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ABSTRACT Geometric Algebra (GA) has proven to be an advanced language for mathematics, physics,
computer science, and engineering. This review presents a comprehensive study of works on Quaternion
Algebra and GA applications in computer science and engineering from 1995 to 2020. After a brief intro-
duction of GA, the applications of GA are reviewed across many fields. We discuss the characteristics of the
applications of GA to various problems of computer science and engineering. In addition, the challenges and
prospects of various applications proposed by many researchers are analyzed. We analyze the developments
using GA in image processing, computer vision, neurocomputing, quantum computing, robot modeling,
control, and tracking, as well as improvement of computer hardware performance. We believe that up to
now GA has proven to be a powerful geometric language for a variety of applications. Furthermore, there
is evidence that this is the appropriate geometric language to tackle a variety of existing problems and that
consequently, step-by-step GA-based algorithms should continue to be further developed. We also believe
that this extensive review will guide and encourage researchers to continue the advancement of geometric
computing for intelligent machines.

INDEX TERMS Geometric algebra, Clifford algebra, quaternion algebra, screw theory, signal processing,
electrical engineering and power systems, geometric and quantum computing, image processing, computer
vision, graphic engineering, artificial intelligence, machine learning, neural networks, control engineering,
robotics, biomedical engineering, and biotechnology.

I. INTRODUCTION
The recent reviews ‘‘Applications of Clifford’s Geomet-
ric Algebra’’ by E. Hitzer, T. Nitta and Y. Kuroe [135],
‘‘Geometric Algebra in Signal and Image Processing: A sur-
vey’’ by R. Wang, K. Wang, W.Cao and X.Wang [233] and
complementary ‘‘A survey of quaternion neural networks’’
by T. Parcollet, M. Morchid, M. and G. Linarés [194] are
very useful to understand the progress in the area of geo-
metric algebra. Bhatti et al. [52] provide a detailed review
of GA in different fields of AI and computer vision regarding
its applications and the current developments in geospatial
research. In our survey, we extend and complete these reviews
discussing works in several areas of computer science and
engineering from 1995 to 2020.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sunil Karamchandani .

Since 1995, Eduardo Bayro-Corrochano and Joan Lasenby
pioneered in the application of geometric algebra to computer
vision [14]–[18], [152], [153], [153], [155]–[157], [213],
Bayro et al. in robotics [15], [19], [33], [74] and Bayro et al.
in neurocomputing [20]–[24]. In the beginning, their articles
were hardly accepted and not understood as they proposed
a new geometric approach using exclusively the geometric
algebra framework which was fairly unknown by the com-
munity and completely different from the usual methods
based on matrix algebra, vector calculus, and tensor algebra.
Thanks to their persistence in solving challenging problems
in those fields, geometric algebra was recognized and many
researchers worldwide started using and developing new
algorithms for real-time applications.

II. GEOMETRIC ALGEBRA
In the 1870s, William Kingdon Clifford introduced his geo-
metric algebra, building on earlier works of Sir William
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Rowan Hamilton and Hermann Gunther Grassmann. Clifford
intended to describe the geometric properties of vectors,
planes, and higher-dimensional objects.

Most physicists encounter the algebra in the guise of Pauli
and Dirac matrix algebras of quantum theory. Many roboti-
cists or computer graphic engineers use quaternions for 3D
rotation estimation and interpolation, as it is too difficult
for them to formulate homogeneous transformations of high-
order geometric entities using a point-wise approach. They
resort often to tensor calculus for multi-variable calculus.
Since robotics and engineering make use of the develop-
ments of mathematical physics, many beliefs are automati-
cally inherited; for instance, some physicists come away from
a study of Dirac theory with the view that Clifford’s algebra
is inherently quantum-mechanical.

For the last two decades, researchers have been using dif-
ferent geometric algebrasGp,q,r depending upon the problem
in question. It is very important to formulate the problem
using a geometric algebra framework with the correct metric.
Next, we will describe which geometric algebras are suitable
to tackle different problems in Engineering and Computer
Science.

The geometric algebra is a geometric interpretation of Clif-
ford algebras, so Clifford algebra is not the same as geometric
algebra, the reader should resort to [53] for an introduction to
Clifford algebras. The section on geometric algebras explains
most of the concepts of Clifford algebra, however in a geo-
metric way for example to model the geometric entities and
the Lie groups.

In subsection IV-A, we outline briefly the fundamentals of
the most relevant geometric algebras mentioned above which
were used mostly in the works of the last 25 years.

A. THE GEOMETRIC ALGEBRA
Geometric algebra (GA), a geometric interpretation of Clif-
ford algebra [53], is a coordinate-free approach to geometry
based on the algebra of Clifford and Grassmann. Suppose a
n-dimensional space Rn, equipped with an orthonormal basis
vectors {ei}, i = 1, . . . , n; such that ei · ej = δi,j. The
previously mentioned vectors lead to the multivector basis for
the entire geometric algebra

{1; ei; ei ∧ ej; ei ∧ ej ∧ ek ; · · · ; I = e1 ∧ · · · ∧ en} (1)

where I is known as the pseudoscalar. The geometric algebra
of a n-dimensional space Rn is denoted by Gn, but alterna-
tively, it can be written by Gp+q+r . Here, p, q and r represent
the number of unit orthonormal basis vectors that square
to 1,−1 and 0, respectively. For simplicity, if q or r are
zero, we will not denote them, e.g. G3, G3,1, G4,1 except for
motor algebra G+3,0,1. Since for a n-dimensional space Rn the
correspondent Gn has 2n multivector bases, thus Gn ∈ R2n.
Additionally to scalar multiplication and vector addition,

Gn contemplates a noncommutative product that is associa-
tive and distributive, this product is the geometric or Clifford

product and for vectors a, b can be expressed as:

ab = a · b+ a ∧ b (2)

The right part of (2) shows two operators, the first is the
inner product (symmetric part) and it is common in vector
calculus; the second is the exterior product or wedge prod-
uct (antisymmetric part), where the exterior product is an
associative, distributive and anticommutative multiplication
with multilinear functions. The elements produced by the
geometric product of k linear independent vectors span the
k − vector space, and it is expressed by

∧kV n. Each ele-
ment of this space is named k − vector and it is written as
〈A〉k , where k indicates the grade. The linear combination of
k-vectors is called a multivector and it is denoted as follows:

A = 〈A〉1 + 〈A〉2 + . . .+ 〈A〉n (3)

In addition to (2), the geometric product of two multivec-
tors Ar and Bs, where r and s stand for the grade of each
multivector, is:

ArBs = 〈AB〉r+s + 〈A〉r+s−2 + . . .+ 〈A〉r−s, (4)

where 〈ArBs〉t , denotes the t-grade part of the multivector
ArBs, for more details see [41].

B. 3D GEOMETRIC ALGEBRA FOR THE
EUCLIDEAN 3D SPACE
For the case of the Euclidean 3D space R3, we choose the
geometric algebra G3, which has 23 = 8 elements given by

1︸︷︷︸
scalar

, {e1, e2, e3}︸ ︷︷ ︸
vectors

, {e2e3, e3e1, e1e2}︸ ︷︷ ︸
bivectors

, {e1e2e3} ≡ I︸ ︷︷ ︸
trivector

.

The highest-grade algebraic element for the 3D space is a
trivector called pseudoscalar I ≡ e1e2e3, which squares to
−1 and which commutes with the scalars and bivectors in the
3D space. In the algebra of three-dimensional space we can
construct a trivector a∧b∧c = λI , where the vectors a, b, and c
are in general position and λ ∈ R. Note that no 4-vectors exist
since there is no possibility of sweeping the volume element
a∧b∧c over a fourth dimension.

Multiplication of the three basis vectors e1, e2, and e3 by I
results in the three basis bivectors e2e3 = Ie1, e3e1 = Ie2, and
e1e2 = Ie3. These simple bivectors rotate vectors in their own
plane by 90◦, for example, (e1e2)e2 = e1, (e2e3)e2 = −e3,
etc. Identifying the unit vectors i, j, k of quaternion algebra
with Ie1,−Ie2, Ie3 allows us to write the famous Hamilton
relations i2 = j2 = k2 = ijk = −1. Since the i, j, k are really
bivectors, it comes as no surprise that they represent 90◦

rotations in orthogonal directions and provide a system well
suited for the representation of general 3D rotations. Rotors
are isomorphic with quaternions. Be aware, the quaternion
and rotor follow the left-hand and the right-hand rotation rule
respectively.

In geometric algebra a rotor (short name for rotator),
R, is an even-grade element of the Euclidean algebra of
3D-space. If Q= {r0, r1, r2, r3} ∈ G3 represents a unit
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quaternion, then the rotor which performs the same rotation
is simply given by

R = r0︸︷︷︸
scalar

+ r1e2,3 − r2e3,1 + r3e1,2︸ ︷︷ ︸
bivectors

. (5)

The rotor algebraG+3 is therefore a subset of the Euclidean
geometric algebra of three-dimensional space.

Consider in G3 two nonparallel vectors a and b which are
referred to the same origin. In general, a rotation operation
of a vector a toward the vector b can be performed by two
reflections, respective to the unit vector axes n and m. Thus,
the unit rotor can be computed as the geometric product of
two unit vectors,

R = mn = m·n+m∧n. (6)

The components of equation (6) correspond to the scalar
and bivector terms of an equivalent quaternion inG3, and thus
R ∈ G+3 . This even subalgebra corresponds to the algebra of
rotors.

Considering the scalar and the bivector terms of the rotor of
equation (6), we can further write the Euler representation of
a 3D rotation with angle θ in the left-hand sense, as follows:

R = e
θ
2 r̄n = cos(

θ

2
)+ sin(

θ

2
)r̄n, (7)

where r̄n is the unitary rotation axis-vector spanned by the
bivector basis e2e3, e3e1, and e1e2. The polar representation
of a rotor given in equation (7) is possible, because the rotor
as a Lie group can be expressed in terms of the Lie algebra of
bivectors: The orbits on the Lie group manifold describe the
evolution of the actions of rotors. The bivector r̄n corresponds
to the Lie algebra operator tangent to an orbit or geodesic.

A rotor is isomorph with a quaternion. As a result, we can
embed quaternions in the more comprehensive mathematical
system offered by geometric algebra. In contrast to the quater-
nion theory, in geometric algebra, the quaternions or rotors
have a clear geometric interpretation due to the spatial repre-
sentation of the rotations which can be described by using
reflections with respect to planes. The next subsection is
devoted to quaternion algebra including more details useful
for applications in image processing.

C. QUATERNION ALGEBRA
This survey includes various articles which use quaternion
algebra H. We review those works and compare them with
those which use geometric algebra, particularly because
quaternion algebra H is isomorph to the subalgebra of rotors
G+3 . Rotors have a geometric interpretation and as rotor alge-
bra can be embedded in high-order geometric algebras to deal
with more complex Lie groups. Example rotors can be related
with translators for SE(3) in motor algebra G+3,0,1 which
is isomorph to dual quaternions or in conformal geometric
algebra G4,1. So the researchers have a much-generalized
way to use SO(3) for rotors as with quaternions.

As a result, the readers can see for their future works they
can use rotors instead of quaternions.

The even geometric subalgebra or rotor algebraG+3 (bivec-
tor basis) is isomorphic to the quaternion algebra H, which
is an associative, non-commutative, four-dimensional alge-
bra that consists of one real element and three imaginary
elements.

q = a+ bi+ cj+ dk, a, b, c, d ∈ R (8)

The units i, j and k obey the relations i2 = j2 = −1,
ij = k . The imaginary elements of H are related to the
bivector basis of G+3 as follows i→ e23, j→ e13, k → e12,
where e23, e13, e12 are the bivector bases. Another important
property of H is the phase concept. A polar representation of
q is

q = |q|eiφekψejθ , (9)

where |q| =
√
qq̄ where q̄ is a conjugate of q = a− bi− cj−

dk and the angles (φ, θ, ψ) represent the three quaternionic
phases.

The quaternion product qaqb is equivalent with the geo-
metric product of G+3 . Given two quaternions qa = a + a =
a+ax i+byj+azk and qb = b+b = b+bx i+byj+bzk where
a, ax , ay, az, b, bx , by, bz ∈ R, their quaternion product is
given by

qc = c+ c = qaqb
= (ab− a · b)+ (ab+ ba+ a× b), (10)

where · and× are vector inner and cross product respectively.
The rotations in R3 are expressed by the subgroup SO(3).

Where in quaternions, the rotor operator is illustrated as

q = cos
θ

2
+ sin

θ

2
v, (11)

where θ is the rotation angle and v is an arbitrary axis of
rotation expanded as v = vx i+ vyj+ vzk . On the other hand,
the conjugate of the rotor is:

q̃ = cos
θ

2
− sin

θ

2
v. (12)

Given 3D point p expressed as the imaginary part of a
quaternion p = xx i + xyj + xzk , the rotation of p around an
arbitrary axis v with angle θ can be computed as follows

y = yx i+ yyj+ yzk = qp̃q. (13)

D. MOTOR ALGEBRA
Usually, problems of robotics are treated in algebraic sys-
tems of 2D and 3D space. In the case of 3D rigid
motion or Euclidean transformation, we are confronted with
a nonlinear mapping. However, if we employ homogeneous
coordinates in 4D geometric algebra we can linearize the
rigid motion in 3D Euclidean space. That is why we choose
three basis vectors which square to one and a fourth vector
which squares to zero—to provide dual copies of the mul-
tivectors of the 3D space. In other words, we extend the
Euclidean geometric algebraG3 to the special or degenerated
geometric algebra G+3,0,1. The word motor is an abbreviation
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of ‘‘moment and vector.’’ Clifford introduced motors with
the name bi-quaternions [68]. Motors are isomorphic to dual
quaternions, with the necessary condition I2 = 0. They can
be found in the special 4D even subalgebra of G3,0,1. This
even subalgebra is denominated byG+3,0,1 and is only spanned
via a bivector basis, as follows:

1︸︷︷︸
scalar

, e2e3, e3e1, e1e2, e4e1, e4e2, e4e3︸ ︷︷ ︸
6bivectors

, I︸︷︷︸
unit pseudoscalar

This kind of basis structure also allows us to represent
spinors, which are composed of scalar and bivector terms.
Motors, then, are also spinors. As such, they represent a
special kind of rotor, because a Euclidean transformation
includes both rotation and translation.

Since a rigid motion consists of the rotation and transla-
tion transformations, it should be possible to split a motor
multiplicatively in terms of these two spinor transformations,
which we will call a rotor and a translator. In the following
discussion, wewill denote all bivector components of a spinor
by slant bold lowercase letters and with slant bold uppercase
letters: screw lines L, rotors R, translators T and motors M .
Let us now express this procedure algebraically. First of all,
let us consider a simple rotor in its Euler representation for a
rotation with an angle θ ,

R = a0 + a1e2e3 + a2e3e1 + a3e1e2 = ac + asn, (14)

where n is the unit 3D bivector of the rotation axis spanned
by the bivector basis e2e3, e3e1, e1e2, and ac, as ∈ R. Now,
dealing with the rotor of a screw motion, the rotation-axis
vector should be represented as a screw-axis line. For that,
we must relate the rotation axis to a reference coordinate
system at the distance tc. A 3D translation in motor algebra
is represented by a spinor T c called a translator. If we apply
a translator from the left to rotor R, and then apply the
translator’s conjugate from the right, we get a modified rotor,

Rs = T cRT̃ c = a0 + a+ I (a× tc). (15)

where tc is the 3D vector of translation spanned by the vector
basis e1, e2, e3. Then, expressing the last equation in Euler
terms, we get the spinor representation,

Rs = a0 + asn+ Iasn∧tc == cos(
θ

2
)+ sin(

θ

2
)l. (16)

This result is interesting because the new rotor Rs can now
be applied with respect to an axis line l = n+ Im expressed
in dual terms of direction n and moment m = n∧ tc. Now,
to define the motor finally, let us slide the distance ts = dn
along the rotation-axis line l. Since a motor is applied from
the left and conjugated from the right, we should use the half
of ts in the spinor expression of T s when we define the motor:

M = T sRs = (ac − Ias
d
2
)+ (as + Iac

d
2
)l. (17)

Note that this expression of the motor makes explicit the
unit line bivector of the screw-axis line l.

Now let us express a motor using Euler representation.
By substituting the constants ac = cos( θ2 ) and as = sin( θ2 )
in the motor equation (17), we get

M = T sRs = cos(
θ

2
+ I

d
2
)+ sin(

θ

2
+ I

d
2
)l, (18)

which is a dual-number representation of the spinor. Now, let
us analyze the resultant expressions,

R = cos(
θ

2
)+ sin(

θ

2
)n

Rs = cos(
θ

2
)+ sin(

θ

2
)l

M = cos(
θ

2
+ I

d
2
)+ sin(

θ

2
+ I

d
2
)l. (19)

We can see that the rotation axis n of the simple rotor R is
changed to a rotation-axis line, so that Rs now rotates about
an axis line l. And in the motor expression, the information
for sliding distance d is now made explicit in terms of dual
arguments of the trigonometric functions. It is also interesting
to note that the expression for the motor using dual angles
simply extends the expression of Rs.
If we expand the exponential function of the dual bivec-

tors using a Taylor series, the result will follow the general
expression eα+Iβ = eα + Ieαβ = eα(1 + Iβ). Once again,
we obtain the motor expression as the spinor

el
θ
2+I

ts
2 = (1+ I

ts
2
)el

θ
2 = T sRs = M, (20)

where I ts2 = I 12 (t1e2e3 + t2e3e1 + t3e1e2) = 1
2 (t1e4e1 +

t2e4e2 + t3e4e3).
If we want to express the motor using only rotors in a dual

spinor representation, we proceed as follows:

M = T sRs = (1+ I
ts
2
)Rs = Rs + IR′s. (21)

E. THE GEOMETRIC ALGEBRAS OF 3D AND 4D SPACES
FOR COMPUTER VISION
For the modeling of the image plane, we use G3, which has
the standard Euclidean signature. We will show that if we
choose to map between projective space P3 and 3D Euclidean
space or projective plane P2 via the projective split, we are
then forced to use the 4D geometric algebra G3,1 for the
projective space.

The Lorentzian 4D algebra G3,1 has a Minkowski metric
with e2i = +1 and for i = 1, 2, 3 e24 = −1 and generates the
following multivector basis:

1︸︷︷︸
scalar

, ek︸︷︷︸
4vectors

, e2e3, e3e1, e1e2, e4e1, e4e2, e4e3︸ ︷︷ ︸
6bivectors

, (22)

Iek︸︷︷︸
4trivectors

, I︸︷︷︸
pseudoscalar

. (23)

The pseudoscalar is I = e1e2e3e4, with

I2 = (e1e2e3e4)(e1e2e3e4) = −(e3e4)(e3e4) = −1. (24)

The fourth basis vector, e4, can also be seen as a selected
direction for the projective split. When we use homogeneous
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coordinates, a general point inE3 given by x = xe1+ye2+ze3
becomes the pointX = (Xe1+Ye2+Ze3+We4) in R4, where
x = X/W , y = Y/W and z = Z/W . Now, using f

p
, the linear

map of X onto X′ is given by

X′ =
3∑
i=1

{(αiX + βiY + δiZ + εiW )ei}

+ (α̃X + β̃Y + δ̃Z + ε̃W )e4. (25)

The coordinates of the vector in the image plane P2, x′ =
x ′e1 + y′e2 + z′e3 ∈ G3 which correspond to X′ are given by

x ′ =
α1X + β1Y + δ1Z + ε1W

α̃X + β̃Y + δ̃Z + ε̃W
=
α1x + β1y+ δ1z+ ε1
α̃x + β̃y+ δ̃z+ ε̃

,

y′ =
α2x + β2y+ δ2z+ ε2
α̃x + β̃y+ δ̃z+ ε̃

, z′ =
α3x + β3y+ δ3z+ ε3
α̃x + β̃y+ δ̃z+ ε̃

.

1) INCIDENCE ALGEBRA
In G3,1, consider the line L = X1∧X2 intersecting the plane
8 = Y1∧Y2∧Y3. We can compute the intersection point X
using a meet operation, as follows:

L ∩8 = (X1∧X2) ∩ (Y1∧Y2∧Y3) = L ∩8 = L∗ ·8,

(26)

where ∩ stands for the meet operator for the intersection and
L∗ is the dual of L and the vectors X i, Y i ∈ G3,1. Since,

L∗ ·8 = (LI−1)·8 = −(LI )·8, (27)

we can expand the meet to compute the intersecting point
X ∈ G3,1

L∩8=−(LI )·(Y1∧Y2∧Y3)

=−{(LI )·(Y2∧Y3)}Y1 + {(LI )·(Y3∧Y1)}Y2

+{(LI )·(Y1∧Y2)}Y3.

X = [X1X2Y2Y3]Y1+[X1X2Y3Y1]Y2+[X1X2Y1Y2]Y3.

The line of intersection of two planes, 81 = X1∧X2∧X3
and 82 = Y1∧Y2∧Y3, can be computed via the meet of 81
and 82 as follows

81 ∩82 = (X1∧X2∧X3) ∩ (Y1∧Y2∧Y3). (28)

This expression can be expanded as

81 ∩82 = 81
∗
·(Y1∧Y2∧Y3)

= −{(81I )·Y1}(Y2∧Y3)+ {(81I )·Y2}(Y3∧Y1)

+{(81I )·Y3}(Y1∧Y2). (29)

Once again, the join covers the entire space and so the
dual is easily formed. We can show that (81I ) · Yi ≡

−[X1X2X3Yi], so that the meet yields the intersection line
L ∈ G3,1 or bivector.

L = 81 ∩82 = [X1X2X3Y1](Y2∧Y3)

+ [X1X2X3Y2](Y3∧Y1)+ [X1X2X3Y3](Y1∧Y2).

(30)

2) PROJECTIVE GEOMETRY AND COMPUTER VISION
The algebraic computing of geometric entities is carried out
using the Incidence Algebra which is formulated using the
frameworks of the geometric algebras G3,1 and G3.

The projection of any world point X onto the image plane
is notated x and is given by the intersection of lineA0∧Xwith
the plane 8A. Thus,

x = (A0∧X) ∩ (A1∧A2∧A3). (31)

We can now expand the meet to get

x = Xj{[A0∧ej∧A2∧A3]A1 + [A0∧ej∧A3∧A1]A2

+ [A0∧ej∧A1∧A2]A3}. (32)

Since x = xkAk , the previous equation implies that x =
XjPjkAk and therefore that

xk = PjkXj,

where

Pjk = [A0∧ej∧LAk ] ≡ [φk∧ej] = −tkj, (33)

since Iej ∧ ek = −Iδjk . The matrix P takes X to x and is
therefore the standard camera projection matrix. If we define
a set of vectors {φjA}, j = 1, 2, 3, which are the duals of the
planes {φAj }—that is, φjA = φ

A
j I
−1—it is then easy to see that

φ
j
A = −φ

A
j I = −[tj1ei + tj2ej + tj3ek + tj4el]. (34)

Thus, we see that the projected point x = x jAj may be
given by

x j = X·φjA or x = (X·φjA)Aj. (35)

That is, the coefficients in the image plane are formed by
projecting X onto the vectors formed by taking the duals of
the optical planes. This is, of course, equivalent to the matrix
formulation

x =

 x1x2
x3

 =
φ1Aφ2A
φ3A

X . (36)

The elements of the camera matrix are therefore simply
the coefficients of each optical plane in the coordinate frame
of the world point. They encode the intrinsic and extrinsic
camera parameters.

Next, we consider the projection of world lines of the
projective space P3 onto the image plane P2. Suppose we
have a world line L = X1∧X2 joining the points X1 and
X2. If x1 = (A0∧X1) ∩ 8A and x2 = (A0∧X2) ∩ 8A (i.e.,
the intersections of the optical rays with the image plane),
then the projected line in the image plane is clearly given by

l = x1∧x2.

Since we can express l in the bivector basis for the plane,
we obtain

l = l jLAj ,
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where LA1 = A2∧A3, LA2 = A3∧A1, LA3 = A1∧A2. From our
previous expressions for projections given in equation (35),
we see that we can also write l as follows:

l = x1∧x2 = (X1 ·φ
j
A)(X2 ·φ

k
A)Aj∧Ak ≡ lpLAp , (37)

which tells us that the line coefficients {l j} are

l1 = (X1 ·φ
2
A)(X2 ·φ

3
A)− (X1 ·φ

3
A)(X2 ·φ

2
A)

l2 = (X1 ·φ
3
A)(X2 ·φ

1
A)− (X1 ·φ

1
A)(X2 ·φ

3
A)

l3 = (X1 ·φ
1
A)(X2 ·φ

2
A)− (X1 ·φ

2
A)(X2 ·φ

1
A). (38)

Utilizing the fact that the join of the duals is the dual of the
meet, we are then able to deduce identities of the following
form for each l j

l1= (X1∧X2)·(φ2A∧φ
3
A)= (X1∧X2)·(φA2 ∩ φ

A
3 )
∗
= L ·(LA1 )

∗
.

We therefore obtain the general result,

l j = L ·(LAj )
∗
≡ L ·L jA, (39)

where we have defined L jA to be the dual of L
A
j . Thus, we have

once again expressed the projection of a line L onto the image
plane by contracting L with the set of lines dual to those
formed by intersecting the optical planes.

If we express the world and image lines as bivectors, L =
αjej + α̃jIej and L

p
A = βjej + β̃jIej, we can write the previous

equations as a matrix equation:

l =

 l1l2
l3

 ≡ PL l̄

=

 u11 u12 u13 u14 u15 u16u21 u22 u23 u24 u25 u26
u31 u32 u33 u34 u35 u36



α1
α2
α3
α̃1
α̃2
α̃3

 , (40)

where l̄ is the vector of Plücker coordinates
[α1, α2, α3, α̃1, α̃2, α̃3] and the matrix PL contains the β and
˜beta’s, that is, information about the camera configuration.

Bayro ([41], Chap. 12) presents the n-view geometry of
computer vision, where the equations of the essential and
fundamental matrices, the trifocal, and quadrifocal tensors
are given using the geometric algebras G3,1 and G3 for the
projective space and projective plane respectively.

F. CONFORMAL GEOMETRIC ALGEBRA
In Conformal Geometric Algebra (CGA), the Euclidean vec-
tor space Rn is represented in Rn+1,1. This space has an
orthonormal vector basis given by {e1, . . . , en, en+1, en+2}
with the properties e2i = 1, i = 1, . . . , n, e2n+1 = 1, e2n+2 =
−1, ei · en+1 = ei · en+2 = en+1 · en+2 = 0, i = 1, . . . , n.
A more detailed description of conformal geometric algebra
can be found in [160] and [39], [41].

FIGURE 1. a) Null cone, hyperplane, horosphere and affine plane for the
1D case. b) Stereographic projection for the 1D case.

TABLE 1. Representation of entities in conformal geometric algebra.

A null basis {e0, e∞} (origin and point at infinity) is com-
puted as follows:

e0 =
(en+1 − en+2)

2
, e∞ = en+1 + en+2, (41)

with the properties e20 = e2∞ = 0 and e∞ ·e0 = −1.E = e∞∧
e0 is the Minkowski plane. The unit Euclidean pseudo-scalar
is Ie := e1∧e2∧e3, and the conformal pseudoscalar Ic = IeE
is used for computing the inverse and duals of multivectors.
For a detailed treatment of conformal geometric algebra for
robot vision see [42].

Conformal geometry is equivalent to stereographic projec-
tion in Euclidean space.

1) POINTS, LINES, PLANES AND SPHERES
The representation of a 3D point in the geometric algebraG4,1
is given by

xc = xe +
1
2
x2e e∞ + e0. (42)
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The line can be obtained in its Inner Product Null Space
(IPNS) form as

L = nIE − e∞m = (n+ e∞m), (43)

where the bivector n is the orientation and the vector m the
moment of the line. The IPNS equation of the plane is given
by

π = nIE − e∞d = n− e∞d; (44)

where the vector n stands for the orientation of the plane and
d the Hesse distance. The IPNS equation for the sphere is
given by

s = pc −
1
2
ρ2 e∞ = pe + (

p2e − ρ
2

2
)e∞ + e0. (45)

Using the equation dual for the sphere, wewrite the constraint
for a point lying on a sphere:

xc∧s∗ = xc∧(s · Ic) = 0. (46)

The advantage of the dual form is that the Outer Product Null
Space (OPNS) equations of the circle or of the sphere can be
directly computed from three or four points respectively as
follows:

z∗ = xc1 ∧ xc2 ∧ xc3
s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (47)

If we replace in equations (47,47) one of these points for
the point at infinity, we get the OPNS equation of the line and
plane respectively

l∗ = xc1 ∧ xc2e∞,

π∗ = xc3∧xc1∧xc2∧e∞
+ xe3∧xe1∧xe2∧e∞ + ((xe3 − xe1 )∧(xe2 − xe1 ))E.

Subsection II-E1 presents the algebra of incidence in the
4D geometric algebraG3,1 using points, lines, and planes. As
an extension, the incidence algebra in the conformal geomet-
ric algebraG4,1 uses points, lines, planes, circles, and spheres
of the OPNS, for more details see [41].

2) RIGID TRANSFORMATIONS
The translation of a geometric entity Q ∈ G4,1 can be carried
out by two reflections with parallel planes π1 and π2 as
follows

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q
(
π−11 π−12

)
︸ ︷︷ ︸

T̃a

, Ta = 1+ 1
2ae∞ = e−

a
2 e∞ ,

with a = 2dn, d the distance of translation, and n the direction
of translation.

A rotation is the product of two reflections between non-
parallel planes π1 and π2 that cross the origin. The rotation is
then defined by

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q
(
π−11 π−12

)
︸ ︷︷ ︸

R̃θ

. (48)

Computing the geometric product of the normal of the
planes n1 and n2 yields

Rθ = n2n1 = cos
(
θ
/
2
)
− sin

(
θ
/
2
)
n = e−θn/2, (49)

with the unit bivector n = n1 ∧ n2, and θ twice the angle
between π1 and π2.
The screw motion called a motor is a composition of a

translation and a rotation, both related to an arbitrary axis L.
The motor is defined as

M = cos
(θ + e∞d

2

)
+ L sin

(θ + e∞d
2

)
= T sRs = Rs + e∞R′s = exp−θL, (50)

where the screw line is L = n + e∞m. Therefore, a motor
transformation for an geometric entity Q ∈ G4,1 is given by

Q′ = T sRsQR̃sT̃ s = MQM̃ . (51)

A more detailed description of conformal geometric alge-
bra can be found in [41]. Table 2 shows a resume of the
relevant geometric algebras and their possible application
domains.

TABLE 2. Geometric algebras and possible applications domains.

The reader can resort to many books on geometric algebra
and applications, see [246] to [256]. Appendix I presents
a glossary of the most used variables in GA. Appendix II
includes references to popular software packages to learn
about GA and develop algorithms using the geometric algebra
framework.

III. APPLICATIONS IN ENGINEERING
AND COMPUTER SCIENCE
In this section, we review several works from 1995 to 2020 on
applications of GA in different areas of engineering and
computer science. Based on these inquiries, we carried out
a study of the research tendencies and a prognosis for new
developments in near future. The results are presented in
the final section. Section II outlines geometric algebra and
explain the different geometric algebras Gp,q,r . In the next
review of works, there are some which involve Clifford
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algebra. Geometric algebra is a geometric interpretation of
Clifford algebras, thus it is not the same as Clifford algebra.
The reader should resort to [53] for an introduction to Clifford
algebras. The section on geometric algebras explains most
of the concepts of Clifford algebra however in a geometric
way for example to model the geometric entities and the
Lie groups.

A. ELECTROMAGNETISM: THE MAXWELL EQUATIONS
In the theory of electromagnetism, we find the Space-
Time Algebra (STA) [118] in G1,3, which provides a uni-
fying framework for all four Maxwell equations. This STA
method is presented by S. Gull, C. Doran, and A. Lasenby
[Chaps. 8,11 [11]] to treat electromagnetic waves, includ-
ing boundaries, propagation in layered media, and tunnel-
ing. On the other hand, in the alternative framework called
Algebra of Physical Space (APS) in Cl3,0 W. Baylis uses
parabivectors scalars + bivectors to treat polarized electro-
magnetic waves [Chaps. 17,18 [11]].

Chappel et al. [70] show how Heaviside reduced the
Maxwell’s ten field equations to four. However, using bivec-
tors and the trivector in G3 instead of the Heaviside-Gibbs
vectors, they have a more appropriate representation for the
essential definitions of electromagnetic theory; like the field,
current, energy in fields, conservation of energy, force, poten-
tial function, Lorentz gauge, and potential equation.

B. ELECTRICAL ENGINEERING
The development of the electrical power theory in the geo-
metric algebra framework provides a new methodology to
explain and to formulate the power flow in electrical systems
of any type; this is due to the flexibility and generalization of
the geometric language of GA for the multivector represen-
tation of the power flow in the cases of sinusoidal and non-
sinusoidal systems. The works byMenti [176], Castro-Nuñez
[62]–[64], [66], [177], Montoya [177], [178], Castilla and
Bravo [59]–[61], Lev-Ari [181] and Petroianu [198] proved
the power of the geometric language of GA for the analysis of
power systems, namely a better understanding of the power
balances.

As explained in previous studies [62], [63], [177], GA
applied to sinusoidal, non-sinusoidal, linear, and nonlinear
circuits is a promising technique to describe the power flow in
terms of the energy conservation principle. The decomposi-
tion of the current into in-phase and quadrature components
I = Ic + a has contributed to the development of methods
for quadrature RMS current compensation [65]. However,
Montoya et al. [178] found inconsistencies in the power
formulation and reformulated the power theory based on GA
(GAPoT) to correct such inconsistencies and shortcomings
and define the total current through a decomposition consid-
ering the active current suggested by Fryze.

C. SIGNAL PROCESSING
GA applications in signal processing include terahertz spec-
troscopy which allows efficient processing of time-domain

signals [238]. Furthermore, GA applications in anisotropic
materials and metamaterials which provide a more general
description for metamaterials that can encourage new inno-
vative procedures [170] as in the case of electromagnetic
conductors [188].

Arsenovic [9] presented an ingenious method based on
conformal geometric algebra to modernize the transmission
line theory. The author formulates explicitly the relationships
between the Smith Chart and Riemann Sphere. Circuit opera-
tions, for example, the addition of impedance and admittance,
the impedances of the lines can be changed using rotations in
CGA. In general, the majority of relationships in transmission
line formulation can be linearized. The author solved some
classical impedance matching problems.

D. IMAGE PROCESSING
1) FILTERING ALGORITHMS
There are many recent works on adaptive filtering applied
to signal processing. A serious problem is that the perfor-
mance of the filtering algorithm decreases due to the non-
Gaussian noise. Using higher-order statistics, Constantinides
[223] proposed an adaptive filtering algorithm called the
least mean kurtosis (LMK). Chen et al. [73] introduced the
QLMK for 3D and 4D signal processing, where its cost
function is formulated in terms of the negative kurtosis
of the error signal for adapting smoothly to non-Gaussian
data. In addition, the QLMK algorithm estimates recursively
multivectors representing rotations in 3D and 4D dimen-
sions. Took et al. [226] developed the quaternion least mean
square (QLMS) algorithm and the augment QLMS algo-
rithm (AQLMS) which works adaptive filters for 3D and 4D
signal processing. Mandic et al. [171] proposed the LMS
algorithm in terms of the HR calculus, which computes
the derivatives of the cost function just in the quaternion
domain. Wang et al. [234] suggested a new Least-Mean Kur-
tosis adaptive filtering algorithm developed in geometric
algebra. It is called GA-LMK and it represents the multidi-
mensional signal as a multivector. The GA-LMK algorithm
minimizes the cost function using the negated kurtosis of
the error signal. B. Lopez and G. Lopes [167] formulated a
novel adaptive filters called the Geometric Algebra Adap-
tive Filters (GAAFs), the approach is a minimization prob-
lem of a deterministic cost function in the GA framework.
B. Lopez et al. [166] used the GA framework to design a
novel adaptive filtering method to tackle the rotation estima-
tion problem. Al-Nuaimi et al. [4] used GA-LMS to recover
the 6 DOF alignment of two-point clouds in correspondence.

2) FEATURE EXTRACTION ALGORITHMS
Feature extraction in image analysis is a fundamental proce-
dure for low-level image processing like image segmentation,
image registration, image mosaicking, motion recognition,
pattern recognition, classification, and neurocomputing. Usu-
ally, in multi-channel image processing, the authors con-
verted the images into grayscale images and then process
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them separately. This approach does not consider the natural
correlation of each image channel, thus lowering the quality
of the feature extraction method.

To tackle this drawback, Li et al. [182] suggested the
GA-SIFT method which extends in the GA framework the
SIFT procedure for multi-spectral images. GA-SIFT uses
spectral and spatial information and it detects the fea-
ture points both in the spatial space and in the spectral
space improving greatly the processing. On the other hand,
Wang et al. [232] developed the GA-SURF by extending the
traditional SURF using the geometric algebra framework.
The GA-SURF utilizes a box filter to approximate the high
complexity of the second Laplace derivative improving the
calculation efficiency. For real-timemulti-spectral image pro-
cessing, Wang et al. [235] suggested a fast and rotated algo-
rithm denoted as GA-ORB, which extracts near in real-time
multi-spectral image interest points. The authors show that
GA-ORB for extracting and matching interest points out-
performs many current algorithms w.r.t. distinctiveness and
robustness and it is even much faster.

Spatio-Temporal Interest Points (STIPs) were developed
for extracting image interest points. The method was
extended to extract points in the 3D space as well. STIPs
are seen as a key invariant feature in video processing to
detect object motion or action recognition directly without the
need for foreground segmentation or background modeling.
Wang et al. [231] proposed the GA-STIP utilizing the tradi-
tional 3D Harris algorithm and the Gaussian multi-resolution
pyramid in the geometric algebra framework for scale-space
of multi-channel video processing. GA-STIP is robust for
feature extraction from amulti-channel video. It shows a good
performance to recognize human activities.

It is known that lines and edges are key features in biolog-
ical visual systems. Moya-Sánchez and Bayro-Corrochano
[179] utilized the atomic function-based Riez transform in
a multi-scale approach to extract characteristics of object
symmetric shapes from images and to build feature-signature
vectors for object classification. Bernal-Marin and Bayro-
Corrochano [48] used the 2D and 3D Hough transform in
conformal geometric algebra to construct 3D geometric maps
utilizing lines and planes. This kind of representation permits
to search for geometric constraints useful in robotics in the
3D visual space for re-localization, exploration, decision,
navigation, and obstacle avoidance.

E. COMPUTER VISION
For computer vision algorithms in the geometric algebra
framework, authors use the 3D and 4D geometric algebras
G3,G3,1 for the image plane P2 and the projective space P3 to
formulate the fundamental concepts of projective geometry,
projective split and theory of invariants relevant for computer
vision. Authors show the incidence-algebra operations meet
(intersection), join a duality principle to compute intersec-
tions or joins of geometric entities as points, lines, and planes.
InG3 andG3,1 they present the analysis of monocular, binoc-
ular, and trinocular geometries equivalent to the theory of

n-view geometry. The extension of the geometric algebrasG3
and G3,1 to the conformal geometric algebras G3,1 and G4,1
augments the D.O.F. of the mathematical system so that one
can represent also circles, cones, and spheres and extend the
Lie groups to the conformal group which includes the rigid,
affine and projective transformations. Even though that the
CGA uses a quadratic model of the horosphere, one can get
the Euclidean metric via the inner product of null vectors.
Having more geometric entities and more bivectors to formu-
late the conformal transformation, authors could propose new
models and find new geometric constraints to tackle complex
problems in computer vision and robot vision.

Next, we review interesting contributions using G3 G3,1
andG3,1 andG4,1 to model the image plane and the 3D visual
space. A seminal paper on projective geometry using Clifford
algebra was written by Hestenes and Ziegler [125]. It stimu-
lated further research in the nineties in the areas of projective
geometry, projective invariant theory, and computer vision.
Lasenby et al. [152] introduced the application of geometric
algebra for the estimation of structure and motion. Later on,
Bayro-Corrochano and Lasenby [153] utilized the geometric
algebra framework for expressing projective invariants using
n cameras. Bayro-Corrochano and Banarer [29] formulated
projective invariants formed from points, lines, and planes
using two and three cameras and in the geometric algebras
G3,1 and G3. The authors presented interesting applications
of projective invariants for tasks like visual guided grasping,
camera self-localization, and reconstruction of shape and
motion.

Lasenby et al [154] showed that using the mathematical
framework of conformal geometric algebra a 5-dimensional
representation of 3-dimensional space – they can provide an
elegant covariant approach to geometry. In this language,
objects such as spheres, circles, lines, and planes are simply
elements of the algebra and can be transformed and inter-
sected with ease. In addition, rotations, translation, dilations,
and inversions all become rotations in our 5-dimensional
space;

Bayro-Corrochano, Reyes-Lozano and Zamora-Esquivel
[30] proposed geometric methods for visually guided
robotics. The authors CGA present interesting methods
useful for kinematics, dynamics, and projective geometry
problems.

Ortegon-Aguilar and Bayro-Corrochano [186] presented
the estimation of 2D and 3D transformations in terms of the
Lie groupGL(n) or one of its subgroups useful for monocular
estimation of object 3D rigid motion and for the estimation
of the involved affine or projective transformations during
monocular region tracking.

Debaecker et al. [75] proposed a new cone-based camera
model using the called ‘‘coxels’’ a contraction of pixels of
fields of view as volumetric cones. The model uses conformal
geometric algebra that allows representing cones efficiently
using twists. As to applications the authors considered the
use of this model to derive robust motions estimation by
redefining the notion of pixel’s intersections. A calibration
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method is also presented which provides all cameras with
parameter linking pixels to metric cones aperture.

Altamirano-Gómez and Bayro-Corrochano [5] developed
an approach for a local voting process using global perceptual
considerations at a low level and a global voting process
based on clusters of salient geometric entities. The method
represents objects in noisy images in terms of circles and lines
even though the shapes are distorted by noise, or the contours
are incomplete, or they are illusory or non-linear.

Ghina-El Mir, Saint-Jean and Bertier [86] formulated a
model for image representation based on CGA to encode
perspective distortions using the Minkowski metric in
space R1,1.

Hrdina and Návrat [138] solved a generalized binocular
vision problem using CGA. The position of two cameras is
determined by arbitrary Euclidean transformations depend-
ing on certain degrees of freedom. These transformations
are represented by a motor and projection unknown param-
eters to derive general equations in CGA for the 3D object
reconstruction involving two camera projection image planes.
The procedure was needed to solve a system of non-linear
equations.

RonGoldman et al. [104] showed how to compute perspec-
tive projection in 3D using rotations and spherical inversions
in the homogeneous and conformal models in CGA. Their
method started with a view direction and the distance to
the projection plane and constructed the eye point from the
information. The proposed perspective projection allowed to
place the eyepoint arbitrarily in space, view direction, and the
projection plane.

Leo Dorst [83] explicitly showed how various known
projective transformations (translations, rotations, scalings,
perspectivities, Lorentz transformations) are represented in
geometric meaningful parameterizations of the rotors in
terms of bivectors.

López-González et al. [164] used the randomized Hough
transform for detecting in terms of k-blades lines and circles
in images and planes, circles and spheres applying conformal
geometric algebra framework G4,1.
Gunn [110] introduced the dual projective Clifford algebra

P(Rn,0,1) (PGA) as the most promising homogeneous (1-up)
candidate for euclidean geometry. He compared PGA and the
popular 2-up model CGA, restricting attention to flat geomet-
ric primitives, and showed that in this domain they exhibit the
same formal feature set. The author thereby established that
PGA is the smallest structure-preserving euclidean GA. He
compared the two algebras in more detail, concerning several
practical criteria, including implementation of kinematics and
rigid body mechanics. Then, they extended the comparison to
include euclidean sphere primitives.

In another article, Gunn [111] presented an introduction to
projective geometric algebra (PGA), a modern, coordinate-
free framework for doing euclidean geometry. PGA features:
uniform representation of points, lines, and planes; robust,
parallel-safe join andmeet operations; compact, polymorphic
syntax for euclidean formulas and constructions; a single

intuitive sandwich form for isometries; native support for
automatic differentiation; and tight integration of kinematics
and rigid body mechanics.

F. INTEGRAL TRANSFORMS
An integral transform T maps a function f from its original
function space V into another function space via integration,
where some of the properties of the original function are more
easily characterized and manipulated than in the original
function space. Using the inverse transform T−1, the function
G = Tf can be mapped back to the original function space V .

1) CLIFFORD-QUATERNION FOURIER AND
WAVELET TRANSFORMS
Since 1990 authors published different works using quater-
nion algebra to formulate integral transforms in the frequency
domain. In a pioneering article, Chernov [71] used the quater-
nion algebra framework to speed up the computing of the 2D
discrete, complex-valued, Fourier transform.

T. Ell [85] applied the QFT for the analysis of 2D linear,
time-invariant, partial-differential systems. In this approach,
the ψ phase component of the polar representation of the
QFT was utilized to assess the stability of the system. T. Ell
in [112] also published a current overview of quaternion
Fourier transform (QFT). The author presented definitions,
their relations, inversion, linearity, convolution, correlation,
and modulation.

Later on, Bülow [55] introduced the quaternionic phase
concept and contributed to the clarification of the theory and
practice of the QFT.

Sangwine [205], [206] showed that QFTs found rich appli-
cations in color image processing; he related the colors R,
G, B with the quaternion coefficients of i, j, k. The color
images are then transformed in a holistic manner using the
QFT instead of separately transforming each color channel
by the 2D Fourier transform.

Inspired on the concept of the Mellin transform, M. Bahri,
E. Hitzer, and S. Adji in [38], pp. 93–106 proposed in
Cl2,0 the 2D windowed Clifford Fourier transforms for local
multivector-image analysis. Girard et al. [101] formulated the
processing of analytic video (2D+t) signals using the Cl0,3
Clifford algebra framework. The authors show that Cl0,3 can
be represented in terms of double quaternions q1+ q2, where
with2 = 1 (double number) corresponds to the pseudoscalar
of Cl0,3, and i, j, k are the bivectors of Cl(0, 3).

Felsberg and Sommer [97] proposed a 2D generalization of
the analytic signal. This new method is formulated in terms
of the Riesz transform used instead of the Hilbert transform.
An essential contribution is the geometric interpretation of
the phase concept which establishes a relation between the
1-D analytic signal and the 2-D monogenic signal which is
surprisingly formulated by the Radon (1986) transform.

Bernstein [112] proposed the monogenic signal theory to
express the monogenic curvature in scale space and proposes
the diffusive wavelets for the demodulation of 2D AM-FM
signals.
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Pollock andMann [199] formulated a method for detecting
vortices in sampled vector fields using the geometric alge-
bra framework. Their vortex-detection algorithm recursively
searches for vector samples and by applying the 2D version
of the Gaussian Theorem the algorithm extracts vortex cores.

Mann and Rockwood [172] computed singularities of 3D
vector fields and an octree-based solution for finding critical
points and their indexes in the 3D vector field.

W. Reich and G. Scheuermann [87], [88] proposed the
Clifford convolution extending the classical convolution on
scalar fields which were used for pattern matching on vector
fields. The Clifford Fourier transform [54] is utilized for
the analysis of discretization, sampling, measurement, and
interpolation errors. This method is utilized to analyze the
behavior of smoothing and differential operators, which play
an important role in feature detection on flow fields.

E. Bayro [31] extended the real and complex wavelet trans-
forms to the quaternion wavelet transform and formulates a
quaternionic wavelet pyramid for multi-resolution analysis
utilizing the quaternionic phase concept. The author showed
an application of the discrete QWT for optical flow estima-
tion. The estimation of motion is carried out through different
resolution levels. Themethod uses a similarity distancewhich
is evaluated using a confidence mask and the quaternionic
phase concept.

E. Hitzer [132], [133] proposed the generalization of
the orthogonal 2D plane split (OPS) of quaternions. The
OPS split uses the choice of one or two general pure unit
quaternions p2 = q2 = −1, which correspond to two
observers planes in the R4 space of quaternions. In this
approach, the QFTs can be split into pairs of complex FFTs,
QFTs which can be seen geometrically as plane observers.
This novel QFT is formulated considering desired geomet-
ric and phase characteristics, for special applications, and
allows their generalizations to higher dimensional Clifford
algebras as shown in [134] a space-time FT in Cl3,1. This
method resembles the space-time multivector wave packet
analysis.

T. Batard and M. Berthier in article No. 167 of [112]
suggested a spinor representation of arbitrary surfaces for
images. Spinor algebras are sub-algebras of Clifford algebras
as complex numbers, quaternions, rotor, and motor algebras.
The authors showed image processing applications such as
segmentation, diffusion and a Fourier Transform for multi-
channel images to Spin(3).
E. Moya-Sanchez and E. Bayro-Corrochano in [36] and

ctrb. No. 187 of [112] proposed the quaternion atomic
function kernels for application in image processing. The
approach also allows the use of analytic functions for the
generalization of monogenic functions and the develop-
ment of a steerable quaternionic multiresolution wavelet
scheme for image structure and contour detection. In addi-
tion, the authors generalized the Radon transform which per-
mits the detection of color image shape contours.

In article No. 172 of [112], S. Ebert, S. Bernstein, and
F. Sommen proposed a harmonic analysis for the Clifford

valued functions on the spin group as the rotor or motor
groups. The authors analyze the Clifford valued diffusive
wavelets on the sphere.

2) CLIFFORD AND QUATERNION FOURIER TRANSFORM
FOR COLOR IMAGE PROCESSING
In the past, researchers in color image processing separated
the processing of red, green, and blue color channels. Con-
ceptually the color space should be analyzed in a holistic
3D manner. New works suggest holistic multidimensional
processing using quaternion algebra and geometric algebra.
These approaches overcome the limitation of channel-wise
processing and guarantee a sound color space image process-
ing either using Euclidean metric of the R3 or space-time
(Minkowski) metric in G2,1 [43].
For 2D color image processing, T. Batard et al [12] devel-

oped a special color formulation of the Clifford Fourier trans-
form (CFT) [54] in Cl4,0.

Menneson et al. [174] proposed techniques for color object
recognition using the Clifford Fourier transform introduced
in [13], however, this color CFT does not have a general
formulation for multivector signals and an inverse. The CFT
color embeds a 3D color vector signal in R4 using a bivector
B ∈ G4 and its dual I4 B. This CFT is different from the
standard CFT proposed by Ebling and Scheuermann [88]
which can be utilized to general multivector-valued signals
and it has a general inverse CFT.

R. Soulard and P. Carre [112] proposed a color exten-
sion of the monogenic signal using wavelets by embedding
the color vector signals in the geometric algebra G5. This
approach seems to be better than the old-fashioned channel-
wise color image processing. The authors formulated a
novel multiresolution geometric color analysis utilizing non-
separable wavelets, which guarantee a good orientation anal-
ysis well separated from the color information. The method
includes a statistical coefficient modeling for thresholding
and denoising.

Pedone et al. [195] proposed a global method for the
registration of color images w.r.t. translation. Their method
represents translations as convolutions with unknown shifted
delta functions and performs the Wiener deconvolution
for recovering the shift between two color images. Inter-
estingly enough, they derived a quaternionic version of
the Wiener deconvolution filter for the registration. The
Wiener filter explicitly takes into account the variations of
noise.

S. Lazendinć et al. [158] proposed a generalization of the
quaternion dictionary learning method using the octonion
algebra framework. The classical dictionary learningmethods
concatenate spectral bands into a large monochrome image;
in contrast, the authors processed all the spectral bands simul-
taneously. Their method preserves better the color fidelity of
the reconstructed multispectral image. Image reconstruction
and denoising were carried out for color images and Landsat
7 images.
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3) EDGE DETECTION AND CLUSTERING OF COLOR
IMAGES AND MULTISPECTRAL IMAGES
Traditional approaches of color edge image detection relied
on processing the separated red, green, and blue color chan-
nels. Koschan and Abidi [148] provided an overview of edge
detection techniques for color images. E. Bayro-Corrochano
and S. Flores in Chap. 29 in [84] proposed a color edge
detector using rotors in G3 and a Multi-Layer Perceptron.
Schlemmer et al. [208] proposed a novel approach based on
Sobel operator and used vector value filter masks to detect
color edges.

Franchini et al. [98] proposed a FPGA implementation
to speed up their edge detection method which uses the
geometric product of k-vectors, to extend the convolution
operator and to apply the Fourier transform to vector fields.
Their approach is applied successfully for edge detection of
multispectral magnetic-resonant images.

Edge detection in multispectral images has been a chal-
lenging task over the past few years. Multispectral images
as in the cases of medical images or remote sensing images,
usually involve hundreds of spectral channels of the same
scene; therefore it is required of computational efficient edge
detectors.

Cao et al. [139], [241] developed a new vector-based
approach for edge detection in multichannel remotely sensed
images. The authors detected the discontinuity between
homogeneous image regions using the image density value
estimated at the mean vector of the sliding window.

Wang R., Shen M. and Cao W. [233] proposed a new
multivector sparse representation model for multispectral
images using the geometric algebra framework. Their model
represents a multispectral image as a GA multivector con-
sidering fully the spatial and spectral information. More-
over, a GA dictionary learning algorithm is formulated using
the K-GA-singular value decomposition (GASVD)- As a
result, due to the consideration of the relationship between
spectral channels in multispectral images, the method
successfully manages to reject the artifacts and blurring
effects.

G. COMPUTER GRAPHICS AND OTHERS
Gómez et al. [105] explored the use of Clifford algebra
to represent n-dimensional lattices. This approach allows to
describe the geometrical crystallography in a sound language
valid in any dimension. This work shows applications to the
problems in quasi-crystals when handling the faceting and
phason degrees of freedom.

Wareham et al [236] introduced conformal geometric alge-
bra (CGA) as a language for computer graphics and com-
puter vision. They compute position interpolation based on
CGA. Their method can be extended to higher-dimension
spaces and all conformal transforms (including dilations).
The authors discussed a method of dealing with conics in
CGA and the intersection and reflections of rays with such
conic surfaces.

Hitzer and Perwass [131] developed an intuitive software
tool that visualizes 3D space group symmetries. The inter-
active package computes various aspects of crystals using
the Clifford (geometric) algebra framework. Their package
corresponds to an algebraic implementation of groups gen-
erated by reflections. A combination of reflections relates
the geometric product of vectors which in turn describe the
orientation of the reflection planes. The interactive graph-
ics package coupled with CLUCalc [196] can be used to
understand how reflections are combined to generate all the
230 3-D space groups.

Hildenbrand et al. [126] explained that at the beginning
in computer graphics projective geometry was adequate to
represent points and formulate their mappings using a linear
transformation. In contrast, geometric algebra offers a new
computational framework for handling transformations in
terms of bivectors such as rigid motion, similitude, affine,
projective, and conformal transformations. The authors clar-
ified that it is also possible to handle the transformations
of not only points but of lines, planes, circles, spheres, and
hyperplanes. They showed that in geometric algebra, one can
formulate complex numbers, quaternions, dual-quaternions,
Grassmann algebra, and Grassmann-Cayley algebra. The
authors wrote a tutorial emphasizing that geometric algebra
is a unified language involving many mathematical systems
which can be used advantageously in Computer Graphics.

Papagiannakis [189] showed that computer implementa-
tions of geometric algebra (GA) can perform at a faster level
compared to standard (dual) quaternion geometry implemen-
tations for real-time character animation blending. By this,
we mean that if some piece of geometry (e.g. Quaternions)
is implemented through geometric algebra, the result is as
efficient in terms of visual quality and even faster (in terms
of computation time and memory usage) as the traditional
quaternion and dual quaternion algebra implementation. His
work describes two implementation approaches for quater-
nion interpolation using Euclidean GA rotors for skinned
character animation blending. It also lays the foundation so
that GA can be employed for further calculations (skinning,
rendering) under a unified geometry computation framework.

Papaefthymiou et al [190] presented an all-inclusive algo-
rithm for real-time animation interpolation and GPU-based
geometric skinning of animated, deformable virtual char-
acters using the Conformal model of Geometric Algebra
(CGA). They compared their method with standard quater-
nions, linear algebra matrices, and dual-quaternions blending
and skinning algorithms and illustrated how their CGA-GPU
inclusive skinning algorithm can provide a smooth and more
efficient results as state-of-the-art previous methods.

Papaefthymiou et al [191] proposed an efficient method for
robust authoring (rotation) of Augmented reality scenes using
Euclidean geometric algebra (EGA) rotors and they present
two fast animation blending methods using GA and CGA.
The authors compared the efficiency of different GA code
generators: (a) Gaigen library, (b) libvsr and (c) Gaalop using
their animation blending methods and compare them with
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other alternative animation blending techniques: (a) quater-
nions and (b) dual-quaternions, so that a future user of GA
libraries can choose the most appropriate one that will give
the most optimal and faster results.

Hadfield et al [113] explained that modern Geometric
Algebra software systems tend to fall into one of two cat-
egories, either fast, difficult to use, statically typed, and
syntactically different from the mathematics or slow, easy
to use, dynamically typed, and syntactically close to the
mathematical conventions. Gajit is a system that aims to get
the best of both worlds. It allows us to prototype and debug
algorithms with the Python library Clifford which is designed
to be easy to read andwrite and then to optimize our code both
symbolically with GAALOP and via the LLVM pipeline with
Numba [113] resulting in highly performant code for very
little additional effort. |

Keninck [146] introduced a novel visualization method
for elements of arbitrary Geometric Algebras. The algorithm
removes the need for a parametric representation, requires
no precomputation, and produces high-quality images in
real-time. It visualizes the outer product null space (OPNS)
of 2-dimensional manifolds directly and uses an isosurface
approach to display 1- and 0-dimensional manifolds. Amulti-
platform browser-based implementation is publicly available.

Kamarianakis and [145] presented an integrated rigged
character simulation framework in Conformal Geometric
Algebra (CGA) that supports, for the first time, real-time cuts
and tears, before and/or after the animation, while maintain-
ing deformation topology. Previous implementations origi-
nally required weighted matrices to perform deformations,
whereas, in the current state-of-the-art, dual-quaternions han-
dle both rotations and translations, but cannot handle dila-
tions. Their CGA algorithm also provides easy interpolation
and application of all deformations in each intermediate step,
all within the same geometric framework. These interactive,
real-time cut and tear operations can enable a new suite of
applications, especially for medical surgical simulation.

H. GEOSPATIAL DATA, REMOTE SENSING, GIS,
AGRICULTURE
Bhatti et al. [52] provided a detailed review of GA in
different fields of AI and computer vision regarding its
applications and the current developments in geospatial
research. The authors showed applications of the Clifford–
Fourier transform and quaternion algebra in remote sensing
image processing. They focus on howGA helps AI and solves
classification problems, as well as improving these meth-
ods using geometric algebra processing in terms of Clifford
Support Vector Machines. The authors discuss the issues,
challenges, and future perspectives of GA with regard to
possible research directions.

Yu, Yuan, and Luo [244] presented a unified multi-
dimensional GIS data model, constructed by linking data
objects of different dimensions within the multivector struc-
ture of Clifford algebra. The authors proposed algorithms
for geographical network analysis (such as shortest path,

minimum, and maximum flow analysis), and a high-
dimensional Voronoi diagram was constructed. The authors
showed that traditional GIS analysis algorithms can be
extended not only to accommodate various dimensions but
also to become beneficial regarding performance.

Yuan et al [245] explained that traditional Euclidean
geometry-based Geographical Information System (GIS) is
a multidimensional unification with a weak ability to object
expression and analysis of high dimensions. In this regard,
geometric algebra can connect different geometric and alge-
bra systems, and in addition, it provides a rigorous and elegant
foundation for expression, modeling, and analysis in GIS.
The authors showed that the use of a multi-dimension-unified
and coordinate-free GA framework allows us to handle data
models, data indexes, and data analysis algorithms for multi-
dimensional vector data, raster, and vector field data. More-
over, GA allows undoubtedly the convenient representation
of multidimensional spatio-temporal changes.

Prince et al. [144] used Clifford geometric algebra to
enhance the segmented images acquired from the UAVs
of different agricultural fields. According to the authors,
previous image segmentation approaches depend upon the
intensity of red, green, and blue colors; but the complete
perspective could not be obtained from these approaches.
Geometric algebra overcomes this limitation and leads to gen-
uine color space image processing. The image segmentation
of foreground and background is enhanced using Clifford
geometric algebra; hence, the results obtained are fine-tuned
segmented images. The authors believe that their research
would have a positive impact on the amelioration of the
condition of the farmers and their livelihood.

I. QUANTUM COMPUTING
Nowadays, quantum computers for consumers are not yet
available, however, the use of neural networks to carry out
quantum computing appears a promising approach to carry
out quantum computing. This requires a flexible way to for-
mulate quantum processors integrating and relating the prin-
ciples of the fields of neurocomputing, quantum computing,
and quantum mechanics. On the other hand, it is necessary
to respect certain fundamentals principles of those fields.
In this regard, we believe that neurocomputing helps to relate
effectively those fields.

In quantum mechanics, the complex space notions and the
imaginary unit iC are essential.

Many works like Space Time Algebra (STA) [118], the 4D
GA with Minkowski metric, G3,1 [77], [214], [215] showed
the role of iC in the Dirac, Pauli, and Schrödinger’s equations
and its geometric interpretation in terms of rotations in real
space time [119].

Other authors proposed the Multi Particle Space and Time
Algebra (MSTA) [77], [79], [151], [215]. The MSTA formu-
lates a time dimension and three spatial dimensions for each
particle. The MSTA constructs a sound conceptual frame-
work for a multi-time methodology to quantum theory.
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In an enlightening article Cafaro and Mancini [56] pre-
sented an explicit GA characterization of 1 and 2-qubit
quantum states and a GA characterization of a universal
set of quantum gates for quantum computation. Moreover,
the authors show the universality of quantum gates in terms
of geometric algebra.

Conte [72] demonstrated quantum interference and inde-
terminism in Clifford algebra by using only logic. Quantum
mechanics involves two basic foundations; indeterminism
and quantum interference. The roots of indeterminism and
of quantum interference are not necessarily in physics but
it is clearly represented in a logic formulated in Clifford
algebra. The author explains that cognition not only coexists
with matter in quantum mechanics but it seems that the first
supervises the latter.

Bayro [37] formulates quantum gates for the Lie Group
SO(3) using neural networks in the sub-algebra G+3 . They
integrate the fields of neurocomputing, quantum computing,
and quantum mechanics in a unifying mathematical frame-
work. The authors claim that neural network models are used
as the hardware for quantum processing. Along these lines of
thought, the Autonomous PerceptronNeuronwas generalized
to the Quaternion Quantum Neural Network (QQNN) [45].
The article shows the quaternionic quantum neural networks
for pattern recognition using surprisingly just one quaternion
neuron. The experiments demonstrated the excellent perfor-
mance of the QQNN.

J. NEUROCOMPUTING
Initial attempts at applying geometric algebra to neural geom-
etry have already been described in earlier papers [24], [121],
[122]. Bayro [28] proved that standard feedforward networks
are generalizable in the geometric algebra framework. The
author formulated the Geometric Multi-Layer Perceptron and
the Geometric Radial Basis Function. Furthermore, he used
quaternion wavelets for the Quaternion Wavelet Function
Network [20], [24] replacing the Radial Basis Functions in
the hidden layer with quaternion wavelets.

Kusakabe et al. presented a study of neural networks
using quaternion algebra [150]. The authors formulated the
backpropagation training rule in terms of quaternions. Later
on, Nobuyuki et al. [180] formulated similarly a quater-
nion neural network using a quaternion version of the
back-propagation training rule. Their experiments present
precise geometrical transformations in 3D space, as well as in
color space image compression. The authors showed that the
quaternion neural networks have a better performance than
the real-valued neural network regarding convergence speed
and the handling of the 3-bit parity check problem.

Kusamichi H, Isokawa T. and Matsui N. [149] presented
a quaternion neural network for extracting color information
from gloomy images. The network is trained by imposing a
gloomy image as input and a good quality one as a target.
A quaternion-based backpropagation training rule is adopted.
The authors showed that their method is very useful for color
night vision.

Bayro et al. [40] presented the design of Radial Basis
Function geometric bioinspired networks and their applica-
tions. The question is how biological neural networks handle
complex geometric representations involving Lie group oper-
ations like rotations. The authors used Atomic Functions and
geometric neural networks to detect 2D geometric features of
real images and motor algebra with RBF networks to act as
an observer for detecting 3-D screw-line axis data.

Thiruvengadam et al. [224] developed a novel paradigm to
design hyper-algebraic networks in the so-called hyper-field
cognition framework expanding upon the mathematical foun-
dations of neural networks in the 5D conformal geometric
algebraic space.

The revolution of the Convolutional Neural Networks
is basically due to the increase in the amount of hidden
filter-convolutional layers, the inclusion of the pooling, and
ReLU layers. However, much of the existing work has been
focused on real-valued numbers. Convolutional neural net-
works (CNN) have recently achieved state-of-the-art results
in various applications, see T. Parcollet, M. Morchid, and
G. Linares [193]. Bayro [41] developed the Geometric Alge-
bra CNN as a special case of the Quaternion CNN. The author
represented the convolution and its products in the quaternion
algebra framework. Gaudet and Maida [69] analyzed the
benefits of generalizing the real-valued CNNs into the hyper-
complex numbers, quaternions specifically, and provided the
architecture components needed to build deep quaternion
networks.

The brain can store information and adapt its neuro-
connections for a variety of complex tasks necessary; this
is known as synaptic plasticity [141], [143]. The third gen-
eration of neural networks, or Spiking Neural Networks
(SNN) can mimic biological behavior. For the last ten years,
we eye-witnessed impressive progress in the development
of spiking neural networks with interesting applications [3],
[102], [103], [137]. Bayro et al [45] proposed the Quaternion
Spiking Neural Network (QSNN). This work shows that the
quaternion spiking neural networks can adapt the robot online
to reach the desired position.

1) CLIFFORD SUPPORT VECTOR MACHINES
It is well known that the classical works on SVM algo-
rithms are not able to carry out the classification of multi-
ple classes which is solved by MIMO architectures. Bayro-
Corrochano et al. [35], [38] generalized the real-valued SVM
algorithms using geometric algebra. The authors proposed
the CSVM which generalizes the real-valued SVM over
the complex, quaternion, and hyper-complex values. The
authors utilize kernels for nonlinear functions SVM which
are formulated in Clifford algebra. The proposed kernels
involving the Clifford or geometric product can be applied
for nonlinear classification. Bayro-Corrochano and Arana-
Daniel [35] presented the CSVM which can be used for the
tasks of classification, regression, and recurrence. Similar
to a Multiple-Input Multiple-Output (MIMO) architecture,
the CSVM is fed with multiple multivector inputs and the
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outputs are multivectors; thus the CSVM can be utilized in
multiple classes. Lopez et al [165] proposed a parallelization
approach for the CSVM, based on two characteristics of the
Gaussian Kernel. The authors showed that the pure real-
valued result and its commutativity permit to separate the
multivector data in its related subspaces. Since the subspaces
are independent of each other, the classification problem can
be straightforwardly solved using parallelism.

In recent work, Wang et al. [230] formulated the Clifford
fuzzy SVM (CFSVM), which uses a fuzzy membership to
each multiple input point for multiple classes; as a result,
different input points have different contributions to the learn-
ing of decision surface. The CFSVM approach improves the
CSVM in reducing the effect of outliers and noise in data
points. CFSVM is suitable for applications where data points
have unmodeled statistical characteristics.

K. ROBOTICS: KINEMATICS, DYNAMICS,
TRACKING, CONTROL
For kinematics and dynamics of robot mechanisms, many
authors have used different mathematical systems such as
vector calculus, quaternion algebra, or linear algebra which
is most often utilized. Note that in these frameworks for
handling the kinematics and dynamics only the geometric
entities as points and lines are used, which induce compli-
cated computations.

Ickes [140] presented in 1970 amethod for performing dig-
ital control system attitude computations using quaternions.
In 1970, Grubin [108] showed the derivation of the quaternion
scheme via the Euler axis and angle. In the eighties, authors
discussed quaternion algebra for orientation and for manip-
ulation of finite rotations and animating quaternion curves
[161], [211], [220]. In the nineties, authors showed the role
of quaternions for rotation and attitude representations. [159],
[212]. Dooley and McCarthy [76] showed that the motion
of cooperating robot systems is formulated by relating the
equations of motion for each arm and the workpiece utilizing
the constraint equations of the closed chain. Dual quaternions
seem to provide a sound algebraic representation for these
constraints.

In geometric algebra, in 1995 begun the use of rotors and
motors for kinematics [14]–[17], [19].

Berman, Liberman and Flash [50] usedmotor algebra, a 4D
degenerate geometric algebra, which permits a rigorous yet
simple formulation of the 3D rigid-body velocity. Using this
approach, the authors analyzed the 3D extended arm pointing
and reaching movements.

Seybold [210] defined and applied a nonlinear conjugate
gradient method in a vector space. This approach solves
multilinear functions formulated in the motor algebra, which
address inverse kinematic problems. The approach is illus-
trated using a Stanford-type robot arm.

Thiruvengadam and Miller [225] represented a robotic
system or manipulator in terms of a network whose motion-
generating kinematic pairs are formulated by means of the
network’s inter-connected nodes. For this network theoretic

framework, a formulation in Clifford Algebra was proposed
utilizing higher dimensional multivectors that approximate
the computational outcomes of complicated systems of equa-
tions. This approach is applied to solve the inverse and for-
ward problems.

Bayro and Falcon [33] used conformal geometric algebra
(CGA) for a variety of applications in computer vision and
robotics. According to these authors CGA aids to increase our
intuition and insight into the geometry in question. In addi-
tion, it helps us to diminish the computational burden of the
task.

Hildenbrand, Pitt and Koch [128] developed the Geometric
algebra algorithms optimizer (Gaalop). This is a package for
high-performance computing using the conformal geometric
algebra framework. Using Gaalop, Hildebrand et al [127]
solved the inverse kinematics used in computer graphics and
robotics.

Aristidu and Lasenby [7] presented a new forward and
backward reaching inverse kinematics solver called FABRIK
in CGA. The solver can find joint positions by locating
points on lines. The approach can handle most joint types and
support a variety of biomechanical constraints on chains with
single and multiple end-effectors.

Yao et al. [243] presented a novel method based on GA
for the singularity analysis of 3 DOF overconstrained planar
parallel manipulators 3-RPR. GA offers a compact and geo-
metrically intuitive formulation of the singularity polynomial
of the parallel manipulators 3-RPR.

Lian [162] presented in conformal geometric algebra a
method for geometric error modeling of Parallel Manipu-
lators (PMs) in terms the visual representation and direct
calculation in GA. Using linearization of the finite motion,
he analyzes the error propagation of the open-loop chain.
The method separates the error sources in terms of joint
perturbations and geometric errors.

Bayro et al. [27] presented in the motor algebra framework
the mathematical treatment of kinematics which becomes
much easier using points, lines, and planes. John Selig [ [207],
Chap. 9] analyzed the Newton mechanics and the Newton-
Euler recursive algorithm in terms of screws as 6D vectors
and the transformations using matrices. The author presents
the use of additional geometric entities which further helps
to reduce the representation and computational difficulties.
As shown by Bayro [ [42], Chap. 14], the robot kinematics
formulation can be handled advantageously using points,
lines, planes, circles, and spheres in the CGA [127].

Bayro [39] introduced the Euler-Lagrange dynamics using
CGA. Later on, he [ [42], Chap. 15] formulated the Newton-
Euler recursive algorithm for dynamics using motor algebra.
The Hamiltonian mechanics on phase space can be formu-
lated in the GA as well [42]. Robot Newton-Euler Model-
ing and Control using Hamiltonians in GA were presented
in [46]. In the modeling, control, and tracking for robot arms
were formulated using a geometric algebra framework.

H. Hafield and J. Lasenby [115] tackled the problem
of constrained rigid body dynamics in the Conformal and
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Projective Geometric Algebras (CGA, PGA). First we con-
struct a screw-theory based formulation of dynamics in CGA
and note the equivalence between this and the PGA dynam-
ics presented by Gunn in [110], [111]. After verifying the
formulation via simulation, they add constraints applying the
concept of virtual power.

Hafield and Lasenby [114] analyzed the forward and
inverse kinematics of the Delta robot from a geometric per-
spective using Conformal Geometric Algebra. They calcu-
lated explicit formulae for all joints in both the forward and
inverse kinematic problems as well as explicit forward and
inverse Jacobians to allow for velocity and force control. They
verify the kinematics in Python and simulate a physical model
in the Unity3D game engine to act as a test-bed for future
development of control algorithms.

L. CONTROL ENGINEERING
In the last decades, researchers have mostly worked in
robot modeling, kinematics and dynamics; fortunately, some
researchers also worked to develop methods for control engi-
neering using quaternions, dual quaternions, and geometric
algebra. Thus, there is an urgent need to relate the geometric
algebra framework with advanced techniques of non-linear
control, envisage a new concept of geometric control using
multivectors and Lyapunov functions of multivectors, derive
cost functions for optimal control, and be able to prove the
stability of the controllers in the k-vectors subspaces.

Xian et al. [237] studied the problem of task-space tracking
control of redundant robot manipulators. Using a quaternion
representation of the end-effector orientation, the authors
design a class of task-space controllers that ensure asymptotic
end-effector position and orientation tracking. Moreover,
they proposed model-based and adaptive full-state feedback
controllers which can eliminate the link velocity measure-
ments via a model-based observer.

Price et al. [200] suggested a self-reconfigurable control
for dual-quaternion systems with unknown control direction.
The approach formulated the creation of multiple equilibrium
surfaces for the system in the extended state space.

Maeda, Fujiwara, and Ito [169] formulated a position con-
trol scheme for an actual robot system using high dimensional
neural networks. The authors proposed a complex-valued
neural network and quaternion neural network which learn
inverse kinematics of the robot systems.

Oviedo-Barriga et al. [183], [184] presented the control-
ling walking biped robots, which is a challenging problem
due to their complex and uncertain dynamics. The authors
proposed a slidingmode controller based on a dynamicmodel
which was obtained using the CGA. They obtained the first
and second derivatives of the reference signal via an exact
robust differentiator which is based on high order sliding
modes.

Carbajal-Espinoza et al [57] described in CGA a new
3D pose estimation of objects using reflectional symmetry.
The authors present a real-time implementation for the pose
estimation of objects tracked by a stereo vision system.

González-Jim énez et al. [106] proposed a controller, based
on sliding mode control, for the n-link robotic manipulator
pose tracking problem. The point pair is a geometric entity
used to represent the position and orientation of the end-
effector. A sliding mode controller of easy implementation
is proposed which has the following properties: robustness
against perturbations and parameter variations, as well as
finite-time convergence.

Özgü and Mezouar [187] used screw theory expressed via
unit dual quaternion representation to formulate efficiently
both the forward position and velocity kinematics and the
pose control of an n-DOF robot arm. The authors show that
the efficiency is because of the reduced computer mem-
ory usage and the fast computation of the equations. The
representation of task space is singularity-free and there is
robustness to numerical errors. Finally, the approach yields
compactness of the representations.

Takahashi et al. [222] studied the control performance of
an adaptive controller using multilayer hypercomplex-valued
neural networks, namely complex, hyperbolic, complex, and
quaternion neural networks. The direct controller is syn-
thesized online using the multilayer hypercomplex-valued
neural network which adapts the desired plant output w.r.t a
reference model.

Medrano and Bayro [173] discussed the design of con-
trollers for robotics systems using Hamilton’s equations.
Unlike other works, they proposed to rebuild Hamilton’s
equations to an iterative form (for robots with any degrees
of freedom) using the screw theory. Hence, the equations in
the phase space are computed using screws and co-screws.
For the controllers, they proposed two laws of control that
ensure the convergence of the error to zero. The controllers
are designed in terms of sliding mode control theory and
on the laws of control using linear gains. The first theory
gives robustness for the systems with matching perturbations,
and the second one supplies speed for trajectory tracking.
Then, to prove the stability of the proposed laws of control,
the authors designed diverse Lyapunov functions with screws
and co-screws to ensure that the robotic systems are globally
asymptotically stable. The article shows a numeric example
to illustrate the properties of the two designed controllers.

Bayro et al [45] formulated the Quaternion Spiking Neu-
ral Network (QSNN) extending the real-valued spiking neu-
ral networks using the quaternion algebra framework. The
QSNN has remarkably the capacity to measure the param-
eters of the plant in question and accordingly adjust the
parameters of the controller. The authors showed that the
QSNN carries out both the plant estimation parameters and
the adaptation of the controller parameter similar to an adap-
tive PID controller. Thus the QSNN makes it possible online
that the robot reaches the desired position.

Arellano [8] proposed the dynamic model and applied
nonlinear control for a quadrotor, This development was
done using the motor algebra framework G+3,0,1. The kine-
matics for the quadrotor model and the dynamics based on
Newton-Euler formalism are described. The authors applied
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block-control to the quadrotor model using super twisting
control and also an estimator of the internal dynamics param-
eters to handle maneuvers detached from the origin.

Carbajal-Espinoza et al. [58] described a synthesis of the
kinematic model of the pose of a 7-DOF robot manipulator
using CGA. The authors proposed the error feedback and
Lyapunov functions in terms of CGA. The authors believe
that they are starting a new venue of research in control
of robot manipulators and robot legs which can better be
modeled in terms of geometric primitives like lines, circles,
planes, spheres.

Gunn [109] in his Ph.D. thesis presented a modern formu-
lation of rigid body mechanics in spaces of constant curva-
ture. He developed the necessary theory – from projective
geometry, exterior algebra, and quadratic forms – required to
describe a class of Cayley-Klein spaces including the three
classical spaces of constant curvature: Euclidean, elliptic, and
hyperbolic. These n-dimensional Cayley-Klein geometries
are then realized as real Clifford algebras constructed on
the dual projective Grassmann algebras, of which only the
euclidean case is degenerate. Poincare duality provides non-
metric access to the standard Grassmann algebra. These Clif-
ford algebras for n=2 and n=3 are described in detail. The
role of non-simple bivectors and their connection to classical
line geometry for n=3 receives particular attention.
Bayro et al. [46] proposed the robot dynamics in terms

of Hamiltonians, which is different from the Lagrangian for-
mulation of electromechanical or robotics systems. Using the
iterative Newton-Euler, the local Hamiltonians are computed
as well as the derivative of the moments at each robot joint.
Decentralized controllers are applied at each joint.

Bayro and Osuna formulated the dynamic model and the
trajectories were generated using quadratic programming
with geometric constraints designed in CGA. The dynamic
is represented in motor algebra using screw theory supported
by an iterative Newton-Euler algorithm. The author imple-
mented nonlinear controllers using integral sliding modes
for collision avoidance. Experiments show the performance
of modeling and the nonlinear control for tracking robot
manipulators with perturbations.

M. ESTIMATION, POSE, HAND-EYE, RELOCALIZATION,
KALMAN FILTER
Stanway and Kinsey [221] presented the formulation of a
stable adaptive identifier to estimate rigid body rotations
using rotors in GA. The authors showed an experimental
evaluation of this technique, which reduces dead reckoning
navigation errors on these platforms and provides comparable
performance to previously reported SO(3) constrained Linear
Algebra (LA) approaches.

Rosenhahn, Perwass and Sommer [204] discussed the
2D–3D pose estimation for the case of 3D free-form contours.
The authors derived cycloidal curves as orbits of coupled
twist transformations. Furthermore, they represent the 3D
contours in the spectral domain as an extension of cycloidal
curves.

Vázquez and Bayro [228] presented the application of a
new hypercomplex-valued Radial Basis Network (RBF) to
estimate unknown geometric transformations such as in the
case of the Hand-Eye Calibration problem.

Marin and Bayro [51] showed a novel approach for build-
ing 3D geometric maps using two sensors, a laser range
finder, and a stereo camera system. The formulation is derived
using CGA. The use of known visual landmarks in the map
permits a good robot localization. In a previously captured
environment, the approach uses landmarks for the robot re-
localization.

Bashi and Kaminsky [32] evaluated the performance of
an extended Kalman filter and a real-valued artificial neural
network. These methods were compared for the processing
accelerometer data collected during impact acceleration tests.

Bayro and Zhang [25] used the motor algebra for the
linearization of the 3DEuclideanmotion of lines. Thismotion
model was used for the development of the Motor Extended
Kalman Filter (MEKF). TheMEKF estimates with high accu-
racy the relative position of the robot end-effector w.r.t. a 3D
reference line. The authors claim that future vision systems
can be reliably calibrated using the MEKF algorithm.

Xiaodong et al. [239], developed the quaternion-valued
feedforward neural network (QFNN) to process 3D and 4D
signals using the quaternion algebra. The authors used the
unscented Kalman filter (WLQUKF) algorithm to train the
QFNN. This method is formulated using recent studies in
the augmented quaternion statistics and HR calculus. Due to
the augmented quaternion statistics, the WLQUKF manages
to process general quaternion-valued noncircular, nonlinear,
and nonstationary signals, effectively.

N. BIOMEDICAL ENGINEERING AND BIOTECHNOLOGY
Rivera-Rovelo et al. [203] developed a method using self-
organizing neural networks for detecting shapes of 2D or 3D
objects using a set of rigid transformations represented as
versors in CGA. These transformations were applied to any
geometric entity of GA which defines the object shape. This
approach used haptic interfaces which provide the surgeon
useful sensing information about the patient’s body tissues.

Castillo-Muñiz [67] utilized for medical applications a
haptic interface to get some sample points of an object sur-
face or organ tissue. The authors use lines, circles, and spheres
of CGA to represent organ shapes.

Bayro-Corrochano and Rivera-Rovelo [47] developed a
novel approach for the modeling of 2D surfaces and 3D
volumetric data. The modeling is based on the marching
cubes algorithm using instead spheres and their representa-
tion in CGA. The authors present also a method for non-rigid
registration of models based on spheres. For the registration,
an annealing scheme is used, similar to the Thin-Plate Spline
Robust Point Matching (TPS-RPM) algorithm. The authors
present an interesting application in GA, namely the tracking
of objects needed in minimally invasive surgical procedures.

Sepulveda-Cervantes and Portilla-Flores [209] introduced
a novel method for haptic rendering contact force and surface
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properties for virtual objects using orthogonal decomposition
in CGA. If we compare it with vector calculus, the CGA
provides an easier and more intuitive language to deal with
the problem of haptic rendering. The CGA is a sound geo-
metric language due to its algebraic properties and a kind of
framework which allows a simpler representation of geomet-
ric objects and their linear transformation.

Garza, Sanchez, and Bayro [99] reported geometric com-
puting methods useful for medical robot vision. Through
reformulating screw theory, seen as a generalization of
quaternions, in CGA, the authors for neurosurgery solve the
hand-eye calibration, the problem of the 3D registration using
RGB-d cameras, efficient interpolation, and tracking.

Bayro-Corrochano, Lechuga-Gutierréz, and Garza-Burgos
[44] proposed methods for the interpolation, virtual reality,
graphics engineering, and haptics by reformulating screw
theory in CGA. The authors formulated intuitive geometric
equations to carry out surface operations as in kidney surgery.
The interpolation is used for the interpolation and dilation
in 3D of points, lines, planes, circles, and spheres. The authors
interpolate trajectories of the surgical instrument.

Grafton and Lasenby [107] presented a method for repre-
senting surfaces using a set of dual quaternion control points,
to fit to point clouds. Each control point is defined by a
position and radius, which specify the area of the surface it
affects, and a dual quaternion defining the transformation it
applies. They fit surfaces to point clouds using a modified
iterative gradient descent algorithm, adding control points
to regions of the surface. These methods are applied to the
problem of representing human breathing by fitting surfaces
to a subject’s chest as recorded by an RGB-D (image plus
depth) camera and parameterizing the breathing using each
control point’s parameters. Variations in the breathing pattern
are shown before and after exercise.

O. HARDWARE AND SOFTWARE FOR
GEOMETRIC ALGEBRA
In recent years, Franchini et al. developed efficient hardware
to accelerate GA algorithms : a sliced co-processor for GA
operations [90], an embedded FPGA-based computer graph-
ics co-processor with GA support [91], fixed-size quadruples
for a novel hardware-oriented representation of the 4D GA
[92], design space exploration of parallel embedded archi-
tecture for GA operations [93], designed and implementa-
tion of an embedded co-processor with native support for
5D, quadruple-based GA [94], Conformal ALU: a CGA
Co-processor for medical image processing [95] and a variety
of embedded co-processors with GA support [96]. Recently,
a coprocessor called GAPPCO easy to configure geometric
algebra was developed by Hildenbrand et al. [129].
Soria-García et al. [219] reported an implementation of the

conformal voting scheme utilizing reconfigurable hardware
in G3,1. This algorithm extracts from edge images geomet-
ric entities, like circles and lines. The authors derived the
conformal voting scheme into two main stages: a local stage

computed using neighborhoods in the image, and a global
stage using the results of the local voting stage. The authors
focused on the stage which requires the most computational
demand using FPGA, while the global voting stage is exe-
cuted on a PC.

Keninck and Dorst [147] introduced a novel and
matrix-free implementation of the widely used Levenberg-
Marquardt algorithm, in the language of Geometric Algebra.
The resulting algorithm is shown to be compact, geometri-
cally intuitive, numerically stable, and well-suited for effi-
cient GPU implementation.

IV. CONCLUSION AND PROSPECTS
This section summarizes the reviews and explains the cur-
rent research challenges in the field of GA applications in
engineering and computer science. The author makes use
of scientometrics to analyze the quantitative features and
characteristics in scientific publications. The study focuses
on research works in which the development and mecha-
nism of applied GA are studied by statistical mathematical
methods.

This review presents a comprehensive study of works on
applications of Quaternion Algebra and Geometric Algebra
in computer science and engineering from 1995 to 2020.
After an outline of geometric algebra, the application of
GA has been analyzed across many fields and the advan-
tages and shortcomings of the use of the geometric algebra
framework has been shown. Furthermore, the challenges and
prospects of various applications have been reviewed. Eye-
witnessing the continuous developments using GA in image
processing, computer vision, neurocomputing, quantum com-
puting, robot modeling, control and tracking, improvement
of computer hardware performance, we are convinced that
the GA has proven to be the best geometric language avail-
able to tackle existing problems; therefore, one should fur-
ther continue developing step by step GA-based algorithms.
We believe that this review will help to orient and encourage
researchers to continue in the progress of geometric comput-
ing for intelligent machines.

A. MODELS FOR EUCLIDEAN AND
PSEUDO-EUCLIDEAN GEOMETRY
While solving problems in engineering and computer science,
an important issue which metric space we should use to
represent models and compute algorithms. In this review,
we focus on three well-understood space models:

i. Models for 2D and 3D spaces with a Euclidean metric:
2D and 3D are very useful to handle the algebra of directions
in the plane and 3D physical space. For 3D rotations, rotors
(isomorph to quaternions) are utilized. One can use G3 to
model the kinematics of points, lines, and planes. Rotors are
well suited for the interpolation in graphics and the estimation
of rigid body rotations.
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ii. Models for 4D spaces with non-Euclidean metric: the
linearization of a rigid motion transformation requires a
homogeneous representation which can be formulated in the
geometric algebra for the 4D space as the motor algebra
G+3,0,1 This is the algebra of Plücker lines, useful to model the
kinematics of points, lines, and planes, which is better than
the 3D G3. Note that lines belong to a manifold, the nonsin-
gular study 6D quadric, and themotors belong to themanifold
8D Klein quadric. Thus in G+3,0,1, the motion for constant
velocity can be modeled. The exponent of the model or twist
is expressed in terms of bivector basis. Motors can be used to
interpolate 3D rigid motion and to estimate trajectories using
EKF techniques. For projective geometry problems like in
computer vision, you require a homogeneous coordinate rep-
resentation, thus the image plane is represented in P2 and the
visual space inP3. The n-view geometry [116] is treated using
tensor calculus and invariant theory, so you model the visual
space in the G3,1 (Minkowski metric) framework and G3 for
the image plane. The intrinsic camera parameters aremodeled
with an affine transformation within geometric algebra as
part of the projective mapping. This mapping is formulated
as the projective split between the projective space and the
image plane. Furthermore, GA offers the Incidence Algebra,
an algebra of oriented subspaces, which can be utilized in
G3,1 and G3 frameworks to handle geometric constraints and
invariant theory.

iii. In vector calculus, quaternion algebra, or linear alge-
bra, the formulation of kinematics and dynamics involving
only points and lines turns to be very complicated due to
the following two reasons: by a formulation utilizing vec-
tors, matrices and tensors, the practitioner has a poor insight
of the geometry of the problem losing the intuition, as a
result, this leads complex algebraic representations; second
in the classical mathematical systems the computing involves
redundant coefficients which unnecessarily slows down real-
time computations. Classical approaches for kinematics and
dynamics use vectors; and for linear transformations, matri-
ces or tensors involve redundant coefficients. For example,
a quaternion or a rotor has just four coefficients, in contrast,
a 3D rotation matrix has nine coefficients. In the practice,
if you compute reflections, inversions, rotations, and trans-
lations of entities like points, lines, planes, and spheres with
matrices, the computation time growsmore rapidly thanwhen
one utilizes rotors (quaternions) or motors (dual quaternions)
instead. In geometric algebra, one utilizes 6-tuples to repre-
sent lines, twists, or wrenches. Circles, spheres and planes
can be spanned in terms of k-vectors based on nonlinear
representations. Recall that motor algebra was utilized to
formulate the kinematics of robot manipulators using the
points, lines and planes. Thereafter for the same goal, con-
formal geometric algebra was utilized also for the repre-
sentation of circles and spheres. These additional geometric
entities aid, even more, to eliminate redundant coefficients
and diminish the computational complexity. Authors have
proved that the mathematical treatment of dynamics is indeed
much easier utilizing geometric primitives and spinors of

the motor algebra framework. Classical approaches for the
Newtonmechanics and theNewton-Euler recursive algorithm
use vectors for the screws and the linear transformationmatri-
ces. In contrast, the computation of the dynamics of robots
can be carried out in the motor algebra framework using
an iterative Newton-Euler algorithm in terms of screw the-
ory. Moreover, the authors reformulated the Euler-Lagrange
equations using the conformal geometric algebra framework.
To generate robot navigation trajectories, authors resort to
optimization using quadratic programming s.t geometric con-
straints. These constraints can be efficiently formulated in
terms of screw theory in the conformal geometric algebra
framework.

iv. Conformal models: for conformal transformations
(angle preserving), authors use a non-Euclidean geometric
algebra Gn,1 that extends its multivector basis with null vec-
tors such as the origin and the point at infinity. Furthermore,
it uses the computational framework called horosphere. This
manifold is computed as the meet between a hyperplane and
the null cone. Since Gn,1 uses a nonlinear representation
for the geometric entities, one can compute the Euclidean
metric via the inner product of null vectors. Be aware that the
basic geometric entity of Gn,1 is the sphere. The geometric
entities points, planes, lines, planes, circles, and spheres are
represented in terms of vectors or their dual forms, the lat-
ter help to reduce the complexity of algebraic expressions.
Interestingly enough, authors useGn,1 either for kinematics in
robotics or for projective geometry in computer vision. These
approaches are promising, thus they have to be recognized
by the community. If the digital camera is calibrated, one
uses easily the homogeneous models from conformal geo-
metric algebra to tackle simultaneously problems of robotics
and computer vision without abandoning the mathematical
framework. In addition, incidence algebra of points, lines,
planes, circles, and spheres can be used in the conformal
geometric framework as well.

v. Integral transforms: Clifford (geometric) algebra is a
promising framework for fields such as image and signal pro-
cessing. Researchers split often the correlation between the
spatial domain and the temporal domain, unfortunately, they
ignore the essential structural correlation. Using the wavelet
transform, researchers can handle the information processing
simultaneously in space and frequency. Important progress
was achieved by the applications of the Quaternion Fourier
Transform andQuaternionWavelet Transforms and their gen-
eralization to Clifford Fourier Transformation. Many authors
presented interesting applications of the QFFT for the case
of color image processing. Recently some authors combine
quaternion algebra with dictionary learning methods. Other
researchers generalized the quaternion dictionary learning
method using the octonion algebra framework. The octonion
algebra combined with dictionary learning methods can be
used for the representation of multispectral images with up to
7 color channels. Recently, authors proposed the Space-Time
Split QFT for color image processing with pseudo-Euclidean
metric using the computational framework light cone.
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B. TENDENCIES OF GA APPLICATIONS IN ENGINEERING
AND COMPUTER SCIENCE
We carried out a scientometric analysis using Gephy
https://gephi.org/. We selected 2,354 documents according to
the following word filtering:
Year:-Since 1995-To 2020
Subject area:-‘‘Mathematics’’-‘‘Engineering’’-‘‘Computer
Science’’
Document type:-‘‘Article’’-‘‘Conference paper’’-‘‘Book
chapter’’-‘‘Book’’-‘‘Editorial’’
The results are shown in figure 2.a-c. Then taking into
account 4,509 documents, we extended the word filtering to:
Article title, Abstract, Keywords: -‘‘Geometric
algebra’’-‘‘Clifford algebra’’-‘‘Conformal Geometric Alge-
bra’’ -‘‘Motor algebra’’- ‘‘Quaternion Algebra’’-
‘‘Quaternion’’-‘‘Dual quaternions’’, for Figures 2.a-c
Article title, Abstract, Keywords: -‘‘Geometric algebra’’-
‘‘Clifford algebra’’-‘‘Conformal Geometric Algebra’’ -
‘‘Motor algebra’’, for Figure 2.b

Figure 2.a shows from 1995 up to 2021 the increase in
the publications in computer science and engineering using
geometric algebra, quaternion algebra, and quaternions. The
increase in 2008 and 2017 in Figure 2.a might be two incre-
ments due to more involvement of researchers using geomet-
ric algebra which was encouraged by the spread of geometric
algebra due to conferences like each tree years International
Conference in Applications of Clifford Algebras in Mathe-
matics and Physics and the each three or four years Int. Cong.
Applications of Geometric Algebra in Computer Science and
Engineering AGACSE; also from 1995 until approximated
2007, researchers managed via publications in conferences
and journals to make public to the community of computer
science and engineering the new language of geometric alge-
bra. Nowadays, there are plenty of reviewers in journals and
conferences for articles in applications of geometric algebra,
This process to show GA in the community took around
15 years. We believe that the growth in publications using
quaternion algebra and quaternions shown in Figure 2.a is
steady, in contrast, the growth in publications using geometric
algebra shows an abrupt increase possible for the reasons
given above.

In the last decades, pioneering groups have taken GA to
handle challenging problems using a modern advance geo-
metric language as GA. They are responsible for spreading
worldwide the benefits of the use of GA. They organize the
conferences ICCA and AGACSE and many summer schools,
tutorials, and workshops as Sigraph, ICPR, and CIARP. Also,
they published special issues in top journals and hold invited
lectures at conferences. The Journal of Advances of Appli-
cations in Clifford Algebra started in the seventies and it
publishes works in mathematics, physics, computer science,
AI, and engineering.

The Figures 2.b shows the distribution around the world
of the use of different geometric algebras for rotors, motors,

FIGURE 2. Documents: a) per year; b) geometric algebra, Clifford algebra,
conformal geometric algebra, motor algebra; c) geometric algebra,
Clifford algebra, conformal geometric algebra, motor algebra, quaternion
algebra, quaternion, dual quaternions.
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and conformal geometric algebra. The circles represent the
relative amount of publications. Figures 2.c show that quater-
nion algebra is still the preferred framework to solve prob-
lems in computer science and engineering and it remains
popular.

Nonetheless, after 1995, the use of geometric algebra first
started and gradually expanded, as shown in Figure 2.a.
It is important to clarify that geometric algebra allows the
modeling of geometric entities such as points, lines, planes,
circles, spheres, hyperplanes, and hyperspheres; it also allows
the modeling of Lie groups and Lie algebras using bivector
algebras of the general linear algebra in higher dimensions.
Often authors use amatrix representation for quaternion com-
puting, in contrast for twenty years, users compute in terms
of multivectors, incidence algebra, and spinors like rotors and
motors with bivectors avoiding entirely the use of vectors
and matrices. Many researchers working in graphic engineer-
ing, computer vision, image processing, neural-computing,
mechanics, robotics, control engineering, and mechatronics
used quaternions for SO(3) and few works dual quaternions
for SE(3). To deal with kinematics, differential kinemat-
ics, Euler-Lagrange, or Newton-Euler dynamics most of the
researchers use Denavit-Hartenberg representation by homo-
geneous matrices, and the screw theory for lines, twists, and
wrenches use 6D vectors, matrices, and tensors. In contrast,
the screw theory can be elegant and computationally efficient
using bivector algebra, even the tensors like inertia and Cori-
olis can be represented as spinors in G9,3.
In control engineering, we have the Kalman filter which

can be reformulated in geometric algebra as the Motor
Extended Kalman filter. For closed-loop control, we require
observers and controllers which should deal with nonlinear
plants. So some pioneer works are trying to relate geometric
algebra for the modeling with advanced methods for the
design of observers and controllers for regulation and track-
ing, as well as the derivation of functionals for the optimal
control of linear and nonlinear systems. To derive controllers
and observers, adequate Lyapunov functions are needed to
ensure stability. Here is an excellent opportunity for geomet-
ric algebra, namely to formulate the dynamics of the geomet-
ric entities like lines, planes, circles, spheres, hyperplanes,
and hyperspheres which can be expressed as inner products
and used as arguments of the Liapunov functions: e.g. the
projection center of mass to screw lines, planes or circles at
the joints of a robot manipulator.

On the other hand, in computer vision, graphic engineer-
ing, and GIS, researchers use matrix algebra and vector
calculus and tensor; however, the algebra of incidence of
geometric algebra allows the modeling the conformal or pro-
jective mapping as in the n-view geometry using points,
lines, planes, circles and spheres utilizing the duality opera-
tor or Pseudoscalar in the Outer Product Null Space. Regard-
ing image processing, since the nineties, researchers have
formulated the Quaternion Fourier transform, where the ker-
nel is in terms of the Lie group SO(3) quaternion alge-
bra. To extend these results, the Clifford Fourier Transforms

can use different kernels in terms of bivectors, and very
importantly, one can change the metric from Euclidean to
pseudo-Euclidean. One new result is the Quaternion Split
Fourier transform [43]. In neurocomputing, also since the
nineties, the researchers have used complex numbers and
quaternions. Again, geometric algebra allows generalizing of
the real-valued neural networks and even deep learning with
geometric algebra neural networks as Clifford SVMs or con-
formal neural networks. Recent works are using quater-
nion to formulate the quaternion quantum neural network
and the quaternion quantum Fourier transform. The venue
is open to developing the quaternion Radon transform for
3D reconstruction.

C. DIFFICULTIES IN THE USE OF GA FOR APPLICATIONS
Since the influence of geometric algebra in applications in
computer science and engineering is still not as expected,
thus it is important to explain that the community due to
tradition is focused on the use of quaternion algebra, in this
regard when is needed the community should leave the use
of quaternion algebra and learn to work with the geometric
algebra framework for a geometric way to compute geometric
entities, incidence algebra and formulate the linear transfor-
mations, Lie groups in terms of bivectors.

In general, GA doesn’t use vector calculus and matrices,
this avoids processing redundant parameters of the matrices,
as a result even working in higher dimensions, for linearizing
functions and separate clusters for linear hyperplane bound-
aries, GA offers more efficient and fast algorithms. As long as
the community adopts GA,which substitutes quaternion alge-
bra and even better generalizes it over hypercomplex numbers
with a more rich geometric interpretation, the user will utilize
a geometric language more powerful for fairly challenging
applications. In addition, the use of FUGAL and CUDA-
Nvidia and parallel processors can boost the performance of
GA algorithms.

We have to admit that GA is not the solution for everything,
that depends upon the problem better said use GA when
is needed. GA helps to have a better geometric insight of
the problem in question and therefore to develop efficient
algorithms. If the problem is not too complex you may still
use matrix algebra or quaternion algebra, however generally
speaking in the GA framework the practitioner discovers
other geometric aspects which remain hidden or obscured
by the use of vector calculus, matrix algebra, and even
quaternion algebra. As an example Rotor algebra isomorph to
quaternion algebra has a geometric interpretation, i.e. rotors
for rotations are seen as geometric objects which can be also
used for screw theory in higher dimensions. When you are
solving complex problems, it is favorable to find geometric
constraints, so that you can reduce the dimension of the
solution space. GA is very useful for this purpose, e.g. in opti-
mization, you can define the quadratic programming subject
to geometric constraints formulated in conformal geometric
algebra.
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It is worth to mention, that the interest of the community
in GA grows slowly. This is because GA is being spread
by pioneers and it has not yet reached the whole com-
munity. Furthermore, it is not easy to become acquainted
with GA and start rapidly to write GA algorithms. So the
practitioners looking for easy solutions become scared to
embark themselves in a GA project which demands study
GA, learn to think using the GA framework, and most impor-
tant program GA algorithms which are completely different
from the algorithms using traditional methods. This is one
of the most noticeable reasons, why the progress in GA
applications is not fast as expected. We are hoping that this
review will encourage researchers to start research using the
GA framework.

D. PROSPECTS
The progress and tendencies in applications of GA in engi-
neering and computer science are shown in previous fig-
ures and one can recognize an important aspect that takes
place: namely, that there is an interaction bridge between geo-
metric algebra for the treatment and processing of geometric
objects and the signal and image processing using Clifford
algebra. We believe that both mathematical frameworks are
complementary and in their interaction themethods profit and
become more robust.

In the beginning, for computer vision, G3,1 was used for
representing the visual space, and G3 for the image plane.
The intrinsic camera parameters are modeled by an affine
transformation within geometric algebra as part of the pro-
jective mapping. This mapping is a result of the projective
split between the projective space and the image plane. With
the new RGB-D, one gets directly the 300,000 3D points per
frame 25-30 frames per second of the visual space; thus, one
is freed to compute the affine transformation of the intrinsic
cameras for each image capture as whenwe handle the n-view
geometry [116]. This opens the avenue for the efficient use
of conformal geometric algebra G4,1 as we only need rotors,
translators, and dilators that correspond to components of the
similitude Lie group. There are already works for computer
vision which is using the G4,1 for the visual space and the
G3,1 of the image plane.

The fields of computer vision, graphic engineering, GIS,
and real-time computing for deep-learning, big data, and
data analytics can benefit from the progress in low-energy
consumption and extremely fast hardware which uses CUDA
Nvidia. This progress in hardware opens new opportunities
for geometric algebra, which needs powerful geometric com-
puting accelerators connected with the CPU of computers.
Here, one must highlight the role of high dimensional geo-
metric algebras with Euclidean and pseudo-Euclidean met-
rics for future advanced computing. One limiting aspect ten
years ago was that practitioners were restricted to the use of
lower dimension algebras for solving problems in real-time.
Nowadays, we should exploit the progress in hardware and
on the Internet like G5 for cloud computing and ubiquitous

computing using the geometric algebras in higher dimensions
like G6,0,2, G6,3 G

+

9,3 G
+

6,0,6 and in general other geometric
algebras Gn,m for n,m ≥ 5.
In robotics, the modeling and control, and tracking

have been formulated using the motor algebra G+3,0,1
and conformal geometric algebra G4,1. The Newton-Euler
dynamics was computed using screw theory in G+3,0,1. The
Euler-Lagrange dynamic equations have been formulated
in G4,1 and used for modeling the kinematics and dynam-
ics of humanoid robots. There have been interesting works
to compute the direct and inverse kinematics of reconfig-
urable robots using screw theory in terms of quaternions
(rotors).
The Newton-Euler dynamic of quadrotors was modeled

using motor algebra. The modeling of robots using quater-
nion, dual quaternion, motor algebra, or conformal geometric
in terms of points, lines, planes, circles, and spheres and screw
theory is a trend that started in the eighties. The results are
remarkable; however, the design of controllers and observers
still need to be carried out in the geometric algebra frame-
work, so that the modeling, control, and tracking can be
done in the same framework. It is needed to relate the robot
modeling using geometric algebra with classical control engi-
neering, such as adaptive control, nonlinear control, sliding
modes control, fuzzy nonlinear control, geometric Lyapunov
functions for stability analysis, tracking, optimization using
quadratic programming with geometric constraints derived
from using conformal geometric algebra.
In neurocomputing, since the nineties, the models such

as RBF, MLP, SOM, and SVM have been formulated using
quaternions or Clifford (geometric) algebra for classifica-
tion, regression, and recurrence. However, CNNs showed
the community the spectacular power of deep learning due
to the use of many filters as kernels along with the layers;
thus, modules need to be incorporated into these architectures
to handle the geometry in signal processing.[c] Since the
layers care for feature extraction, regressors and estimators
of 3D motions need to be connected at the output by using
rotors (quaternions) or motors (dual quaternions) or at the
output using sphere neurons of conformal geometric alge-
bra. Generally speaking, the feature extraction should be
done using real-valued deep learning and only at the output
with few layers using geometric neurons in Euclidean or
pseudo-Euclidean geometric algebras for the different tasks
as estimation, classification, regression, and recurrence. At
these modules, feedback for space-time patterns can also
be used.
Many works show that Integral transforms formulated

in Clifford (geometric) algebra are very useful for sig-
nal and image processing. The wavelet transform can han-
dle the information processing simultaneously in space
and frequency. One great progress was the introduction
of Quaternion Fourier Transform and Quaternion Wavelet
Transforms and their generalization to Clifford Fourier Trans-
formation. A recent tendency in color image processing
is to combine quaternion algebra with dictionary learning
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methods. Researchers generalized the quaternion dictionary
learning method using octonion algebra. The octonion alge-
bra together with dictionary learning methods is very effi-
cient for the representation of multispectral images with
up to seven color channels. Recent works show the Space-
Time Split QFT for handling color image processing using
pseudo-Euclidean metric using the light cone. Research has
to continue formulating the quaternion fractional Fourier
transform, quantum quaternion Fourier transform and quater-
nion Radon transform for 3D processing and solving prob-
lems in the processing of microscope, astronomy, medical
images, as well as the processing and filtering of color
images.

Regarding the development of geometric computing accel-
erators in a geometric algebra with certain metric, we have to
split and specialize both the representation and the operation
computations. Since multivectors are too big; the chosen
metric can indeed constrain even more the world represen-
tation but it is unfortunately not enough for efficient and fast
computation. Note that the operations on multivectors are in
general simple and universal, however too slow if they are not
specialized, optimized, and formulated in such a manner, that
one can take advantage of cost-effective hardware to speed up
the computations.

We should utilize modern hardware and the Internet like
G5 for cloud computing and ubiquitous computing using
the geometric algebras in higher dimensions, Gp,q,r , n =
p + q + r n>5, for geometric computing to solve difficult
problems. It is well known if you cast your problem in higher
dimensions you linearize functions and separate data clus-
ters. The curve of hardware progress also requires progress
in algorithm efficiency, we believe that geometric algebra
can indeed be helpful for the development of more efficient
algorithms.

APPENDIX I: GLOSSARY
Vector spaces and multivector geometric algebras.

Mulivector operator symbols.

APPENDIX II: PACKAGES FOR APPLICATIONS OF
GEOMETRIC ALGEBRA IN MATHEMATICS, PHYSICS,
ENGINEERING AND COMPUTER SCIENCE
Lounesto as a pioneer developed in 1987 the software pack-
age CLICAL for Clifford (Geometric) algebra computing.
CLICAL is Fortran based and it is useful for fast computation
and theorem proving, see

http://users.tkk.fi/ppuska/mirror/Lounesto/CLICAL.htm
Thereafter many researchers have been developing software
packets for multivector programming, for example
The Matlab-based geometric algebra tutorial GABLE sup-
ports N ≤ 3, see
http://staff.science.uva.nl/ leo/GABLE/index.html

The Maple-based CLIFFORD supports N ≤ 9. It can be used
for symbolic programming and theorem proving, see

http://math.tntech.edu/rafal
The C++-based CLUCal is handy for computer scientists
and engineers and for all who want to learn geometric algebra
computations in 2D and 3D, especially for visualization,
computer vision, and crystallography: former link

http://www.perwass.de/cbup/clu.html
GAIGEN2 generates fast C++ or JAVA sources for geo-
metric algebras G2,G3,G4. It is a user-friendly package for
learning geometric algebra computing and for handling a
variety of problems in computer science and graphics, see

http://www.science.uva.nl/ga/gaigen/
Recently the ganja tool was developed by Steven de

Kenninck. It seems very suitable for learning GA, see
https://observablehq.com/@enkimute/ganja-js-

introduction
C++ MV 1.3.0 sources supporting N ≤ 63. Ian Bell devel-
oped it up to 1.6 with significant functionality extensions and
bug fixes. This program is a powerfulmultivector software for
applications in physics, computer science and engineering.
It is a good source of inspiration for writing one’s code, see

http://www.iancgbell.clara.net/maths/index.htm
The C++GEOMA v1.2 developed by Patrick Stein contains
C++ libraries for Clifford algebra with an orthonormal basis,
see

http://nklein.com/software/geoma
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The reader can also download our C++ programs, which are
being routinely updated for applications in robotics, image
processing, wavelets transforms, computer vision, neural
computing, and medical robotics, see

http://www.gdl.cinvestav.mx/edb/GAprogramming
GAALOP is an optimizer for different programming lan-
guages such as C/C++, Python, Mathematica, and Matlab.
It was developed by Hildenbrand, Pitt, and Koch [128], see

http://www.gaalop.de
Recent packages for conformal geometric algebra:
Chaïm Zonnenberg,
http://www.cs.uu.nl/groups/MG/gallery/CGAP/index.html
Jose L. Aragon, A Mathematica package for conformal geo-
metric algebra: https://arxiv.org/abs/1711.02513
Paolo Colapinto, Versor (libvsr) A (fast) Generic C++ library
for Geometric Algebras, including Euclidean, Projective,
Conformal, Spacetime (etc). http://versor.mat.ucsb.edu/
Following sites offer information and tools for geometric
algebra:
bivector.net (Geometric Algebra various tools and info)
enkimute.github.io/ganja.js (especially the Coffee Shop:
https://enkimute.github.io/ganja.js/examples/coffeeshop.
html)
clifford.readthedocs.io

Hosny Eid [136] provided a high-level introduction to the
abstract concepts and algebraic representations behind the
elegant GA mathematical structure. His article focuses on
the conceptual and representational abstraction levels behind
GA mathematics with sufficient references for more details.
In addition, his article strongly recommends applying the
methods of Computational Thinking in both introducing GA
to software engineers, and in using GA as a mathemati-
cal language for developing Geometric Computing software
systems.

We suggest that the readers who want to develop their own
program for Clifford or geometric algebra applications, learn
from the cited multivector software packets and integrate
these new developments into their programs. CLUcal and
GAIGEN are highly recommended for learning geometric
algebra. To write a C++ geometric algebra program, one
should start by looking at GEOMA, the MV 1.3.0, the code
generator of GAIGEN or visit our homepage. For symbolic
computing and theorem proving, CLICAL and Maple-based
CLIFFORD are the best software packages.

Concluding geometric algebra is a language for model-
ing geometric primitives and their transformations as SO(3),
SE(3), and Conformal transformations and the computing of
intersections using Incidence Algebra. However, this doesn’t
mean that the whole problem should be formulated and
computed in GA, e.g. solution of the equation has to be
done using standard numerical algorithms in C++ or Python.
The user has to use GA where is needed. We can say that
GA is a metalanguage to tackle key geometric issues of the
problems. GA is a convenient tool at some phases of solving
a problem. In the review of works, you can see how the
authors proceed in solving problems, thus you learn much

from those works. Thanks to the progress in GA software
packages and hardware to speed up the computation, the user
can resort to libraries for different geometric algebras Gp,q,r
and accelerate their computing. There is no need to refor-
mulate the equations in terms of vectors or matrices. The
equations given in section II can directly implement with
these software packages and speed up them using FPGA,
CUDA with Nvidia.
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