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ABSTRACT Side-channel analysis (SCA) attacks and many countermeasures to foil these attacks have been
the subject of a large body of research. Different masking schemes have been proposed as countermeasures,
one of which is Threshold Implementation (TI), which carries proof of security against DPA even in the
presence of glitches. At the same time, it requires a smaller area and uses much less randomness than
the other secure masking methods. One of the methods to have an efficient TI of high degree S-boxes is
the decomposition method. Our goal in this paper is to analyze the nonlinear components of symmetric
cryptographic algorithms. Tominimize the area of the protected implementation of cryptographic algorithms,
we show the conditions to decompose the substitutions boxes, which are permutations, of high algebraic
degree into the ones of lower degree. To find the conditions, we target the decomposition of permutations
into quadratic or cubic permutations by considering the power permutations and their parities, which help
us determine whether the higher degree permutations are decomposable power permutations or not. Finally,
the decomposition results about the finite fields and corresponding lower degree power permutations are
presented.

INDEX TERMS Masking, quadratic and cubic permutations, decomposition, symmetric group.

I. INTRODUCTION
Nowadays, side-channel analysis (SCA) is a hot topic for
researchers. The most common analysis, differential power
analysis (DPA), exploits the correlations between instanta-
neous power consumption and the cryptographic algorithm’s
intermediate values.

Several countermeasures are being studied to prevent SCA
attacks. One of the secure-proven methods, Threshold imple-
mentation (TI), is a Boolean masking technique that random-
izes an algorithm’s intermediate values and is based on secret
sharing and multi-party computation. In [1], TI sharings of
all 3 × 3 and 4 × 4 substitution boxes (S-box) with 3, 4 or
5 shares are presented. Recall that S-boxes used in many sym-
metric key algorithms are usually non-linear permutations
over a finite field.

One needs at least d + 1 shares in order to share a
permutation with algebraic degree d [2]. The area require-
ments of permutations using a different number of shares
are well-investigated [3]. To limit the area increase of the
protected implementations, we need to keep the number of
shares as low as possible.
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It is shown that the decrease in the number of shares has a
direct impact on the area requirements. In order to achieve this
by applying TI with the minimal possible number of shares,
one can decompose permutations of higher algebraic degree
into lower degree permutations.

In this paper, we focus on the decomposition method,
which is described in the literature [4]. In that paper, the con-
ditions to obtain quadratic and cubic permutations over the
finite fields F2n for values of n between 3 and 16 using
Carlitz’s Theorem are determined. Then in [5], the decom-
position of permutations in Sym(F2n ) for 3 ≤ n ≤ 31 is
investigated. Also, the decomposition process of permutation
is reduced to a modular arithmetic problem, as in this paper.
Stafford’s Theorem [6], which is stated in Section II, has
made us consider the power permutations and their parities
in order to investigate when a permutation over a finite
field can be decomposed into permutations of lower degree.
In Section III, we dive more into the parity of permutations,
and then we prove a special case of decomposability of
permutations over some finite fields satisfying certain condi-
tions. In Section IV, we provide many lemmas and corollaries
that we present our techniques leading us to find the cycle
structures and parities of permutations. The cycle structure
of power permutation was also studied in [7]. We give the
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results from a different point of view, which is much better in
computational complexity than the previous ones.

II. PRELIMINARIES
Let Fq be the finite field GF(q) with q = 2n elements
and Sym(Fq) denote its symmetric group. We find the val-
ues of n such that permutations in Sym(Fq) can be written
as a composition of lower algebraic degree permutations.
For the definition of algebraic degree and detailed infor-
mation on symmetric groups, we refer to [8] and [9],
respectively.

A polynomial f ∈ Fq[x] is called a permutation polyno-
mial of Fq if the function f : Fq → Fq given by c 7→ f (c) is
a permutation, i.e., f is 1-1 and onto. Given a permutation ψ
in Sym(Fq), there exists the unique permutation polynomial
representing ψ . We refer the reader [8], [10]–[14], and [15]
for a rigorous information.
Lemma 2.1 [16]: For any function ψ : Fq → Fq there

exists a unique polynomial f ∈ Fq[x] of degree at most q− 1
such that the associated polynomial function f : c → f (c)
satisfies ψ(c) = f (c) for all c ∈ Fq.
Consequently, all permutations considered in this paper are

of degrees ≤ q − 1. We recall the following well-known
theorem.
Theorem 2.2 [16]: The monomial xk is a permutation

polynomial of Fq if and only if gcd(k, q− 1) = 1.
We will refer to permutations induced by monomials xk

as power permutations. The (algebraic) degree of a power
permutation xk is defined to be equal to wt(k), where wt(k)
denotes the Hamming weight of the n-bit vector correspond-
ing to the binary expansion of k in [8], or equivalently 2−adic
notation of the number k .
Any permutation can be represented as a composition of

disjoint cycles. A cycle is a set of elements in a permutation
that switch an element with one another. A cycle with two
elements is called a transposition. Any permutation can be
written as a product of such transpositions. There is no unique
way to express a permutation using transpositions; however,
their number is either always odd or always even, depending
on the permutation. This number corresponds to the parity or
the sign of the permutation.

Recall that Euler’s totient function φ(q− 1) which counts
the number of positive integers up to q− 1 that are relatively
prime to q− 1.

A. COMPOSITION OF PERMUTATIONS
The permutations τa,b defined by x 7→ ax + b for a ∈ F∗q
and b ∈ Fq are called affine permutations. The set Aff (Fq) =
{τa,b | a ∈ F∗q, b ∈ Fq} is clearly closed under composition
and inversion, hence it is a subgroup of Sym(Fq).
If there exists a permutation ϕ, such that ϕ and Aff (Fq)

together generate Sym(Fq), then every element ψ of Sym(Fq)
is of the form

ψ = τ1 ◦ ϕ ◦ τ2 · · · ◦ ϕ ◦ τk

for some affine permutations τ1, τ2, . . . , τk . If ϕ can be
decomposed as

ϕ = Q1 ◦ Q2 ◦ . . .Qm,

where Qi’s are permutations of degree d , then ψ is a compo-
sition of permutations of degree d

ψ = (τ1 ◦ Q1) ◦ Q2 ◦ · · · ◦ Qm ◦ (τ2 ◦ Q1) ◦ Q2 ◦ · · · ◦ Qm
· · · ◦ (τk−1 ◦ Q1) ◦ Q2 ◦ . . . (Qm ◦ τk ).

Thus, in order to show that every permutation in Sym(Fq)
can be decomposed into permutations of degree d , it is suffi-
cient to show that
• there exists a permutation ϕ, which can be decomposed
into permutations of degree d , and

• ϕ generates Sym(Fq) together with Aff (Fq).
It was shown that every permutation could be written as a

composition of affine permutations and the power permuta-
tion xq−2, for q = 5 by Betti and for q = 7 by Dickson, [17].
Later on, Carlitz proved that, for any q, every transposition
(0α) can be generated by affine polynomials and the mono-
mial xq−2, where α denotes a fixed non-zero number in Fq,
by considering the polynomial:

g(x) = −α2
((
(x − α)q−2 +

1
α

)q−2
− α

)q−2
where g(0) = α, g(α) = 0 and g(β) = β for β 6=
0, β 6= α. Explanations how the polynomial is constructed
are given in [18]. Since every permutation can be written as
a composition of transpositions, we have the following.
Theorem 2.3 [19]: The group Sym(Fq) is generated by the

affine permutations and the power permutation xq−2.
In [4], the authors investigated when the power permu-

tation xq−2 = x−1 for 3 ≤ n ≤ 16 can be decom-
posed into quadratic (or cubic) permutations and found those
with a minimum decomposition length. The authors proved
that every permutation in Sym(Fq) can be decomposed into
quadratic permutations whenever n is not divisible by 4 and
into cubic permutations when n is divisible by 4.
In this paper, we extend this result for larger n values

using the following generalization of Carlitz’s result. In [6],
Stafford generalized the previous result to all power maps
with the following result. Namely, instead of using power
permutation xq−2 (i.e., inverse map), it suffices to use any
power permutation xk under some conditions.
Theorem 2.4 [6]: Let Fq be the finite field where q = 2n

and let 1 < k < q − 2 be an integer relatively prime to
q− 1. If k is not a power of 2 and the power permutation xk

is an odd permutation, then Sym(F) is generated by the affine
permutations Aff (Fq) and the power permutation xk .
Suppose we can write a power permutation xk , which

satisfies Stafford’s conditions, as a composition of quadratic
(or cubic) permutations. In that case, every permutation in
Sym(Fq) can be written as a composition of quadratic (or
cubic) permutations.

We aim to find low degree odd permutations xk over a finite
field F2n using Stafford’s result.
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III. PARITY
Recall that transposition is a cycle of length 2. A transposition
is odd, and so is any cycle of even length, as it can be written
as a product of an odd number of transpositions.

A. ANALYTIC APPROACH
We show how to determine analytically the parity of a power
permutation. Let α be a primitive element of the finite field
Fq. Then we can write

Fq = {0, α, α2, α3, . . . , αq−2, αq−1 = 1}

Consider the power permutation xk in Sym(Fq). That is,

xk :
(
0 α1 α2 α3 . . . αq−2 1
0 αk α2k α3k . . . αk(q−2) 1

)
In order to determine whether or not the power permutation

xk is odd, it is sufficient to determine its cycle structure.
Notice that the elements 0 and 1 are fixed points of xk and
we discard them. We begin writing xk as a composition of
disjoint cycles. The first cycle is of the form

[α] = (α1, αk , αk
2
, . . . , αk

N1−1 )

where the length of cycle decomposition N1 is the least
positive integer such that

kN1 ≡ 1 (mod q− 1).

That is, N1 is the order of k in the multiplicative group
Z∗q−1. For the second cycle, if exists, we take the first αj not

included in this cycle and consider (αj, αkj, αk
2j, . . . ).

We repeat this procedure until we exhaust all elements.
Since a cycle is even if and only if its length is odd,

we should count how many disjoint cycles there are of even
length to determine if xk is odd. Notice that this idea reduces
the problem of checking the parity of xk to a modular arith-
metic problem.

B. SPECIAL CASE
The idea in III-A reveals a straightforward theorem below:
Theorem 3.1: Let xk be a power permutation in Sym(Fq)

of degree d . Assume that q − 1 is an odd prime number
and k is a primitive root of the multiplicative group Z∗q−1.
Then every permutation in Sym(Fq) can be decomposed into
permutations of degree d .
Proof 1: Since k is a primitive root of Z∗q−1, the least

positive integer i such that k i ≡ 1 (mod q − 1) is q − 2.
Therefore, the cycle decomposition of xk is

(α1, αk , αk
2
, . . . , αk

q−3
)

Since the length of this cycle is even, the permutation xk

is odd and hence it generates Sym(Fq) together with Aff (Fq)
by Theorem 2.4. Consequently, every permutation in Sym(Fq)
can be decomposed into permutations of degree d .

The specific instances of this theorem can be seen for the
permutations defined over the finite fields Fq, where q = 2n

and n = 3, 5, 7, 13, 17, 19, . . . (i.e., the exponents of some
Mersenne primes) with k = 3.

IV. CYCLE DECOMPOSITION OF PERMUTATIONS
Assume that, using the exhaustive procedure described pre-
viously, the permutation xk can be written in cycle decompo-
sition notation, with disjoint cycles as

(α1, αk , αk
2
, . . . , αk

N1−1 )︸ ︷︷ ︸
N1-many elements

. . . (αm, αmk , . . . , αmk
Nm−1

)︸ ︷︷ ︸
Nm-many elements

. . .

under the assumption that αm is not included in the previous
cycles.
Notation 4.1: We shall denote the length of the cycle [αm]

byNm. Equivalently,Nm is the minimum positive integer such
that mkNm ≡ m mod (q − 1). In addition, in the case m is a
proper divisor of q−1, Nm is the order of k in the multiplica-
tive group (Zq−1/m)×. In general, for anym,Nm is the order of
k in the multiplicative group (Zq−1/gcd(q−1,m))×. Throughout
the paper, we consider the divisorm’s, the subscripts are from
{1, 2, · · · , q − 2} and unless otherwise indicated, ‘‘divisor’’
is used instead of ‘‘proper divisor’’ in these cases.

Let k be a positive integer less than q − 2 and relatively
prime to q − 1. Let d be the algebraic weight of k where xk

is a power permutation in Sym(Fq). For a divisor m of q− 1,
let Nm be the order of k in (Zq−1/m)×, where (Zq−1/m)× is
the multiplicative group consisting of invertible elements of
Zq−1/m. Then, xk is odd if and only if N1 is even and |S| is
odd where S = {m | Nm is even}.

A. ON THE LENGTH OF THE CYCLES
In this subsection, we start with a useful lemma to show
some relations between the lengths of certain cycles of some
elements in Fq in cycle decomposition of the power permu-
tation xk .
Lemma 4.2: Nms|Ns for all m, s.
Proof 2: Recall that Ns is the minimum positive integer

satisfying αsk
Ns
= αs. So, if we take the mth-power of both

sides, we get that

αmsk
Ns
= αms

On the other hand, αms is in the cycle (αms, αmsk , αmsk
2
,

. . . , αmsk
Nms−1 ) and so

αmsk
Nms
= αms

where Nms is the minimum positive integer satisfying this.
Let Ns = qNms + r for some integers q, r with 0 ≤ r < Nms.
Assume that r 6= 0. Then we have that

αmsk
Ns
= αms

αmsk
qNms+r

= αms

αmsk
qNmskr

= αms(
αmsk

qNms
)kr
= αms((

. . .
(
αmsk

Nms
)kNms

. . .

)kNms)kr
= αms

where we iteratively exponentiate q times to the power kNms .
However, since we have αmsk

Nms
= αms, one obtains that
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αmsk
r
= αms, which contradicts the minimality of Nms. Thus

r = 0 and so Nms|Ns.
The following corollary follows immediately from

Lemma 4.2.
Corollary 4.3: We have that Nm|N1 for all m.
The next lemma gives us a stronger result under some

conditions.
Lemma 4.4: Let ρ be a divisor of q − 1 and suppose that

gcd
(
t, q−1

ρ

)
= 1. Then Nρt = Nρ .

Proof 3: Recall that, by the definition of Nρ , we have that
αρk

Nρ
= αρ . It follows that αρ(k

Nρ−1)
= 1 in Fq. As the order

of α in the multiplicative group F∗q is q− 1, we have that

q− 1|ρ(kNρ − 1).

Moreover, Nρ is the least positive integer satisfying this
relation. Similarly, we know that αρtk

Nρt
= αρt and so

αρt(k
Nρt−1)

= 1 in Fq. As before, we have that q−1|ρt(kNρt−
1) and so q−1

ρ
|t(kNρt − 1). Since gcd

(
t, q−1

ρ

)
= 1, one can

see

q− 1|ρ(kNρt − 1).

By the minimality of Nρ , we have that Nρ |Nρt . Otherwise,
after applying the division algorithm to Nρt and Nρ as before,
and we would obtain 0 < r < Nρ such that αρk

r
= αρ which

is equivalent to q−1|ρ(kr−1). By Lemma 4.2, we also know
that Nρt |Nρ . Hence

Nρt = Nρ .

Again we present an immediate corollary which follows
from the Lemma 4.4.
Corollary 4.5: In particular, we have that if gcd(t, q−1) =

1, then Nt = N1.
As one can deduce from the Lemma 4.4, the Euler totient

function defined above in Section II, is needed in order to be
able to count the number of a part of elements within the cycle
of the same length.

B. THE NUMBER OF DISTINCT CYCLES
Let ρ be a divisor of q − 1. In this subsection, it will be
proven that the corresponding cycles are all distinct for a
given divisor, and the counting of elements appearing in the
cycle decomposition of a permutation is completely done.
Notation 4.6: Set Kρ = φ

(
q−1
ρ

)
. Let Wρ denote the set

of as Wρ = {t : gcd
(
t, q−1

ρ

)
= 1 and 1 ≤ t < q−1

ρ
}. Note

that |Wρ | = φ
(
q−1
ρ

)
= Kρ . We enumerate the elements of

Wρ as Wρ = {t1, t2, . . . , tKρ }. Then, for a divisor ρ of q− 1,
we define the list Lρ of cycles as the following list:

[αρt1 ] = (αρt1 , αρt1 k , αρt1 k
2
, . . . , αρt1 k

Nρ−1
)

[αρt2 ] = (αρt2 , αρt2 k , αρt2 k
2
, . . . , αρt2 k

Nρ−1
)

...

[αρtKρ ] = (αρtKρ , αρtKρ k , αρtKρ k
2
, . . . , αρtKρ k

Nρ−1
) (?)

Observe that each of these cycles has length Nρ , since
gcd(t, q−1

ρ
) = 1 implies that the length of [αρt ] is the same

as the length of [αρ], as stated in the Lemma 4.4.
Some of the cycles in (?) may be identical. Let Uρ denote

the number of distinct cycles in this list. In the following
lemma we determine Uρ .
Lemma 4.7: Let ρ be a divisor of q − 1 and Uρ denote

the number of distinct cycles in the list (?), which is the list
determined by ρ as explained above. We have

Uρ =
Kρ
Nρ

where Kρ and Nρ is defined in Notation 4.6 and 4.1,
respectively.
Proof 4: Since gcd(k, q − 1) = 1 and gcd

(
ti,

q−1
ρ

)
= 1,

following from ∀ti ∈ Wρ , we have that gcd
(
tik,

q−1
ρ

)
=

1, which implies that tik mod ( q−1
ρ

) is also in the set Wρ .
Hence, one can see that αρti is counted in at least Nρ different
cycles in the list ?. As this holds for any t ∈ Wρ , we conclude
that Nρ |Kρ and

Uρ ≤
Kρ
Nρ
.

Weclaim thatUρ ≥
Kρ
Nρ

for every divisor ρ of q−1. Assume
to the contrary that, for some divisor ρ of q− 1, we have that
Uρ <

Kρ
Nρ

. Then, since every element of F∗q is contained in

some cycle of this form for some divisor ρ of q−1, we would
have

|F∗q|≤
∑
ρ|q−1

UρNρ <
∑
ρ|q−1

Kρ
Nρ

Nρ=
∑
ρ|q−1

φ

(
q− 1
ρ

)
= q−1

which is a contradiction. Hence, Uρ =
Kρ
Nρ

for every divisor
ρ of q− 1.
Remark 4.8: Note that it is possible to have two distinct

divisors ρ1 and ρ2 of q − 1 such that Nρ1 = Nρ2 . Therefore,
Uρ1 might be strictly less than the number of all cycles of
length Nρ1 .
To make it more precise, we give the following toy exam-

ple for a power permutation defined in a finite field F2n

with a small value of n because of the cycles being easy to
compute.
Example 4.9: Consider the power permutation x5 over

F26 . So q − 1 = 63 = 327. Let ρ1 = 1, ρ2 = 3, ρ3 = 7,
ρ4 = 9 and ρ5 = 21, the proper divisors of 63.

– For ρ1 = 1, W1 = {1, 2, 4, 5,8, 10, 11, 13, 16, 17, 19,
20, 22, 23, 25, 26, 29, 31, 32, 34, 37, 38, 40, 41, 43,
44, 46, 47, 50, 52, 53, 55, 58, 59, 61, 62}, i.e. the num-
bers coprime to 63. The distinct cycles in L1 by com-
puting the cycles of αti where ti ∈ W1 are:
- [α] = (α, α5, α25, α62, α58, α38)
- [α2] = (α2, α10, α50, α61, α53, α13)
- [α4] = (α4, α20, α37, α59, α43, α26)
- [α8] = (α8, α40, α11, α55, α23, α52)
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TABLE 1. Kρ , Nρ and Uρ values for given ρ.

- [α16] = (α16, α17, α22, α47, α46, α41)
- [α19] = (α19, α32, α34, α44, α31, α29)

Note that it is not necessary to compute the cycle [α5]
separately since it is nothing but [α]. Clearly it is seen
that all elements αti satisfying ti ∈ W1 are spanned
above. 36 elements of F26 \ {0, 1} are located in a
cycle. There are 6 different cycles, which confirms
with Lemma 4.7 as the values of the total number of
elements, K1 = φ(63) = 36, the number of elements
in one cycle N1 = 6 and the number of distinct cycles
U1 = 6 in the list L1.

– For ρ2 = 3, W3 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19,
20}. Check the cycles of α3 ti where ti ∈ W3.
- [α3] = (α3, α15, α12, α60, α48, α51)
- [α6] = (α6, α30, α24, α57, α33, α39)

Again all elements αti satisfying ti ∈ W3 are spanned.
Another 12 elements of F26 \ {0, 1} are located in a
cycle.

We continue to apply the same procedure to the rest of
divisors with less details. resume

– For ρ3 = 7, W7 = {1, 2, 4, 5, 7, 8} and the only cycle
is:
- [α7] = (α7, α35, α49, α56, α28, α14)

– For ρ4 = 9, W9 = {1, 2, 3, 4, 5, 6} and there is again
one cycle:
- [α9] = (α9, α45, α36, α54, α18, α27)

– For ρ5 = 21, W21 = {1, 2} and the cycle:
- [α21] = (α21, α42)

One can see that each element of F26 appears exactly once in
the distinct cycles listed above. The values of Kρ , Nρ and Uρ
are given together with the divisors ρ, in the Table 1, where
Kρ = φ

(
q−1
ρ

)
, Nρ is order of k in (Zq−1/ρ)× and Uρ =

Kρ
Nρ

.

The cycle structure of the power permutation x5 over F26

can be represented as [〈6, 10〉, 〈2, 1〉], which means there are
10 different cycles of length 6 and there is 1 cycle of length 2.
The cycles of the elements 0 and 1 are not listed in this
notation.

In brief, we can give a summary of lemmas and some cor-
responding examples specific to x5 defined over F26 . By the
Lemma 4.2, N9|N3 and N21|N7 etc, where N9 = 6, N3 =

N7 = 6, N21 = 2. By the Corollary 4.3, Nρ |N1 = 6 for all
divisors ρ. By the Lemma 4.4, N18 = N9 since gcd(2, 7) = 1,
i.e. gcd

(
t, q−1

ρ

)
= 1. By the Corollary 4.5, N2 = N1 since

gcd(2, 63) = 1. Also as mentioned in the Remark 4.8, one

can see that there are some cycles of same length for the
elements placed in different lists, for example N3 = N7.
By the Lemma 4.7, we cover all elements in F26 .

From its cycle structure, one can say that x5 defined over
F26 has odd parity since there are odd-many cycles of even
length. Afterward, we will decide the parity of a permutation
without computing the cycle structure of it.
Corollary 4.10: If N1 is odd, then permutation is even.
Proof 5: N1 is odd implies Nm’s are all odd, for any 1 ≤

m ≤ q − 2, since Nm|N1 by Corollary 4.3. Hence regardless
of their number of cycles, it forms a even permutation.

Therefore, using Lemma 4.4 and the Lemma 4.7, we arrive
at our main Theorem.
Theorem 4.11: Let k be a positive integer less than q − 2

and relatively prime to q−1. Let d be the algebraic weight of
k where xk is a power permutation in Sym(Fq). For a divisorm
of q− 1, let Nm be the order of k in (Z q−1

m
)×, where (Z q−1

m
)×

is the multiplicative group consisting of invertible elements
of Z q−1

m
. Then, xk is odd if and only if N1 is even and |S| is

odd where S := {m | Nm is even}.
With the help of this theorem, we can determine the parity

of a given power permutation as well as its cycle structure.
In the literature, the cycle structure of power permutation ψk
was also given by Ahmad, in [7] as follows:
Theorem 4.12: Let m be any positive integer. Then xk has

a cycle of length m if and only if q − 1 has a divisor t such
that k belongs to the exponentmmodulo t . The exact number
Tm of such cycles is

Tm =
∑
e∈Cm

φ(e)

where Cm = {t : t|dm and k belongs to m modulo t , where
dm = gcd(km − 1, q− 1)} and φ is Euler’s totient function.
By using our method, from a different point of view than

the one in [7], which is described in Section IV and which
will be described in the following algorithms in detail, one
can obtain the cycle structure of a power permutation with a
better computational complexity.Moreover, ourmethod gives
information also about the parity of the permutation much
faster, see the Section V.

V. ALGORITHMS
In order to determine that a permutation is even or not,
we provide the following algorithm:

By the algorithm 1, one can determine that the permutation
is odd if the count is odd; otherwise, it is even.

Besides, to write the cycle structure of a monomial using
our method, we provide the algorithm 2.

Since q = 2n, the number of digits of q, equally log(q),
or log(q−1) when required, equals to n. First we need to find
the divisors of the number q− 1. This can be done by factor-
izing having the complexity O(exp((64/9)1/3n1/3(ln(n))2/3))
with the Generalized Number Field Sieve. The number of
divisors are bounded from above with n1/3. Then, it will be
computed the order of k in Z×q−1/ρ , having the complexity
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Algorithm 1 The Parity of a Power Permutation xk

Input: k and q− 1 such that gcd(k, q− 1) = 1, count = 0
Output: Parity of xk

N1 ⇐ ordZ×q−1
(k)

if N1 is odd then
Print ‘‘The permutation is even’’
Stop

else
while ρ is a proper divisor of q− 1 do
Nρ ⇐ ord(Zq−1/ρ )× (k)
if Nρ is even then
Uρ ⇐ φ( q−1

ρ
)/Nρ

if Uρ is odd then
count⇐ count + 1

end if
end if

end while
end if
if count is odd then
print ‘‘The permutation is odd’’

else
print ‘‘The permutation is even’’

end if

Algorithm 2 The Cycle Structure of a Power Permutation xk

Input: k and q− 1 such that gcd(k, q− 1) = 1, count = 0,
List[a][2], where a is the number of divisors

Output: Cycle Structure of xk

while ρ is a divisor of q− 1 do
Nρ ⇐ ordZ×q−1/ρ

(k)

Uρ ⇐ φ( q−1
ρ

)/Nρ
for i⇐ 0 to count do
if Nρ in List[i][0] then

List[i][1]⇐ List[i][1] + Uρ
break i

else
count⇐ count + 1
List[count][0]⇐ Nρ
List[count][1]⇐ Uρ

end if
end for

end while
print ‘‘The cycle structure is:’’ List[a][2]

O(
√
Nρ) < O(2n/2) with Pollard’s Rho algorithm. The Euler

totient function of q− 1/ρ has the complexity O(2n/2) and
dividing it by Nρ for each divisor ρ has relatively small
complexity.

In total, both Algorithm 1 and 2 have the complexity:

O(exp((64/9)1/3n1/3(ln(n))2/3))+O(n1/32n)

≈ O(exp((64/9)1/3n1/3(ln(n))2/3)).

In Ahmad’s method, there are q − 1 many choices in the
beginning. Then the method calculates a greatest common
divisor of km − 1 and q− 1 which has complexity O(log(n))
and finds a divisor of that number with the same complexity
as integer factorization then finds the order of k in Z×t which
hasO(2n/2) and then Euler totient withO(2n/2) and their sum
which has relatively small complexity. In overall it has:

O((2n − 1) log(n)exp((64/9)1/3n1/3(ln(n))2/3)2n).

VI. RESULTS
In this section, before stating our experimental result, it is
given the following lemma, which helps us omit the search
for quadratic power permutations in some finite fields.
Lemma 6.1: No quadratic power permutations exist for

n = 2m in Fq with q = 2n.
Proof 6: For a quadratic power permutation xk , k should

be of the form k = 2j+i + 2j for some integers i, j with
i > 0, i.e. the binary representation of quadratic k is
(0 · · · 010 · · · 010 · · · 0) where 1’s are in the (j + i)th and jth

positions from right. Clearly k = 2j(2i+1). By Theorem 2.2,
xk being a permutation is equivalent to gcd(k, q − 1) = 1.
So we check whether gcd(2j(2i+1), 22

m
−1) = 1. It is easily

seen that gcd(2j(2i+1), 22
m
−1) = gcd(2i+1, 22

m
−1) and

moreover, we have that
• If gcd(2i − 1, 22

m
− 1) = 1, then

gcd(2i + 1, 22
m
− 1) = gcd(22i − 1, 22

m
− 1)

= 2gcd(2i,2
m)
− 1

6= 1.

• If gcd(2i − 1, 22
m
− 1) 6= 1, then

gcd(2i + 1, 22
m
− 1) =

gcd(22i − 1, 22
m
− 1)

gcd(2i − 1, 22m − 1)

=
2gcd(2i,2

m)
− 1

2gcd(i,2m) − 1
= 2gcd(i,2

m)
+ 1

6= 1.

In both cases, since gcd(k, q− 1) 6= 1, no quadratic power
permutations exists in Fq with q = 22

m
.

In this paper, we performed a search for quadratic and cubic
power permutations for the values 3 ≤ n ≤ 141 using the
Algorithm 1 which follows from the Theorem 4.11, and also
with the help of the Lemma 6.1.

We now state our experimental results.
Theorem 6.2: Let n be an integer such that 3 ≤ n ≤ 141.
– If n is not divisible by 4, then every permutation in
Sym(F2n ) can be written as a composition of quadratic
and affine permutations.

– If n is divisible by 4, then every permutation in
Sym(F2n ) can be written as a composition of cubic and
affine permutations.

- Moreover, if n is a power of 2, then every permu-
tation in Sym(F2n ) can be written as a composition
of x13 and affine permutations.
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- Sym(F2n ) cannot be generated by the quadratic
power permutations and the affine permutations.

One can find these decomposition results to any permuta-
tion in GF(2n) in [4] for the values 3 ≤ n ≤ 16, and in [5]
for the values 3 ≤ n ≤ 31.

We performed a search for quadratic and cubic power per-
mutations for various values of n, using C andMAGMA [20].
Based on the computational evidence, we conjecture the
following:
Conjecture 6.3:
– For all n ≥ 1, the power permutation x3 is odd in
Sym(F22n+1 ).

– For all n ≥ 1, the power permutation x5 is odd in
Sym(F24n+2 ) and Sym(F24n+3 ).

– For all n which is a multiple of 4 and not a power of 2,
all quadratic permutations of F2n are even.

VII. CONCLUSION
In this paper, we have provided two algorithms, one deter-
mining the parity and the other finding the cycle structure
of a given power permutation. We also gave the complexi-
ties of the algorithms. The comparison with the previously
known method showed that our approach is 2n− 1 times less
complex. Using our method, we also extended the previous
results: Any permutation on F2n where 3 ≤ n ≤ 141 can
be decomposed in quadratic permutations, when n is not
divisible by 4 and in cubic permutations, otherwise. We have
left some conjectures: ‘‘Are the power permutations x3 and
x5 odd in Sym(F2n ) where n is not multiple of 4?’’ and ‘‘Are
all quadratic power permutations even in Sym(F24n )?’’.
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