
stringent, Sparkbase did not continue to scale well and
started to perform much poorer than FAR. When the fraction
changed from 5 GB to 3 GB, the program executions under
Sparkbase started to result in timeout. In contrast, although the
time spent incurred by FAR increased by a large margin, pro-
gram executions still completed before the timeout threshold.
In particular, we observed that in the experiment, program

101566 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 7. Dependency and partition instance histograms for BFS
executions with different execution memory allocation.

executions on Sparkbase changed from running normally to
resulting in a timeout within a change of 1 GB of available
memory, whereas execution performance on FAR degraded
more gracefully. Finally, for the executions with only 2 GB as
the maximum available memory, all the program executions
supported by FAR were completed before timeout except for
GMM. The overall results indicate that FAR has the potential
to complete program executions much earlier than Sparkbase
in memory stringent situations.

To further analyze the above program executions, we mea-
sured the number of established dependencies and partition
instances as what we summarized in Fig. 6. But this time,
we only varied the amount of memory assigned to executors
across executions. For executions resulted in timeouts (where
timeout was set to 3600 seconds as well), we calculated the
results of the executions right before timeout. We grouped
these partition identifiers into five categories using the same
scheme that we used in Fig. 6.

Fig. 7 shows the results of BFS, and the results of other
benchmarks are provided in Appendix I.

There are two plots in Fig. 7, in each plot, the upper
and lower parts are the executions with FAR and Sparkbase,
respectively. From Fig. 7, for program executions which
completed successfully using either technique (Sparkbase
and FAR), only a small ratio of dependencies had been
re-established, and the number of equivalent partition
instances were always less than nine.

However, when the available memory became smaller
(i.e. less than 4GB), the program executions using Sparkbase
started to result in timeouts. From Fig. 7, the results show that
the executions using Sparkbase generated thousands of equiv-
alent instances of some data partitions and these instances
took up a very large proportion of all instances generated.
As a comparison, with the same memory allocation, each
partition instance in program executions using FAR was
always associated less than 99 equivalent partition instances.
Take BFS with 3GB memory allocation as an example.
Around 60% of all instances using Sparkbase were generated
more than 999 times. More specifically, the maximum and
mean counts of equivalent partition instances in the fifth
category (i.e., larger than 999) were 2049 and 1281. For
its counterpart using FAR, the maximum and mean num-
bers of equivalent partition instances in its third category

TABLE 4. Relative runtime (in seconds) overhead of FAR.

(i.e., between 10 and 99) were 20 and 13, respectively. There
were two orders of magnitude in difference.

Across all the executions, for both Sparkbase and FAR,
the percentage of partition instances in the first category (i.e.,
generated only once) dropped from around 90% to a small
value (less than 20% for FAR, and less than 5% for Sparkbase),
which indicates multi-fold increases in the number of equiv-
alent partition instances. The result indicates that these pro-
gram executions incurred serious re-generation slowdown
overheads when the total available memory locations were
insufficient to keep all partition instances that these program
executions (with their underlying techniques Sparkbase and
FAR) aimed to keep at the same time. It also reveals that sys-
tem deletion of persistent instances has a significant impact
on execution slowdowns in this scenario.

E. ANSWERING RQ2 THROUGH SCENARIO 3
Similar to the time spent data used in the last subsection,
the time spent data in this experiment were extracted from
Spark’s Web UI. Table 4 summarizes the mean and standard
deviation of the time spent (in seconds) of the program exe-
cutions using Sparkbase and FAR. The third column shows the
ratio of the two columns on its left and the ratio is calculated
as mean time spent of FAR ÷ mean time spent of Sparkbase.
For this ratio, a value over 1 indicates that FAR is slower than
Sparkbase; otherwise, FAR has not been observed to have a
disadvantage in terms of the slowdown. To analyze the statis-
tical significance, we also ran one-wayANOVAanalysis [37],
of which the P-values are shown in the rightmost column.

From the Ratio column, FAR-enabled executions caused
slight overheads (0.03% – 1.39%) in three of all the six
benchmarks, and speedups (0.45 – 3.51%) for the other
three. In terms of statistical significance, all the P-values
are larger than 0.05, indicating no significant differences
between each two groups of program executions has been
found at 5% significance level. Overall speaking, FAR and
Sparkbase achieved comparable runtime overheads for all the
240 conducted program executions.

In addition, as Checkpointing is a widely applied fault
tolerances strategy to executions, we assessed our approach
FAR with checkpointing and found FAR more efficient in
handling program executions. More details of the comparison
are provided in Appendix II.

VOLUME 9, 2021 101567



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

F. THREATS TO VALIDITY
The presence of platform bugs remains a major threat of the
experiment. FAR needs to calculate accurate dependencies
from these activities. Inaccurate results will lead FAR tomake
wrong decisions on keeping or discarding partition instances.
However, as the underlying environment is not guaranteed
to be reliable, the completeness of lifecycle activities is not
guaranteed either. Although we did not observe that we had
encountered this issue in the experiments, it is still possible
that FAR may cause memory leak during the execution in
other settings.

All the experiments were conducted on the VMware ESXi
hypervisor [10]. In general, the virtual machines are isolated
and would not interfere with each other. However, when the
workload is accidentally high on each and every machine
at the same time, there could be preemptions on hardware
resources, which yield unstable results. To overcome this
threat, we only kept the cluster node virtual machines run-
ning during the experiment to avoid the irrelevant workload
interfering the experimental results.

The third one lies in the representativeness of the bench-
marks. The selected benchmarks used for evaluating FAR
have frequent partition operations. Among the six bench-
marks, four of them are provided by Spark and widely used
in the experiments of prior studies [25], [26]. To obtain
greater generalizability, we have searched the open-sourced
benchmarks in GitHub, only found two others that incur
performance bloat problems are based on iterative algorithms.
There were benchmarks but we could not obtain their datasets
or these benchmarks could be run on our platforms. How-
ever, these benchmarks are all implementations of specific
algorithms, different from full-bone industry-strength appli-
cations. Readers should interpret our experimental results
with care.

The implementation of our technique may contain bugs.
We have tested it with small programs and examined the
data generated from the benchmarks. We did not observe
abnormality.

The experiment was found very time-consuming due to the
processing of large datasets and generation of many datasets.
Because of the limited resources we can afford, the scale
of our experiment could not be scale up further. Within our
resource limit, we have evaluated our technique carefully by
varying different values for different parameters systemat-
ically. Using platforms with other capacity and processing
power will certainly give new absolute results. However,
we tend to believe that FAR will still outperform Sparkbase
in scenarios incurring performance bloat due to excessive
partition instance generation and deletion.

We only used the memory consumptions and execution
time as the metrics. Using other metrics may give dif-
ferent results. However, we tend to believe that the per-
formance bloat problem being solved by FAR will still
make our technique have a competitive advantage over
Sparkbase.

VI. FURTHER DISCUSSIONS
In [2], the authors of Sparkbase also conducted two experi-
ments to evaluate the performance of Sparkbase after a node
failure and with insufficient memory (i.e., Scenario 1 and
Scenario 2 in this work). More specifically, for Scenario 1,
they ran 10 iterations of k-means on a 75-node cluster while
killing a node at the start of the 6th iteration. Each iteration
cost was about 58 seconds except for the 6th iteration, which
took 81 seconds as it reconstructed the lost RDD partition
instances. For Scenario 2, they ran logistic regression bench-
mark on 25 machines with varying amounts of data in mem-
ory. The results showed that the iteration time increased from
11.5 seconds to 40.7 seconds and 68.8 seconds when 100%,
50% and 0% memory were configured as the storage space.

However, they didn’t encounter severe performance
decrease as we had in our experiments. There are two main
reasons for this difference. First, both k-means and logistic
regression are simple benchmarks that do not create com-
plex lineage graphs. Second, even with complex benchmarks,
the issue could be staying unrevealed at an earlier stage of
the program execution. In practice, applications are usually
complex and long. Enabling FAR under such cases is more
necessary and helpful.

In Section V.E, when the available memory is not stringent,
the experiment results show that the advantage of FAR is
small. However, in practice, there are various use cases that
FAR may be applicable. In recent years, deep learning tech-
niques achieved significant advancements. Models with more
parameters and more sophisticated structures are proposed
and applied to gain insights from massive amounts of data.
A lot of work such as SparkNet, TensorflowOnSpark, Caf-
feOnSpark that integrate the prevalent deep learning libraries
together with big data frameworks to enable distributed deep
learning executions on Spark and Hadoop clusters [31]–[33].
In these scenarios, these deep learning programs need plenty
of memory resources may run together with Spark and lead
to dataset deletion problems. It appears to us that FAR has
some potential to alleviate the possible dataset re-generation
issues.

FAR also provides opportunities to support debugging and
testing techniques on Big Data platforms. Mutation testing
is an important kind of software testing technique that has
been extensively studied in the past decades [30]. During its
testing procedure, a set of program variants (called mutants)
are generated by seeding small faults in the original pro-
gram, and then comparisons are made among the original
program and these mutants. Given a large number of program
mutants and the needs of executing test cases over different
program versions, mutation testing is computationally expen-
sive. In addition, execution failures are common in the proce-
dure of mutation testing. In the context of big data programs,
these failures may lead to data loss and trigger the retry
and recovery mechanism of big data platforms. As we have
illustrated in this work, the runtime performance of the
re-calculation could be significantly degraded, which makes

101568 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

mutation testing even harder to be applied. We believe that
FAR has the potential to alleviate the situation by effectively
identifying, persisting and deleting reusable datasets, which
could make mutation testing be conducted more efficiently.
Apricot is a debugging technique for deep learn-

ing (DL) models by iteratively conducting weight-adaption
on them [34]. It generates a set of smaller DL models of the
original DL model for the purpose of fixing the latter model
and uses them in its iterative process to gradually change and
re-train the original DL model. We believe that FAR could be
applicable in such a scenario if Apricot is run on a Big Data
infrastructure, where partitions in FAR are mapped to batches
in Apricot.

Compared to Sparkbase, FAR may consume more memory
to keep persistent datasets. However, if there is insufficient
memory, as in the case of Scenario 2, FAR can still work
gracefully. In FAR algorithm, it tracks outstanding uses on
each partition in its analysis state, where the algorithm has
not been optimized. For instance, deleting a partition with
one outstanding use with a smaller ripple effect to re-generate
other partitions may be preferable to deleting a partition with
more outstanding uses with a larger ripple effect. We leave
the investigation of optimizations on FAR as a future work.

VII. RELATED WORK
A. FAULT-TOLERANCE MECHANISMS
There are two major mechanisms for achieving fault-
tolerance, lineage graph and checkpointing techniques.

As mentioned in section I, a lineage graph contains RDD
instances and the dependency relations between them. If a
dataset is missing due to whatever reasons, the information
on the graph could be used to recompute the missing dataset
to achieve fault-tolerance on data loss [2]. Different from
the lineage graph built-in with Spark, FAR takes advantage
of dependency relations at both RDD and partition instance
levels, which provides finer-grained support. Furthermore,
as we analyzed in section III, the hard-coded lineage graph
is not always effective to guide the re-computation. By ana-
lyzing the execution plan of ongoing action and monitoring
the partition instance lifecycle activities, FAR can actively
repair the procedure of computations, as well as the whole
execution.

There are many checkpointing techniques proposed in the
literature [1], [4], [8], [16]–[20]. They periodically back
up certain intermediate datasets to secondary storage and
can restart the program executions from the saved points.
Panda [3] employs the fine-grained checkpointing on the
task outputs. It uses the tasks’ intrinsic information, such
as the size of output data and the distribution of task run-
times, to dynamically identify tasks to be checkpointed rather
than recomputed [3]. Xu et al. proposed a fault-tolerance
mechanism for Apache Flink [21]. Their technique injects
checkpointing into each iteration and enables checkpoint
to be written along with computing RDD values. As the
CPU processing could partially overlap the I/O processing,
the whole pipeline execution can archive higher efficiency.

We also conducted an exploratory study to assess FARwith
the checkpointing approach. The results showed that FAR is
more efficient in the comparison experiment. More details are
provided in Appendix II.

B. DATASET MANAGEMENT IN DATA PROCESSING
Many existing works seek to find solutions to persistent
dataset management for more efficient memory usage as
well as better platform optimization [12], [22]–[26]. A major
class of them proposes replacement policies for persisted
partitions. If the available memory for a later execution is in
shortage, such a policy will select and delete part of persisted
datasets to release memory locations [27].

Yu et al. proposed a Least Reference Count (LRC) policy to
replace the default LRU policy of Spark [26]. LRC exploits
the lineage graph and deletes persisted partitions where the
corresponding RDD instances have the least numbers of
unevaluated children RDD instances. Geng et al. [22] pro-
posed Least Cost Strategy (LCS) which predicts the future
usage and recovery cost information of persisted partition
instances from their dependency relationships and selectively
deletes them.

Spark uses predefined and fixed parameters to reserve
datasets for subsequent usage [8]. MemTune dynamically
tunes these parameters by exploiting the task scheduling
information at runtime to improve the overall memory
resource utilization [25]. As Spark allows developers to
choose from a few storage levels for RDD dataset storing,
Neutrino provides adaptive storage levels and further opti-
mized the memory use [24]. Their adaptive storage levels
are chosen based on the access order of RDDs and runtime
information [24]. Gounaris et al. investigated the trade-offs
between performance and consumed CPU resource of Spark
applications. They proposed algorithms to take both execu-
tion time and occupied resource into account by dynamically
partitioning during the execution [42].

Unlike the techniques in this category, the goal of FAR
is not to create a technique to select datasets to be deleted
to release memory for other usages. FAR aims to define
dataset reuses based on the information of the online lineage
graph produced by the Spark platform and the progress of the
program execution. Although an important feature of FAR
is to delete partitions (if the partition has not been set into
some other states by the program execution or the underlying
platform) right after all the budgets on the partition instance
have been consumed, as discussed in Section VI, FAR has
not incorporated strategies to prioritize or select datasets to
be deleted in other situations. In fact, unlike strategies like
LRC and LCS which do not introduce additional datasets
to be persisted, FAR makes retention decisions of partitions
and actively changes the states of some partitions to be
persistent ‘‘for a while’’. In this sense, partitions under the
management of FAR are still ‘‘transient’’ but last longer than
a partition in ephemera state and shorter than a partition in
the reserved/persistent state. In the sense of state transition

VOLUME 9, 2021 101569



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 8. Re-generation histograms of executions each with one concrete execution phase failed. In each subfigure, there are four plots for the results
of FAR and Sparkbase at the dependency level (the first subplot and the second subplot respectively) and at the partition instance level (the third
subplot and the fourth subplot respectively).

depicted in Fig. 1, FAR introduces a new state and a set of
related transitions to the state-transition diagram.

VIII. CONCLUSION
In this paper, we have proposed FAR, a novel execution repair
framework to effectively maintain the partition instance
dependencies for Spark program executions. To address
the performance bloat problem, FAR provides high-level
programming abstraction to help application developers to
address the performance problem caused by excessive par-
tition instance generation and deletion. We have presented
the novel design and the algorithms of FAR. We have shown
its feasibility by implementing it as a component in Spark.
We have evaluated it using six benchmarks in different sce-
narios ranging from execution failures needing re-generation
of some partition instances to running programs in environ-
ments with stringent available memory constraints. We have
evaluated FAR in situations where there are sufficient system
resources and there is no failure requiring partition instance
re-generation. The results have shown that FAR has the poten-
tial to effectively and efficiently address a class of perfor-
mance bloat in Spark applications. FAR transiently incurs
higher memory overheads than Spark due to the needs to
keep more persistent partitions temporarily, and the experi-
ment shows that this strategy pays off well. The integrations
with other fault tolerance or data management strategies are

interesting to be further explored. We leave them as future
work.

APPENDIX I
RE-GENERATION HISTOGRAMS OF OTHER FIVE
BENCHMARKS IN SCENARIO 1 AND SCENARIO 2
Fig. 8 shows the dependency level and partition instance level
histograms of five benchmarks in Scenario 1. We can observe
that they followed similar trends as the BFS benchmark in
Section V.C. To avoid overloading the readers, we do not
repeatedly state similar observations.

Fig. 9 shows the re-generation histograms of five bench-
marks in Scenario 2. We notice that SVD++ using Netflix
Prize dataset consumed a small amount of memory. There-
fore, in this experiment, all the program executions using
FAR can complete without experiencing a large increase
in execution time. However, under the extreme case with
2 GB memory, the execution using Sparkbase still yielded a
large percentage of partition instances and failed to complete
before timeout. On GMM, the program execution using FAR
resulted in timeout when memory allocation was 2 GB. From
Table 3 in Section V.D, GMM’s executions always took
longer time than corresponding executions of other bench-
marks under the same memory allocations, indicating that
GMM was more complex in processing than other bench-
marks (which we have inspected the code and confirmed it).
However, from Fig. 9, the numbers of partition instances in

101570 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 9. Re-generation histograms of executions with different execution memory allocation. In each subfigure, there are four plots for the
results of FAR and Sparkbase at the dependency level (the first subplot and the second subplot respectively) and at the partition instance level (the
third subplot and the fourth subplot respectively).

program executions using FARwere small (more specifically,
no partition had more than 99 instances). We also executed
the GMM benchmark under 2 GB available memory without
setting any timeout threshold, it took 4552 seconds to com-
plete. This result was 10.0x slower than the corresponding
execution with 8 GB available memory, which is comparable
with other benchmarks in this aspect. (We could not complete
the execution when running on Sparkbase after several hours.)

APPENDIX II
FURTHER EXPLORATORY STUDY
Checkpointing is a widely applied strategy to provide fault
tolerance to executions. With checkpointing, an intermediate
dataset could be periodically shadowed (i.e., making a copy
of the partition instances) even if it has not been persisted by
the corresponding program execution. Intuitively, if a failure
occurs, the missing partition instances can be retrieved from
the snapshot captured via checkpointing.

Although checkpointing is inapplicable to Scenario 2 due
to its additional memory overhead in shadowing intermedi-
ate datasets, intuitively, it can be applied to Scenario 1 and
Scenario 3. We thus ask a question on whether FAR can
be at least as good as checkpointing in handling program
executions in Scenario 1 and Scenario 3?

To seek the answer to the above question, we implemented
the above checkpointing procedure on Sparkbase to conduct a
further comparison to FAR (and we are unaware of any avail-
able checkpointing implementation for Spark yet). We picked
PR as the benchmark in this exploratory study. We chose PR
as it is representative in all six benchmarks.

Spark provides the checkpoint interface on RDD. When
a checkpoint operation is conducted on an RDD instance,
the RDD instance is marked for checkpointing. A concrete
checkpointing procedure is triggered once an action on such
RDD instance is invoked. During checkpointing, the corre-
sponding datasets are generated and saved to non-volatile
storage. If a re-generation of the partition instance is needed
in a program execution, Sparkbase can read the latest snap-
shot kept in the non-volatile storage during the requested
re-generation.

To use checkpointing, we had to modify the source code
of the PR benchmark by inserting the checkpoint statements.
Specifically, we added code to checkpoint the intermediate
RDDs when it finishes its 2nd, 7th, 12th, and 17th iterations.
For ease of our discussion, we refer to this implementation as
PRCP. We compared PRCP with PR using FAR and PR using
Sparkbase. We measured their time spent in Scenario 1 where
an executor was failed at the 3rd, 8th, 13th, 18th, 19th, and
20th iteration as well as their time spent in Scenario 3 (where
timeout was set to 3600 seconds as well). We note that PR
using Sparkbase resulted in timeouts after the 13th iteration.
Fig. 10 summarizes the results of these executions for the

three techniques, shown as bars. Along the horizontal axis,
the first slot ‘‘Start’’ denotes results of Scenario 3 where
these executions run normally. The following slots show the
program executions with an executor failed at the 3rd, 8th,
13th, 18th, 19th, and 20th iterations. We note that PRCP can
only provide a restoration of the partition instance kept in the
snapshot. Thus, PRCP still requires Sparkbase to re-generate
the missing partition instances not in the snapshot.

VOLUME 9, 2021 101571



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

FIGURE 10. Runtime comparison among Sparkbase, FAR and PRCP
configurations. The symbol ∗ indicates timeout.

In these program executions for PRCP, the snapshots were
checkpointed at the end of 2nd, 7th, 12th, and 17th iterations.
For the program executions that failures occurred at 3rd, 8th,
13th, and 18th, the datasets to recover the missing partition
instances could read directly from the snapshots. On the other
hand, for program executions failed at the 19th and 20th iter-
ations, the missing partition instances had to be re-generated
by applying transformations on the latest snapshot of the 17th

iteration. This setting allows us to evaluate FAR against PRCP
in more diverse situations.

Similar to the results presented in the last subsection,
the time spent of FAR and that of Sparkbase were similar.
However, the time spent of PRCP was almost 4.2x than FAR.
We found that the significant differencewas due to the need of
I/O operations for checkpointing datasets to the non-volatile
storage.

We also observe a side effect of using checkpointing inter-
face. Each invocation of checkpointing will break the lin-
eage graph of current execution into disconnected fragments.
Because re-generation of partition instances in Sparkbase
inherently requires the lineage graph to re-generate partition
instances, the remaining fragments can only provide limited
visibility on some previously generated instances. Therefore,
a program execution might load partition instances from the
snapshot without knowing that the equivalent instances might
have been currently kept in the memory, which further slowed
down the program execution and consumed more memory
than expected.

Similar to FAR, PRCP did not introduce additional major
runtime overheads when a program execution failed in later
concrete execution phases, and yet PRCP spent 3.3x to 3.9x
more time than FAR. Given that PRCP needs Sparkbase to
support the re-generation of partition instances that are not
kept in the snapshot. PRCP can be configured to run with FAR
instead of Sparkbase. That is to say, FAR and checkpointing
are not competing techniques, rather they are complementary
in nature. It also clarifies the nature of FAR that it is not a
fault-tolerance technique.

REFERENCES
[1] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino,

‘‘Apache tez: A unifying framework for modeling and building data pro-
cessing applications,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
May 2015, pp. 1357–1369.

[2] M. Zaharia, M. Chowdhury, T. Das, and A. Dave, ‘‘Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing,’’ in
Proc. 9th USENIX Conf. Networked Syst. Design Implement., 2012, p. 2.

[3] B. Ghit and D. Epema, ‘‘Better safe than sorry: Grappling with failures
of in-memory data analytics frameworks,’’ in Proc. 26th Int. Symp. High-
Perform. Parallel Distrib. Comput., Jun. 2017, pp. 105–116.

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
‘‘Spark: Cluster computingwithworking sets,’’ inProc. 2ndUSENIXConf.
Hot Topics Cloud Comput., 2010, p. 10.

[5] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, ‘‘Spark SQL:
Relational data processing in spark,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data, May 2015, pp. 1383–1394.

[6] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, ‘‘GraphX: Graph processing in a distributed dataflow frame-
work,’’ in Proc. 11th USENIX Symp. Operating Syst. Design Implement.,
2014, pp. 599–613.

[7] Ericpony. GraphX Playground. Accessed: May 4, 2020. [Online]. Avail-
able: https://github.com/ericpony/graphx-playground

[8] Apache SparkTM. Accessed: May 4, 2020. [Online]. Available:
https://spark.apache.org/

[9] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, ‘‘Shortest paths algo-
rithms: Theory and experimental evaluation,’’ Math. Program., vol. 73,
no. 2, pp. 129–174, May 1996.

[10] VMware vSphere Hypervisor. Accessed: May 4, 2020. [Online]. Available:
https://www.vmware.com/products/vsphere-hypervisor.html

[11] P. Boldi and S. Vigna, ‘‘The webgraph framework I: Compression tech-
niques,’’ in Proc. 13th Conf. World Wide Web (WWW), 2004, pp. 595–602.

[12] J. Bennett and S. Lanning, ‘‘The netflix prize,’’ in Proc. KDD Cup Work-
shop, 2007, pp. 3–6.

[13] K. Lee, L. Liu, K. Schwan, C. Pu, Q. Zhang, Y. Zhou, E. Yigitoglu, and
P. Yuan, ‘‘Scaling iterative graph computations with GraphMap,’’ in Proc.
Int. Conf. High Perform. Comput., Netw., Storage Anal., Nov. 2015, p. 57.

[14] S. Salihoglu and J. Widom, ‘‘Optimizing graph algorithms on pregel-like
systems,’’ Proc. VLDB Endowment, vol. 7, no. 7, pp. 577–588, Mar. 2014.

[15] W. Xiao, J. Xue, Y. Miao, Z. Li, C. Chen, M. Wu, W. Li, and L. Zhou,
‘‘Tux2: Distributed graph computation for machine learning,’’ in Proc.
NSDI, 2017, pp. 669–682.

[16] Z.Wang, L. Gao, Y. Gu, Y. Bao, and G. Yu, ‘‘A fault-tolerant framework for
asynchronous iterative computations in cloud environments,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 8, pp. 1678–1692, Aug. 2018.

[17] Y. Yan, Y. Gao, Y. Chen, Z. Guo, B. Chen, and T. Moscibroda, ‘‘TR-spark:
Transient computing for big data analytics,’’ inProc. 7th ACMSymp. Cloud
Comput., Oct. 2016, pp. 484–496.

[18] J. W. Young, ‘‘A first order approximation to the optimum checkpoint
interval,’’ Commun. ACM, vol. 17, no. 9, pp. 530–531, 1974.

[19] Apache Software Foundation. (Aug. 2015). Apache Flink. Apache.Org.
[Online]. Available: https://flink.apache.org/

[20] Apache Software Foundation. (Aug. 2016).Apache Storm. [Online]. Avail-
able: https://storm.apache.org/

[21] C. Xu, M. Holzemer, M. Kaul, and V. Markl, ‘‘Efficient fault-tolerance for
iterative graph processing on distributed dataflow systems,’’ in Proc. IEEE
32nd Int. Conf. Data Eng. (ICDE), May 2016, pp. 613–624.

[22] Y. Geng, X. Shi, C. Pei, H. Jin, and W. Jiang, ‘‘LCS: An efficient data
eviction strategy for spark,’’ Int. J. Parallel Program., vol. 45, no. 6,
pp. 1285–1297, Dec. 2017.

[23] T. B. G. Perez, X. Zhou, and D. Cheng, ‘‘Reference-distance eviction
and prefetching for cache management in spark,’’ in Proc. 47th Int. Conf.
Parallel Process., Aug. 2018, p. 88.

[24] E. Xu, M. Saxena, and L. Chiu, ‘‘Neutrino: Revisiting memory caching for
iterative data analytics,’’ in Proc. USENIX Workshop Hot Topics Storage
File Syst., 2016, pp. 16–20.

[25] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu, ‘‘MEMTUNE:
Dynamic memory management for in-memory data analytic platforms,’’
in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), May 2016,
pp. 383–392.

[26] Y. Yu, W. Wang, J. Zhang, and K. Ben Letaief, ‘‘LRC: Dependency-
aware cache management for data analytics clusters,’’ in Proc. IEEE Conf.
Comput. Commun. (IEEE INFOCOM), May 2017, pp. 1–9.

[27] A. J. Smith, ‘‘Cache memories,’’ ACM Comput. Surv., vol. 14, no. 3,
pp. 473–530, Sep. 1982.

[28] S. Brin and L. Page, ‘‘The anatomy of a large-scale hypertextual web search
engine,’’ in Proc. 7th Int. Conf. World Wide Web, 1998, pp. 107–117.

101572 VOLUME 9, 2021



X. Mei et al.: Execution Repair for Spark Programs by Active Maintenance of Partition Dependency

[29] D. M. Blei, A. Y. Ng, and M. I. Jordan, ‘‘Latent Dirichlet allocation,’’
J. Mach. Learn. Res., vol. 3, Jan. 2003, pp. 993–1022.

[30] Y. Jia and M. Harman, ‘‘An analysis and survey of the development of
mutation testing,’’ IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,
Jun. 2011.

[31] Caffe on Spark. Accessed: May 4, 2020. [Online]. Available: https://
github.com/yahoo/CaffeOnSpark

[32] Tensorflow on Spark. Accessed: May 4, 2020. [Online]. Available:
https://github.com/yahoo/TensorFlowOnSpark

[33] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, ‘‘SparkNet: Training
deep networks in spark,’’ 2015, arXiv:1511.06051. [Online]. Available:
http://arxiv.org/abs/1511.06051

[34] H. Zhang and W. K. Chan, ‘‘Apricot: A weight-adaptation approach to fix-
ing deep learning models,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Nov. 2019, pp. 376–387.

[35] Y.-M. Wang, Y. Huang, K.-P. Vo, P.-Y. Chung, and C. Kintala, ‘‘Check-
pointing and its applications,’’ in 25th Int. Symp. Fault-Tolerant Comput-
ing. Dig. Papers, 1995, pp. 22–31.

[36] J. Shi, Y. Qiu, U. F. Minhas, L. Jiao, C. Wang, B. Reinwald, and F. Özcan,
‘‘Clash of the titans: Mapreduce vs. spark for large scale data analytics,’’
Proc. VLDB Endowment, vol. 8, no. 13, 2015, pp. 2110–2121.

[37] D. C. Howell, Statistical Methods for Psychology, 6th ed. Belmont, CA,
USA: Thomson Wadsworth, 2007.

[38] Apache Giraph. Accessed: May 4, 2020. [Online]. Available:
https://giraph.apache.org/literature.html

[39] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and
J. M. Hellerstein, ‘‘Distributed GraphLab: A framework for machine learn-
ing and data mining in the cloud,’’ Proc. VLDB Endowment, vol. 5, no. 8,
pp. 716–727, Apr. 2012.

[40] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C. Kozyrakis,
and X. Qian, ‘‘GraphP: Reducing communication for PIM-based graph
processing with efficient data partition,’’ in Proc. IEEE Int. Symp. High
Perform. Comput. Archit. (HPCA), Feb. 2018, pp. 544–557.

[41] Y. Koren, ‘‘Factorization meets the neighborhood: A multifaceted collab-
orative filtering model,’’ in Proc. 14th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2008, pp. 426–434.

[42] A. Gounaris, G. Kougka, R. Tous, C. T. Montes, and J. Torres, ‘‘Dynamic
configuration of partitioning in spark applications,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 28, no. 7, pp. 1891–1904, Jul. 2017.

[43] E. Pobee and W. K. Chan, ‘‘AggrePlay: Efficient record and replay of
multi-threaded programs,’’ in Proc. 27th ACM Joint Meeting Eur. Softw.
Eng. Conf. Symp. Found. Softw. Eng., Aug. 2019, pp. 567–577.

[44] Y. Cai and W. K. Chan, ‘‘Magiclock: Scalable detection of potential dead-
locks in large-scale multithreaded programs,’’ IEEE Trans. Softw. Eng.,
vol. 40, no. 3, pp. 266–281, Mar. 2014.

XIUPEI MEI received the B.Eng. degree from
the School of Computer Science and Engineer-
ing, Beihang University (BUAA), China, in 2012.
He is currently pursuing the Ph.D. degree in
computer science with the City University of
Hong Kong. His main research interests include
program debugging and analysis in big data plat-
forms, and concurrency bug detection in multi-
threaded programs.

IMRAN ASHRAF received the B.S. degree in
computer and information sciences from the Pak-
istan Institute of Engineering and Applied Sci-
ences (PIEAS), in 2011, with a Gold Medal
Award. He is currently pursuing the Ph.D. degree
in computer science with the City University
of Hong Kong. His current research interests
include program analysis and security vulnerabil-
ity detection in decentralized platforms, such as
Ethereum blockchains. His primary research inter-

ests include security vulnerability detection techniques are fuzz testing, static
analysis, and symbolic execution.

XIAOXUE MA received the B.Eng. degree (Hons.)
in telecommunication engineering from the
College of Physical Science and Technology, Cen-
tral China Normal University (CCNU), China,
in 2017. She is currently pursuing the Ph.D.
degree with the Department of Computer Sci-
ence, City University of Hong Kong. Her current
research interest includes dynamic program analy-
sis on concurrency bug detection in multithreaded
programs.

HAO ZHANG received the B.Eng. and M.Sc.
degrees from Beihang University, China, in 2015
and 2018, respectively. He is currently pursuing
the Ph.D. degree in computer science with the City
University of Hong Kong. His main research inter-
ests include interplay between software engineer-
ing and artificial intelligence, as well as program
debugging. His work has been reported in ASE and
TOSEM.

ZHENGYUAN WEI received the B.Eng. degree
(Hons.) in software engineering from the School
of Data and Computer Science, Sun Yat-sen
University (SYSU), China, in 2017. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science, City University of
Hong Kong. His research interests include deep
learning robustness and efficiency, and compiler
optimization.

HAIPENG WANG (Graduate Student Member,
IEEE) received the B.Eng. degree in software
engineering from the Department of Computer
Science, Beijing Institute of Technology, and the
master’s degree in data engineering from the
Department of Computer Science, City University
of Hong Kong, where he is currently pursuing
the Ph.D. degree. His current research interest
includes software engineering in AI.

W. K. CHAN (Member, IEEE) is currently an
Associate Professor with the City University of
Hong Kong. His research interests include soft-
ware engineering in general, program analysis
and testing for concurrent software and systems,
and software infrastructure for AI-based systems.
He is currently a Special Issues Editor of Jour-
nal of Systems and Software, an Associate Editor
of Software Testing, Verification and Reliability,
a Review Editor of Array, a Guest Editor of IEEE

TRANSACTIONS ON RELIABILITY, the Program Chair of COMPSAC 2020 and
QRS 2020, and a Program Committee Member of ECSE/FSE 2020, ASE
2020, and ICSE 2021. His research results have been reported in more than
100 articles with venues, including but not limited to ACM Transactions
on Software Engineering and Methodology (TOSEM), IEEE TRANSACTIONS

ON SOFTWARE ENGINEERING (TSE), IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS (TPDS), ACM Transactions on Social Computing
(TSC), TRel, Communications of the ACM (CACM), Computer, ICSE, FSE,
ISSTA, ASE, WWW, ICWS, and ICDC.

VOLUME 9, 2021 101573


