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ABSTRACT For mechanism analysis and high-performance control of synchronous reluctance machine
(SynRM), accurate and reliable parameter identification of nonlinear magnetic model is always required.
However, the accuracy and robustness of traditional heuristic algorithms are restricted by incomplete
individual performance evaluation and single population evolution mechanism. In this paper, we propose
a self-adaptive synergistic optimization (SSO) algorithm for extracting the parameters of the model.
A novel synergistic-performance evaluation is first established to classify candidates automatically. Then,
a self-organized mechanism is proposed to select optimal evolution strategies designed for classified
candidate solutions. Around the current best candidate, the exploration is guaranteed in priority. Meanwhile,
a self-adaptive mechanism is introduced to select other candidates to construct more promising evolutionary
direction. Thus, achieving a good balance between exploration and exploitation. The parameter estimation
performance of SSO algorithm is evaluated through standard datasets of SynRM magnetic model obtained
by the finite element analysis. Comprehensive experiment results demonstrate the competitiveness and
effectiveness of the proposed SSO algorithm compared with other algorithms, especially in terms of the
accuracy and robustness. According to these superiorities, it can be concluded that the proposed algorithms
are promising parameter identification methods for SynRM nonlinear magnetic model.

INDEX TERMS SynRM nonlinear magnetic model, parameters identification, optimization problem.

I. INTRODUCTION
In recent years, to cope with the energy consumption, cost,
and over-dependence on rare earth elements rare-earth of
AC motor, many efforts have been focused on the research
of Synchronous Reluctance Motor (SynRM) [1]. Compared
with induction motors (IM) and permanent magnet motors
(PM), SynRM is themost promising alternative due to its high
efficiency and structural robustness [2]. Hence, to control
and optimize SynRM, it is critical to evaluate the actual
nonlinear behaviors of magnetic circuit based on accurate
model [3], [4]. In practice, the development of SynRM tech-
nology is restricted by the rationality and the parameters
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accuracy of the model. Therefore, a novel nonlinear magnetic
model that satisfies the reciprocity conditions [5] and inherent
properties is established. However, there are still some chal-
lenges in the parameter identification process of the proposed
model. Such as inaccurate parameters and unstable results
caused by the incomplete individual performance evaluation
and single population evolution mechanism of traditional
parameter identification algorithms.

The identification problem of magnetic model parameters
can be transformed into an optimization problem, by solv-
ing the objective function between the proposed model and
the flux linkage-current dataset. As reviewed in [6], least
squares (LS) method have been used in the extraction of
magnetic model parameters. Suffering from sensitivity to
initial solution and dataset noise, the convergence of LS
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results is unsatisfied and uncertain [7], [8]. As an alter-
native, metaheuristic algorithms are employed to identify
the parameters of various motor model. In [9], a genetic
algorithm (GA) was proposed for estimating the parameters
of a saturation model using experimental test data under
three working conditions. In [10], harmony search (HS) was
utilized to identify parameters of a rational function-based
inductance model. In [11], two improved particle swarm opti-
mization algorithms (PSO) based strategy (dynamic PSO and
chaos PSO algorithms) is proposed to estimate the parameters
of induction motor model. The direct current, no-load and
locked-rotor tests results are used for parameter estimation.
Other algorithm variants such as self-adaptive differential
evolution algorithm (SHDE) [12], dynamic encoding algo-
rithm searches (DEAS) [13], fast parallel co-evolutionary
PSO [14], GA assisted PSO algorithm [15] and dynamic
PSO algorithm with learning strategies [16] are employed to
identify the parameters of motor model. These metaheuristic
algorithms have achieved certain results in parameter extrac-
tion of motor model. However, it is difficult to obtain the
global optimal solution of the proposed model.

To address the above-mentioned problems of traditional
metaheuristic algorithms in specific applications, various
algorithms have been developed. In [17], [18] and [19], [20],
Niche technologies based on crowding and fitness are
adopted to evaluate the performance of candidate. In crowd-
ing based performance evaluation, the similar candidate
solutions competition based on Euclidean distance is only
allowed. The fitness evaluation-based algorithms often clas-
sify the candidates in the way of fitness sharing. Around the
classified candidates, multiple optimal solutions are stably
located in the niche [21], [22]. Although the above two
methods are proved to be effective in evaluating the per-
formance of the candidates to be selected, there are still
problems in the comprehensive utilization of diversity and fit-
ness information.Moreover, to cope with improper parameter
configuration, a class of algorithms without special control
parameters [23], [24] has attracted more and more attention.
Recently, simple yet effective metaheuristics method named
Rao algorithms [23] has been proposed by Rao for com-
plex optimization problems. Due to the attractive character-
istics, Rao algorithms have been widely applied to various
real-world optimization problems such as photovoltaic cell
parameter extraction [25]–[27], reinforced concrete retain-
ing wall design [28], thermodynamic cycles system [29].
The distinguishing feature of Rao algorithms from other
metaheuristic algorithms is the novel update mechanism of
optimal solution search path. The interaction among individ-
uals guided by fitness evaluation is the basis of exploration
direction updating in search space. However, for existing
metaheuristic algorithms, the fitness is not fully utilized in the
process of optimal solution search path updating. Searching
direction is only guided by fitness, ignoring the diversity
information. The fitness and diversity performance of the can-
didate solution in population are not fully exploited, leading
to the problems of stagnation and premature convergence.

The identification results of the existing parameter identi-
fication methods are restricted by the objective function and
characteristics of the algorithm. On one hand, the parameter
estimation of the pro-posed model is multimodal problem.
There is always a certain degree of nonlinear noise in the flux
linkage data obtained by the experimental method [30], [31]
or the finite element analysis (FEA) [32]. The multimodal-
ity caused by nonlinear noise may make the traditional
identification algorithm invalid. On the other hand, incom-
plete individual performance evaluation, limited evolutionary
mechanism selection and improper specific control param-
eter configuration of many metaheuristic algorithms often
results in premature termination. Hence, developing for a
competitive metaheuristic algorithm to identify the proposed
magnetic model parameters is still a challenging task.

In this paper, a self-adaptive synergistic optimization
(SSO) algorithms is proposed to identify the parameters
of SynRM magnetic model accurately and reliably. Specif-
ically, a synergistic performance (SP) and fitness-based
hybrid performance evaluation method is proposed. Based
on the probability of the evaluation result, the candidates
of the classification are chosen to construct different evolu-
tion directions using the proposed self-organizing evolution
mechanism. In this way, the fitness and diversity contri-
bution of the candidate solution to current population are
comprehensively utilized. Besides, the mechanism for select-
ing update strategies for suboptimal and poor candidates is
adaptive, without additional parameters are required. In this
way, the candidates with better comprehensive performance
are encouraged into new population, improving the quality
of solution in each generation. Moreover, the evolutionary
strategies involved in SSO algorithm arewithout specific con-
trol parameters, avoiding the risk of parameter mismatch. To
evaluate the effectiveness of the proposed SSO algorithm,
we compared them with other well-established algorithms
on parameters identification problems of the SynRM mag-
netic model. Extensive experiments indicate that SSO algo-
rithm exhibit superior performance in terms of accuracy and
robustness.

To the best of our knowledge, no precedent that employs
SSO algorithm to extract the parameters of the SynRM
magnetic model has been published or reported publicly.
The main contributions of this paper can be summarized as
follows:

1) The SSO algorithm is first proposed to extract the
parameters of SynRMmagnetic model. Based on quan-
tified SP, interactions among candidate solutions are
introduced into the optimal search path updating to
promote the related searching ability.

2) A simple and effective self-organizing mechanism is
proposed to select promising evolution strategy for
candidate self-adaptively. As a promising performance
evaluation technology, the proposed mechanism can
further improve the accuracy and reliability of param-
eter identification results. SP is defined to estimate
fitness and diversity of candidates uniformly, which
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FIGURE 1. Electromechanical energy conversion process of SynRM.

can be a fundamental for quantifying balance between
exploration and exploitation.

3) The effectiveness of SSO is demonstrated through com-
prehensive experiment for SynRM magnetic model
parameter extraction.

The rest of this paper is structured in the following manner.
Section II presents SynRMmagnetic model, and the problem
formulation. Section III provides the proposed SSO in detail.
Validation results on SynRM magnetic model are shown and
analyzed in Section IV. Finally, the conclusions are drawn in
Section V.

II. MODELING OF SynRM
In this section, we propose a novel magnetic model of
SynRM, and problem formulation are proposed. We focus
on the model in d − q reference frame (the d-axis align to
the direction of maximum permeance) synchronous to the
rotor. Besides, the magnetic energy change caused by the iron
loss change is very small compared to that caused by the
currents change. Therefore, themagneticmodel is established
under the following hypothesis: (1) The iron loss has been
omitted. (2) The stator flux linkages are only dependent on
stator currents. The details are shown as follows.

A. NONLINEAR MAGNETIC MODEL OF SynRM
Magnetic circuit nonlinearity can be characterized by the
mapping among magnetic linkages and stator currents [4].
For modeling of magnetic model, the energy conversion
mechanism determines the nonlinearity. As shown in Fig.1,
SynRM is a typical singly excited electromechanical energy
conversion device. It can be observed that the electrical and
the mechanical systems are coupled by the magnetic energy
(Wm) transformation. Under the assumption of conservative
fields, the energy balance can be described as

iTs us = Rs ‖is‖2 +
dWm

dt
+ Teωm (1)

where is = (id , iq)T, us = (ud , uq)T, Rs, Te,Wm, ωm are stator
currents, stator voltages, stator winding resistance, electro-
magnetic torque, magnetic energy and mechanical velocity
of the motor, respectively.

The energy conversion in coupling field is mediated by the
change of magnetic energy. For convenience, the variation
of magnetic energy can be expressed equivalently by the
co-magnetic energy (Wc) [33]

dWc

dt
= ψd (id , iq)

did
dt
+ ψq(id , iq)

diq
dt

(2)

where ψd (id , iq), ψq (id , iq) denotes nonlinear flux linkages
respect to d-and q-axis, respectively. The flux linkages on
d-and q-axis interact through a common magnetic circuit,
resulting in redistribution of the flux linkage. This nonlinear
behavior of the rotor magnetic circuit is called self-saturation
and cross-saturation [6]. Under the assumption of conserva-
tive field, the cross-saturation process satisfies the conserva-
tion of energy. Therefore, the reciprocity condition [5] of can
be obtained as

∂ψd (id , iq)
∂iq

=
∂ψq(id , iq)

∂id
(3)

Combining (2) and (3), the modeling constraints of the flux
linkage considering cross saturation are

ψd (id , iq) = ψd (id )−
∂1Wc

∂id

ψq(id , iq) = ψq(iq)−
∂1Wc

∂iq

(4)

where ψd (id ), ψq(id ) are the flux linkages under the effect
of self-saturation alone. 1Wc represents the conversion of
magnetic co-energy between d-and q-axis [4]. Under the
restrictions (4) and (3), the flux linkage model based on the
Gaussian’s function is established as

ψd (id , iq) = αd (2− e−γd id − e−γd1i
2
d )+ βd id

− k
(
2aide−ai

2
d

)(
bi2q − iqe

−ciq+κiq−
1
c
e−ciq

)
ψq(id , iq) = αq(2− e−γqiq − e

−γq1i2q )+ βqiq
− k

(
1− e−ai

2
d

) (
2biq + ciqe−ciq + κ

)
(5)

where {α, γ , β} are non-negative self-saturation coefficients
for the d-, and q-axis, and {k , a, b, c, κ} are cross-saturation
coefficients. The subscripts d and q represent d-axis and q-
axis. Based on (3), (4) and (5), the reciprocity condition and
1Wc are expressed as

∂ψd (id , iq)
∂iq

=
∂ψq(id , iq)

∂id

= −k
(
2aide−ai

2
d

) (
2biq + ciqe−ciq + κ

)
(6)

1Wc = −k
(
e−ai

2
d−1

) (
bi2q − iqe

−ciq + κiq − e−ciq
)
(7)

Thus, the analytical expressions of apparent induc-
tances [3] can be obtained as

Laid (id , iq) =
αd (2− e−γd id − e−γd1i

2
d )

id
+ βd

− k
(
2ae−ai

2
d

)(
bi2q − iqe

−ciq + κiq −
1
c
e−ciq

)
Laiq (id , iq) =

αq(2− e−γqiq − e
−γq1i2q )

iq
+ βq

− k
(
1− e−ai

2
d

)(
2b+ ce−Viq +

κ

iq

)
(8)
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B. PROBLEM FORMULATION
To extract model parameters effectively, parameter extraction
needs to be transformed into optimization problem. The goal
is to obtain the smallest difference between reference data and
simulated data. The cross-saturation parameters shared by the
d- and the q-axis model are the premise of the optimization
problem. The algorithm should be able to identify the no-load
characteristics, self-saturation and cross-saturation character-
istics cooperatively. To this end, error functions for the kth
flux linkages respect to d- and q-axis can be formulated as

f dk (ψ
r
d , i

r
d , i

r
q, xd ) = αd

(
2− e−γd i

r
d − e−γd(i

r
d)

2)
+βd ird − k

(
2airde

−a(ird)
2)

×

(
b
(
irq
)2
− irqe

−c
(
irq
)2
+ κirq −

1
c
e−ci

r
q

)
− ψ r

d

xd = {αd , γd , βd , k, a, b, c, κ}

(9)


f qk (ψ

r
q , i

r
d , i

r
q, xq) = αq

(
2− e−γqi

r
q − e

−γq

(
irq
)2)
+ βqirq

− k
(
1− e−a(i

r
d)

2) (
2birq + ci

r
qe
−cirq + κ

)
− ψ r

q

xq =
{
αq, γq, βq, k, a, b, c, κ

}
(10)

The objective functions defined by root mean square
(RMSE) error can be obtained as follows:

RMSEd (xd ) =

√√√√ 1
N

N∑
k=1

f kd (ψ
r
d , i

r
d , i

r
q, xd )2 (11)

RMSEq
(
xq
)
=

√√√√ 1
N

N∑
k=1

f kq (ψ r
q , i

r
d , i

r
q, xq)2 (12)

where x is the decision variable, N is the sample number.
xd , xq are the obtained parameter vectors, where xd = [xd1,
xc], and xq = [xq1, xc]. xd1 and xq1 are the self-saturation
parameters involved in xd and xq, respectively, and xc = [k , a,
b, c, κ] is the common parameter sub-vector. N is the number
of reference data.

III. SSO ALGORITHM
In this section, a detailed description of the proposed algo-
rithmwill be given. First, a new performance indicator named
SP is proposed, which is unified quantification of the fit-
ness and diversity contributions of the candidate solutions
in current population. Then, we describe the self-organizing
mechanism based on hybrid performance evaluation method.
The core idea be-hind SSO is elucidated as follows.

A. HYBRID PERFORMANCE EVALUATION
In the evolution of population, exploitation and exploration
are often in a trade-off relationship [34]. On one hand,
the optimal search path update mechanism with excessive
exploitation capacity may lead the more valuable search
space is ignored. On the other hand, excessive exploration can

easily produce low-quality solutions that do not contribute
much to evolution. Hence, it is reasonable to find the part of
the high-quality solution space that may be ignored, under the
premise of guaranteeing the exploitation ability. From the per-
spective of the candidate solution, its performance is affected
from two dimensions, fitness associated with exploitation and
diversity related to exploration. It is unreasonable to guide the
exploration of more promising solution spaces with adaptive
evaluation alone. Inspired by [35], [36], fitness and diver-
sity can be calculated by the objective function and the dis-
tance between the individual and the surrounding individual,
respectively. However, it is impossible to evaluate the overall
performance of the corresponding solution through a simple
comparison, due to the different properties of the two func-
tions. In addition, even if a comprehensive evaluation method
based on these two functions can be found, to quantify the
contribution of candidate solutions to the population is still an
issue. Here, a probability-based synergistic performance (SP)
for the k th candidate solution xk is defined as

Ps (xk ,NP) = Pd (xk ,NP) · ck,s + Pf (xk ,NP) · (1− ck,s)

(13)

where, Ps(xk , NP), Pf (xk , NP), Pd (xk , NP), represent the
SP, fitness performance (FP) and diversity performance (DP)
for the candidate, respectively. ck,s is a random number in
the range [0, 1], denoting synergistic coefficient (SC). The
overall performance of the candidate in the current population
is evaluated by SP. FP, DP represent the fitness and diver-
sity contributions of the candidate in the current population,
respectively.

The evolutionary process preference for exploration and
exploitation maintenance can be quantified by SC, which also
decided the proportion of FP and DP in SP evaluation. With
the increase of SC, the preference for diversity increases in
SP. On the contrary, the preference for fitness increases in SP.
Particularly, when ck,s = 0 or ck,s = 1, SP degrade into FP
or DP. In this situation, SP only evaluates the performance
of the candidate from the perspective of fitness or diversity
contribution. If SP is used as feedback, the performance of
the candidate is only affected by exploitation or exploration
preference of evolution. As the basis of SP construction,
the quantification process of FP and DP is as follows.

The objective function f (xk ) is selected as the fitness func-
tion ffitness(xk ) for each candidate solution.

ffitness (xk) = f (xk) (14)

Then the candidates are sorted in ascending order of fitness
in the population, and probability based on ranking is used to
reflect the fitness performance. The ranking and FP of xk are
presented in (15) and (16), respectively.

Rfitness (xk ,N ) = NP+ 1− ik , ik = 1, 2, . . . ,NP (15)

Pk,f (xk ,NP) =
(
Rfitness (xk ,NP)

NP

)2

(16)

where ik represents the fitness ranking of xk in the popula-
tion. The diversity function based on Euclidean distance [35]
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between candidates is defined as

fdiversity (xk) = −
NP∑
w=1

‖xk − xw‖, w = 1, 2, . . . ,NP (17)

where ‖xk − xw‖ represents the Euclidean distance between
xk and xw. The diversity ranking and DP are presented as
follows.

Rdiversity (xk ,NP) = NP+1− jk , jk = 1, 2, . . . ,NP (18)

Pk,d (xk ,NP) =
(
Rdiversity (xk ,NP)

NP

)2

(19)

where jk represents the fitness ranking of xk in the population.
(18) and (19) indicate that better performance corresponds to
larger probability. The overall contribution of the candidates
to the population is quantified by the random combination of
the probabilities through SP. As a result, SP have advantage
of theory-driven.

With the introduction of SP, the best and worst candidate
solutions need to be redefined, as well as the selection process
of high-quality candidate solutions. On one hand, the best
and worst candidate solutions (xsbest and x

s
worst ) no longer rely

solely on fitness evaluation. Instead, they are obtained based
on the largest or smallest SP in the current population. On the
other hand, the evaluation of the merits of the candidates is
not only related to their own fitness and diversity, but also
related to the current population. In other words, if the FP
and DP of the candidates have not changed in the previous
search direction update, they will be recalculated before the
search direction update. Then, the candidate with a larger
Ps is selected in the comparison. In particularly, if the SP
comparison results are equal, the candidate with a larger Pd
wins. If Pd is still the same, the candidate with larger Pf wins.
If all three Ps, Pd and Pf values are the same, the first can-
didate is chosen. Comparing SP of two candidate solutions
is presented in Algorithm 1. If xsbest , x

s
worst and the chosen

candidate are used as evolutionary guidance, evolutionary
preferences will be affected by the inherent randomness of
their SP. This random effect is automatic and does not require
additional control parameters, hence the update direction of
the candidate solution is expected to be guided into new
search regions.

B. SELF-ORGANIZATION MECHANISM BASED ON
HYBRID PERFORMANCE EVALUATION
Based on the probability of the hybrid performance evalu-
ation of SP and fitness, the candidates are classified into
three types: optimal, suboptimal and inferior. Then, the cor-
responding update strategy will be self-adaptively selected
for each candidate to enhance the evolutionary ability of
the population. For the optimal candidate with the largest
contribution to fitness, the update strategy with emphasis on
exploration capability will be assigned. For the other candi-
dates, the self-adaptive mechanism based on SP are employed
to select relevant evolutionary strategies. The candidate with

Algorithm 1 The Synergistic Performance Comparison
Method
1: if Ps (xk , NP) 6= Ps (xl , NP) then
2: if Ps (xk , NP) > Ps (xl , NP) then
3: return xk
4: else
5: return xl
5: end if
6: else
7: if Pd (xk , NP) 6= Pf (xl , NP) then
8: if Pd (xk , NP) > Pf (xl , NP) then
9: return xk
10: else
11: return xl
12: end if
13: else
14: if Pf (xk , NP) 6= Pf (xl , NP) then
15: if Pf (xk , NP) > Pf (xl , NP) then
16: return xk
17: else
18: return xl
19: end if
20: else
21: return xk
22: endif
23: end if
24: end if

larger SP were identified as suboptimal, the update strat-
egy with more balanced exploration and exploitation will be
allocated. For inferior candidate with smaller SP, the update
strategy emphasis on exploitation will be assigned to con-
verge toward the promising region located by better candi-
date. In view of this, the Self-organization mechanism can be
described in Algorithm 2.

It can be observed that the evolutionary preferences can
be quantified by SP, and the evolution process is also guided
by SP. By using SP as feedback, the balancing between
exploration ability and exploitation ability will be achieved
reasonably.

The ultimate-goal of the self-organization mechanism is
to locate the global optimal solution. Hence, the exploration
strategy is committed to improve diversity and avoid local
optimal. Therefore, based on the evaluation result of fitness
contribution, the better of the two randomly selected candi-
dates is employed to construct the more promising search
direction. To be specific, as presented in (20), update direc-
tion is approaching the better candidate and away from the
worse candidate.

x ′fbest,v = xfbest,v + r1,fbset,v ·
(
xRfb,v − x

R
fw,v

)
(20)

where the superscript ‘‘R’’ represents the randomly selected
candidate. xfb,v, xfw,v represent the vth variable for the better
and worse candidate, respectively. x ′fbest,v is the updated value
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Algorithm 2 Pseudo Code of Self-Organization Mechanism
1: Evaluate fitness performance of each candidate
using (20);
2: Identify the fitness performance optimal candidate
Pfbest (xfbest , NP);
3: For k = 1 to NP do
4: if k = fbest then
5: Modify the best candidate using explorative strat-
egy;
6: else
7: Randomly select ck,s ∈ {0, 1};
8: Evaluate Synergistic performance of each candi-
date using (17);
9: if rand > Ps(xk , NP) then
10: Modify the suboptimal candidate using balancing
strategy;
11: else
12: Modify the inferior candidate using exploitative
strategy;
13: end if
14: end if
15: end For

of x ′k,v. r1,fbest,v is random numbers for the vth variable in the
range [0, 1].

As mentioned above, the update strategies corresponding
to the suboptimal and inferior candidate are self-adaptively
selected. The purpose is improving the exploitation ability
while ensuring the diversity. Through probability-based SP
quantification, diversity information and adaptability infor-
mation are used as feedback to induce the evolution direction
of the population. Specifically, candidates with better SP tend
to maintain a balance between exploration and exploitation.
As shown in (21), the modified update strategy in [23] is
employed in this study.

x ′k,v = xk,v + r1,k,v
(
xsbest,v − x

s
worst,v

)
+ r2,k,v

(∣∣xsk,v or xsl,v∣∣
−
∣∣xsl,v or xsk,v∣∣) (21)

where the superscript ‘‘s’’ represents the candidate for quan-
titative selection based on SP. xbest,v, xworst,v represent the vth

variable for the best and worst candidate, respectively. x ′k,v is
the updated value of xk,v. r1,k,v and r2,k,v are the two random
numbers for the vth variable in the range [0, 1].
Moreover, devote to improving exploitation ability,

as shown in (22), the modified update strategy of in [23] is
employed. To realize the refined search around the inferior
candidate. Only the candidates with the largest and smallest
SP in the current population are selected to construct a new
search direction. The search direction is still close to the
best candidate solution and away from the worst candidate
solution.

x ′k,v = xk,v + r1,k,v
(
xsbest,v − x

s
worst,v

)
(22)

Different from the original RAO-3 andRAO-1, the selected
examples in the update strategy (21) and (22) are all

Algorithm 3 Pseudo Code of SSO Algorithm
1: Initialize population size (NP) and maximum number of
function evaluations (Max_FES);

2: Generate the initial population randomly, evaluate the
objective function value of each individual;

3: FES = NP;
4:While FES < Max_FES do
5: Compute fitness performance Pf of each individual
xk ;

6: Compute diversity performance Pd of each individual
xk ;

7: Get fitness best individual xfbest and fitness worst
individual xfworst ;

8: For k = 1 to NP do
9: if k = fbest then
10: Modify the best solution by using (20);
11: else
12: Randomly select ck,s ∈ {0, 1};
13: Compute Ps each individual according to (13);
14: Get Ps best individual xsbest , and Ps
wrost individual xsworst ;

17: Select xl1, xl2 from population randomly
(l1 6= l2);

18: Ps comparison of xl1, xl2 by using Algorithm 1;
19: if rand > Ps(k)
19: Modify candidate solution by using (21);
19: else

Modify candidate solution by using (22);
end if

20: end if
21: Compute Pf of the updated individual x′k ;
22: FES = FES + 1:
23: Accept the new solution if it is better than the old
one;

24: end for
25: End while

calculated according to Algorithm 1. Whether the original
update strategy or modified, the evolution of the population is
critically affected by the best candidate solution, since other
candidates are attracted to the region where it is located.
Specifically, the original update strategies rely more on fit-
ness when the search direction is updated, meanwhile the
powerful exploitation ability has been achieved. For modi-
fied, due to the automatic intervention of the search direction,
the stagnation and premature convergence in the evolution
process are avoided. Consequently, a better balance explo-
ration and exploitation can be achieved. Obviously, no addi-
tional parameters are introduced.

C. FRAMEWORK OF SSO
According to the mentioned above, Algorithm 3 gives the
pseudo code of SSO algorithm and Fig. 2 provides the flow
chart. The structure of the self-organization mechanism is
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FIGURE 2. The flow diagram of SSO.

simple and clear, without special control parameters. No addi-
tional parameters need to be trained. During the operation of
the algorithm, evolutionary preferences may be dynamically
balanced, which is equivalent to the convergence strength
being automatically managed.

As shown in Fig. 2, different strategies are employed to
modify the FP optimal candidate and other candidates, which

is equivalent to classifying the candidates in the current
population. Considering that there are other optimal candi-
dates nearby, a relatively conservative modification strategy
is adopted to search the surrounding region. In this way,
the powerful search capability of the original Rao algo-
rithms can be inherited. On the contrary, for the other can-
didates, more radical modification strategies are employed to
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improve population diversity as well as exploration capabili-
ties. To this end, the performance of SSO algorithm may be
superior to other algorithms.

In terms of the computational complexity, the proposed
SSO algorithm have additional complexity from the SP
quantification process compared with the original Rao algo-
rithms, (i.e., diversity measure, population sorting and prob-
ability computation). Owing to the symmetric property of
the distance measure, the complexity of diversity measure
is O (D.NP.(NP− 2)/2), the complexity of population sort-
ing is O (3.NP. log(NP)/2), and O (3.NP/2) is consumed to
calculate probability. Since the complexity of each original
RAO algorithm is O (Gmax.NP.D), where Gmax is the max-
imal number of generations, the overall complexity of each
SSO is O (Gmax.NP. ((D.NP+ 3. log(NP)+ 3)/2)). In gen-
eral, the population size NP is set to be proportional to the
problem dimension D. Thus, the overall complexity of SSO
is O (Gmax.NP.NP.D/2). Notes that the complexity of SSO
is much lower thanO (Gmax.NP.NP.D/2). The distance mea-
sure is performed only when at least one individual of every
pair is changed at current generation. Besides, compared with
costly evaluation of the functions, the additional distance
measurement cost can be ignored.

IV. VERIFICATION COMBINED WITH FEA
To verify the effectiveness of the proposed SSO algorithm,
it was first employed to the parameter extraction prob-
lem of the SynRM nonlinear magnetic model. The flux
linkages-stator currents data mentioned in section III are
selected as the benchmark data. These data are obtained
from the results of full-range FEA on the SynRM prototype,
in which the stator currents interval is 1 A. Firstly, the com-
parisons are conducted on the best results represented by the
RMSE values to illustrate the accuracy of each algorithm.
And then, the robustness, effectiveness and parameter influ-
ences are analyzed and presented to evaluate comprehensive
performance of each algorithm. The analysis software used
in this paper is MATLAB.

A. PRELIMINARIES
FEA for the designed 2 kW prototype SynRM has been con-
ducted. The design parameters of the prototype are summa-
rized in Table 1. The operating condition data at special points
are adopted as the reference for parameter identification in
traditional method. Another purpose of implementing FEA
on SynRM is to obtain a full range of operating characteristic
data, which is used in subsequent parameter identification
algorithms.
Aim to visualize the cross-saturation and the self-

saturation phenomena more conveniently, the flux linkages
based on FEA results are depicted in the first octant in Fig. 3.
It can be seen from Fig. 3 that as the currents increase, the d-
and q-axis flux linkages gradually show significant nonlinear
behavior and are obviously affected by cross-magnetization,
especially the q-axis flux linkage. The surface of ψd starts
curved from id of 10 A, due to the self-saturation effect. The

TABLE 1. Parameters of the prototype.

FIGURE 3. Nonlinear flux linkages of the prototype SynRM.

cross-saturation effect reflected in the decline of ψd along
the direction of iq increase. Similar nonlinear ofψq behaviors
are also illustrated in Fig. 3. It can also be concluded that the
q-axis current has a deeper effect on d- and q-axis flux link-
ages, whereas d- and q-axis flux linkage are mostly affected
by the current in the corresponding axis

Fig. 3 shows that that the modeling principle of the non-
linear behaviors in magnetic circuit is reasonable. To extract
the parameters of magnetic model, the objective func-
tion needs to be constructed by combining (5) and EFA
results.

To evaluate the superior performance of the proposed
SSO algorithm, comparative experiments are carried out
with already well-established algorithms. These algorithms
are the original Rao algorithms [23], Grey Wolf Optimiza-
tion (GWO) algorithm [39], Ant Lion Optimization (ALO)
algorithm [40], JAYA algorithm [24], biogeography-based
learning particle swarm algorithm (BLPSO) [7], compre-
hensive learning particle swarm optimizer (CLPSO) [41],
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differential evolution with biogeography-based optimization
(DE/BBO) [42] and DE/BBO with covariance matrix-based
migration (CMM-DE/BBO) [43]. These ten algorithms were
selected due to their superior performance in parameter iden-
tification. The superiority of GWO and ALO over other algo-
rithms such as DE, and PSO has been demonstrated in [39]
and [40]. Thus, two excellent variants of DE and PSO are
chosen for comparison.

As shown in (5), the proposed SynRM magnetic model
is a dual function model with common parameters. Due to
the standard datasets of the d-axis and q-axis models are
relatively independent, a two-stage experiment is designed
and implemented to identify parameters by using the algo-
rithms involved. The algorithms are first employed to iden-
tify the parameters of the q-axis model, since the reference
data corresponding to the q-axis model are smaller. Then,
the common parameters obtained are used for the extrac-
tion of d-axis self-saturation parameters. The purpose of
the two-stage experimental setup is not only to ensure that
the parameters of the d-and q-axis models are accurately
identified, but also to ensure that the reciprocity conditions
are not violated.

For the sake of fairness, the parameter configuration of the
experiment is the same for different algorithms. The parame-
ter range is fixed to ensure the same search space. The same
maximum number of function evaluations (Max_FES) for all
algorithms is set to 30000 in each run. To reduce the statistical
error as far as possible, each algorithm is independently
conducted 30 times on the problem. Besides, the population
size in different experimental stages is set to different values.
The influence of population size on the performance of the
proposed SSO algorithm will be discussed in subsection D.
The parameter configuration of all comparison algorithms is
given in Table 2.

TABLE 2. Parameter configuration of comparison algorithms.

B. RESULTS ON Q-AXIS FLUX LINKAGE MODEL
For the q-axis flux linkage model, 11 different algorithms
are independently implemented 30 times to obtain its self-
saturation and cross-saturation parameters. Due to the exact
values of the model parameters are unknown, RMSEq is
taken as the standard of accuracy evaluation. The comparison
of the best parameter values and the best RMSE among
the 30 identification results of different algorithms is given
in Table 3. Among them, the best RMSEq are marked in bold.
It can be seen from Table 3 that SSO algorithm achieve better
accuracy than other algorithms, and SSO algorithm provide

FIGURE 4. Comparisons between FEA data and estimated data obtained
by SSO for q-axis flux linkage model.

FIGURE 5. Mismatch of q-axis flux linkage, estimated value vs FEA value.

the best RMSEq value (2.2243E-04). The second-best result
(2.3034E-04) is provided by Rao-1. Although the RMSEq of
some algorithms is very close to the results obtained by SSO
algorithm, a smaller RMSEq is conducive to determine the
true parameters of the model.

To further illustrate the excellent results of the identifi-
cation results, the q-axis flux linkage map is reconstructed
using the best results of SSO algorithm. Fig.4 (a) shows the
estimated value of q-axis flux linkage and FEA value in the
full range of working conditions. Obviously, the estimated
value of q-axis flux linkage in the entire current range is
highly consistent with its FEA value.

The absolute error rate (AER) between the estimated value
and the FEA value is shown in Fig.5. Except for the very few
points on the edge of themodel where the AER is close to 4%,
the AER at other contrast points does not exceed 1%. A few
large absolute errors cannot be attributed to the parameter
identification algorithm, which is related to the modeling
method and the calculation error of FEA at the model bound-
ary. Due to the errors at special point are known, the model
with the identified parameters can be successfully used in
actual engineering.

To further evaluate the robustness of the proposed algo-
rithms. Analysis based on RMSE statistics is implemented.
The statistical results of the parameter identification of the
dual function model by 11 algorithms that run 30 times
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TABLE 3. Comparison among different algorithms on q-axis flux linkage model.

TABLE 4. Statistical results of RMSE of different algorithms for q-axis model (30000 function evaluations).

independently are given in Table 4. The results of the
algorithms involved are calculated according to the best
RMSE (B), worst RMSE (W), average RMSE (M), and stan-
dard deviation RMSE (SD). The best result in the correspond-
ing algorithm is indicated in bold.

In terms of average accuracy and robustness, it can be
clearly observed from Table 4 that the overall performance of
the proposed SSO algorithm is better than other algorithms.
For q-axis flux linkage model, the best M (2.8630E-04) and
best SD (1.1597E-04) are provided by the proposed SSO
algorithm. Among other algorithms, the average accuracy
and robustness of BLPSO and CMM-DE/BBO are also con-
siderable, but neither BLPSO nor CMM-DE/BBO provides
the best RMSEq. In addition, the distribution characteristics
of the results of 30 independent runs of 11 algorithms are
presented in Fig. 6 using box plots. The distribution range
of the parameter identification results also demonstrates the
superiority of the proposed SSO algorithm. The results dis-
tribution corresponding to the SSO algorithm is the most
concentrated.

C. RESULTS ON D-AXIS FLUX LINKAGE MODEL
As the second stage of SynRM magnetic model parameter
identification, the extraction of the d-axis model parameters
is similarly to the process mentioned in the previous sub-
section. The best cross-saturation coefficients are applied to
the identification of the parameters of the model. Thus, there
are only four parameters to be identified. The best estimated

FIGURE 6. Best RMSE boxplot over 30 runs of different algorithms for
q-axis flux linkage model.

parameters and the best RMSEd of different algorithms are
listed in Table 5. Clearly, the proposed SSO algorithm also
provide the best RMSEd value (4.0815E-4) among all com-
pared algorithms, and Rao-3 obtains the second best RMSEd
value (4.0817E-04). The fit between the d-axis flux linkage
map reconstructed by the estimated value and the FEA data
is given in Fig. 7. As shown in Fig. 8, the overwhelming
majority AER values are less than 1%, indicating that the
high-accurately identified parameters are provided.

For d-axis flux linkage model, the robustness and stability
analysis results of the SSO algorithm are shown in Table 6 and
Fig. 9, respectively. Compared with other algorithms, SSO
algorithm also shows the best performance.
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TABLE 5. Comparison among different algorithms on d-axis flux linkage model.

TABLE 6. Statistical results of RMSE of different algorithms for d-axis
model (30000 function evaluations).

FIGURE 7. Comparisons between FEA data and estimated data obtained
by SSO for d -axis flux linkage model.

D. RESULTS DISCUSSION
The comparison results demonstrate that the proposed SSO
algorithm has better accuracy and reliability for solving
the parameters identification problems of SynRM magnetic
model, and its performance is competitive in contrast with
all compared algorithms. The difference between the best
RMSEd and the best RMSEq provided by the proposed SSO
algorithm can be clearly observed. On one hand, although
the accuracy of the experimental results in q-axis model is
considerable, the algorithm error is inevitably introduced into
d-axis model with the application of cross-saturation param-
eters. On the other hand, the energy loss of the rotor region

FIGURE 8. Mismatch of d -axis flux linkage, estimated value vs FEA value.

FIGURE 9. Best RMSE boxplot over 30 runs of different algorithms for
d -axis flux linkage model.

corresponding to d-and q-axis is different. These losses are
not reflected in the cross-saturation parameters under con-
servative field assumptions. This makes the influence of
the loss contained in the standard datasets equivalent to a
kind of noise, which is accumulated and introduced into the
identification result of the d-axis self-saturation parameter.
Fortunately, the magnitudes of the best RMSEd and the best
RMSEq are equal, thus the superior accuracy and robustness
of the proposed SSO algorithm can be explained in one
aspect.

To verify the effectiveness of the proposed hybrid per-
formance evaluation, comparative experiments for a variant
of SSO algorithm are implemented in this subsection. The
algorithms are obtained by modifying the evolution strategies
and performance evaluation of the SSO algorithm. For the
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TABLE 7. Statistical results of RMSE of different SSO algorithm for SynRM magnetic model (30000 function evaluations).

TABLE 8. Statistical results of SSO algorithm with varying NP for SynRM magnetic model (30000 function evaluations).

mechanism of SSO algorithm, the interaction among can-
didate does not depend on SP (denoted as M-SSO). The
self-organization mechanism is not induced by SP. Note that
SP evolution strategies will degenerate to the original Rao-1
and Rao-3. The statistical results of the two variants are
presented in Table 7. For each model, the values shown
in bold in Table 7 indicate the comparatively better results
of the respective algorithms. In terms of average accuracy
and robustness, it can be clearly observed from Table 7 that
the over-all performance of the proposed SSO algorithm is
better than the variant. The obvious difference between the
results of the SSO algorithm and the corresponding vari-
ant indicates that the hybrid performance evaluation-based
self-organization mechanism is beneficial to optimize the
original Rao-1 and Rao-3.

As mentioned previous, the proposed SSO algorithm are
free from the algorithm-specific parameters, its performance
is still affected by the population size. To this end, the exper-
iments on SSO algorithm with different population sizes are
implemented. The SSO algorithm with NP = 10, 20, 30,
40 and 50 is tested and compared, maintaining theMax_FES
maintained at 30,000. Note that the experiment is still imple-
mented in two stages. The statistical results of SSO algorithm
with different population sizes are presented in Table 8. The
comparison results show that the impact of population size
on different algorithms at different experimental stages is
consistent. From the perspective of the accuracy, too large
population size is not conducive to obtaining the best and the
average RMSE. From the perspective of robustness, too small
or too large population size will worsen robustness. It can
be clearly seen that due to the different dimensions of the
problem, the optimal population size for different problems
is also different. Hence, the most appropriate population size
for parameter identification of d- and q-axis flux models is
set to 30.

V. CONCLUSION
In this paper, we have proposed some novel SSO algorithm to
accurately and steadily extract the parameters of the SynRM
nonlinear magnetic model. In SSO algorithm, the hybrid
performance evaluation is presented to uniformly evaluate the
contribution of the fitness and diversity of candidate solu-
tions. The algorithm aims to self-adaptively assign suitable
update strategies for the candidates. Through the induction
of self-organization mechanism based on performance prob-
ability, a good balance between exploration and exploitation
can be achieved. In addition, the proposed SSO algorithms
are simple enough in structure without additional parame-
ters to be tuned, so as to be easily implemented. Exper-
iment results show that SSO algorithm perform better in
terms of accuracy and reliability when compared with other
well-established algorithms. Obviously, the SSO algorithm
are effective enough to solve the parameters identification
problems of SynRM nonlinear magnetic model.

Moreover, through the verification of the proposed SynRM
model parameter identification, it can be inferred that the
proposed algorithm can be extended to the solution of
the multi-parameter and multi-peak problem. On the basis
of the research in this study, in view of the noise characteris-
tics of the measured reference data, it is necessary to further
study the evolution strategy of metaheuristic algorithm with
higher robustness to further improve the accuracy of the
SynRM magnetic model parameter identification.
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