
Received May 26, 2021, accepted July 11, 2021, date of publication July 15, 2021, date of current version July 23, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3097254

Deep Reinforcement Learning for Minimizing
Tardiness in Parallel Machine Scheduling With
Sequence Dependent Family Setups
BOHYUNG PAENG 1,2, IN-BEOM PARK 3, AND JONGHUN PARK 1,2
1Department of Industrial Engineering, Seoul National University, Seoul 08826, South Korea
2Institute for Industrial Systems Innovation, Seoul National University, Seoul 08826, South Korea
3Department of Industrial Engineering, Sungkyunkwan University, Suwon 16419, South Korea

Corresponding author: In-Beom Park (inbeom@skku.edu)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by Ministry of Science and ICT
(MSIT) under Grant NRF-2015R1D1A1A01057496, and in part by the Institute of Engineering Research, Seoul National University.

ABSTRACT Parallel machine scheduling with sequence-dependent family setups has attracted much
attention from academia and industry due to its practical applications. In a real-world manufacturing system,
however, solving the scheduling problem becomes challenging since it is required to address urgent and
frequent changes in demand and due-dates of products. To minimize the total tardiness of the scheduling
problem, we propose a deep reinforcement learning (RL) based scheduling framework in which trained
neural networks (NNs) are able to solve unseen scheduling problems without re-training even when such
changes occur. Specifically, we propose state and action representations whose dimensions are independent
of production requirements and due-dates of jobs while accommodating family setups. At the same time,
an NN architecture with parameter sharing was utilized to improve the training efficiency. Extensive
experiments demonstrate that the proposed method outperforms the recent metaheuristics, rule-based, and
other RL-based methods in terms of total tardiness. Moreover, the computation time for obtaining a schedule
by our framework is shorter than those of the metaheuristics and other RL-based methods.

INDEX TERMS Deep reinforcement learning, unrelated parallel machine scheduling, sequence-dependent
family setups, total tardiness objective, deep Q-network.

I. INTRODUCTION
As the competition among enterprises intensifies, production
scheduling becomes one of the essential decision-making
problems in modern manufacturing systems. Specifically,
manufacturers should fulfill production orders under the
sequence-dependent family setup time (SDFST) requirement
that occurs when two products belonging to different fami-
lies are consecutively processed on a machine [1]. Further-
more, since customer demands frequently and unpredictably
change, it is required to deal with the variabilities associated
with the production requirements and due-dates of the prod-
ucts [2]. Accordingly, there is a challenge in developing a
scheduling method that is able to obtain high-quality sched-
ules while accommodating the variabilities.

The associate editor coordinating the review of this manuscript and

approving it for publication was Hao Shen .

We focus on the unrelated parallel machine scheduling
problem (UPMSP) with SDFST, which has attracted a great
deal of attention in various domains such as semiconductor
[3]–[5], chemical [6], and food industries [7]. AUPMSP aims
to allocate each job to one of the machines where the process-
ing time of a job on different machines is not related. This
scheduling problem is known to be NP-hard for minimizing
the total tardiness [8].

Metaheuristics have been successfully adopted for solving
UPMSPs with SDFST under due-date constraints [9]–[12].
Unfortunately, it is not guaranteed for them to find a
high-quality schedule for large-scale scheduling problems
within a specific time limit. As an alternative, manufacturers
have actively employed rule-based methods due to their short
computation time, and ease of implementation [13]. How-
ever, schedules obtained by the rule-based methods may not
be satisfactory since their decisions are made in a myopic
manner [14].

101390 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9414-4907
https://orcid.org/0000-0002-8890-7381
https://orcid.org/0000-0001-7505-110X
https://orcid.org/0000-0001-7024-6573

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

To overcome the drawbacks of rule-based methods, rein-
forcement learning (RL) approaches have been actively
investigated from decades ago [15], [16]. The purpose of RL
is to learn an adaptive policy that maximizes the expected
sum of cumulative rewards. In recent years, due to the
remarkable success in deep reinforcement learning (DRL)
that utilizes deep neural networks (DNNs) [17], several stud-
ies have shown promising results on the scheduling problems
in manufacturing systems [18]–[21]. Yet, there are still two
challenges to solve UPMSPs based on a DRL-based method
while addressing SDFST as well as the variabilities in terms
of production requirements and due-dates. First, the size of
the state space might become large when accommodating
due-dates and sequence-dependent setups in a state repre-
sentation of a neural network, which leads to difficulties in
function approximation and DNN generalization [21]. Sec-
ond, since learning complexity grows quickly as the numbers
of jobs and machines increase, it is intractable to re-train a
DNN whenever such variabilities occur in large-scale manu-
facturing systems.

To this end, we propose a DRL-based method for minimiz-
ing tardiness for UPMSP with SDFST to address the above
challenges. It is worth noting that learning DNN parameters
robust to changes in production requirements and due-dates
is the primary concern of our work. The contributions of this
paper are summarized as follows:
• We design a novel state representation whose dimen-
sionality is independent of production requirements and
due-dates of jobs while accommodating SDFST. Given
a state, an action is executed by periodically determining
a setup status of a machine and a family of a job.

• To reduce the size of the network and increase the train-
ing efficiency, we proposed a DNN architecture in which
network parameters are shared among several hidden
layers [22]. In the experiments, the effectiveness of the
proposed state representation and parameter sharing was
demonstrated.

• To validate the performance of the proposed method,
we tested our method on large-scale datasets. Experi-
mental results showed that the proposed method out-
performs recent metaheuristics, rule-based, and other
RL-based methods in terms of the total tardiness for
all datasets. Moreover, the computation time taken
by the proposed method was shorter than those of
other RL-based methods and metaheuristics consid-
ered. Finally, the robustness of the proposed method
was investigated by solving scheduling problems with
stochastic processing and setup time.

The rest of this paper is organized as follows. Section II
introduces the previous approaches for solving the UPMSP
with SDFST and the implications of studies on RL-based
scheduling methods. Section III defines the scheduling prob-
lem considered in this paper. Details of the proposed method
and its training algorithm are presented in Section IV. Perfor-
mance comparisons with considered alternatives are carried
out in Section V. Finally, Section VI concludes this paper.

II. LITERATURE REVIEW
A. UPMSPs WITH SDFST UNDER DUE-DATES
CONSTRAINTS
UPMSPs with due-date related objectives are classi-
cal scheduling problems that have been comprehensively
researched for decades [23]. In particular, several studies
have addressed SDFST as main constraints [24]–[27]. To
reduce the number of setups in a scheduling problem, batch
scheduling heuristics were popularly adopted by forming
batches of jobs processed on a machine without a setup [28].
To minimize the weighted tardiness, two-level batch heuris-
tics were proposed under the assumption of common
due-dates [29], and identical jobs [30]. Additionally, the batch
apparent tardiness cost with setup (BATCS) heuristic was
suggested by incorporating the processing time, slack time,
and family setup time [31]. For the total tardiness objective,
an improved simulated annealing heuristic was developed
through incorporating a batch-based repair method [9].

On the other hand, metaheuristics have been adopted for
solving UPMSPs with SDFST to minimize the total tar-
diness. They employed the batch formation technique to
restrict schedules with a small number of setup changes in
the solution space. The scheduling problem with primary
customer constraints was successfully solved by the iterated
greedy (IG) algorithm [10], which enhances an initial solution
through the iterative neighborhood selection and exhaustive
local search. More recently, Pinheiro et. al. [11] developed an
improved IG by designing six local search operations such as
the batch swap and job insertion. They showed competitive
results in solving scheduling problems with six machines
and 50 jobs. In [12], the artificial bee colony algorithm was
proposed through applying crossover operations to exchange
job sequences.

B. REINFORCEMENT LEARNING ON UPMSPs
Markov processes have been broadly adopted to solve opti-
mal control problems in the presence of abrupt changes in
system dynamics [32]. To the recent, several Markov ran-
dom processes were employed with advantages of model-
ing fuzzy systems, such as Markov chaotic systems [33]
and semi-Markov jump nonlinear systems [34]. For solving
scheduling problems, a manufacturing system is formulated
as Markov decision process (MDP) [35], and RL is utilized to
learn a policy of MDP. RL aims to train an agent by interact-
ing with an environment that consists of everything outside
the agent. In particular, Q-learning (QL) [36], one of the
representative model-free RL approaches, has been widely
adopted to solve scheduling problems. Given a state observed
from the environment that corresponds to a manufacturing
system, the agent makes scheduling decisions by predicting
the estimated value of an action called the Q-value.

For solving UPMSPs by utilizing RL-based methods,
Zhang et. al. adopted QL to minimize the weighted tardiness
[37], [38]. They employed a linear basis function to approx-
imate Q-values for given state features indicating the status

VOLUME 9, 2021 101391

B. Paeng et al.: DRL for Minimizing Tardiness in Parallel Machine Scheduling

of all jobs and machines. After six heuristics are designed as
actions, QL-based adaptive rule selections outperformed indi-
vidual rules. Although [37] dealt with sequence-dependent
setups, the agents in [37] were only validated on the same
scheduling problems as those for training. The method in [38]
was tested on various scheduling problems without consider-
ing setups.

Yuan et. al. [39], [40] addressed ready time constraints and
machine breakdown for minimizing the total tardiness and
number of tardy jobs, respectively. They adopted a tabular
method that stores Q-values by exploring state-action pairs.
To represent the state in a limited size of the table, the values
of continuous attributes should be discretized into several
groups. For instance, in [40], the mean lateness of jobs was
classified as being greater than or less than zero. As alterna-
tive methods for representing the state, unsupervised learning
methods, such as self-organizingmap [41], and k-means near-
est neighbor [42], [43], have also been adopted for solving
scheduling problems.

C. DEEP REINFORCEMENT LEARNING FOR SOLVING
SCHEDULING PROBLEMS
Compared to the traditional RL methods, DRL aims to
approximate Q-values from high-dimensional state features
through DNNs [17]. This helps an agent to learn a nonlin-
ear policy from large and continuous state spaces. Besides,
[17] proposed a target network to enhance learning stabil-
ity, and experience replay for reducing correlations among
state-action pairs. With the extensive application of DRL
to various decision-making problems such as energy supply
control [44], vehicle routing [45], and electricity market pric-
ing [46], it has gradually attracted prominence in the field of
scheduling. Until recently, a lot of studies widened the scope
of DRL to scheduling problems in computer resource man-
agement [47], [48] and distributed system [49], [50]. Those
studies encoded the state as a 2D matrix of resources and
upcoming timesteps. Since they employed fully connected
networks, the matrix was flattened into a one-dimensional
vector.

In addition, DRL-based methods have been employed for
solving scheduling problems in manufacturing systems. In a
hybrid flow shop scheduling problem, an agent allocates jobs
from a given state that indicates whether the machine status is
idle or busy or finished [51]. Among various shop scheduling
problems, several researchers have investigated DRL-based
methods for minimizing the makespan in job shop scheduling
problems. Lin et. al. [52] represented machine status and
statistics of processing time in the state to infer dispatching
rules for each machine. In [20], the setup time was considered
by utilizing the setup history and setup status of all machines.
Recently, convolutional neural networks were employed to
address the states represented in 2D matrices indicating rela-
tionships between jobs, operations, and machines [19], [53].

On the other hand, a few DRL approaches were developed
for solving scheduling problems with due-date related objec-
tives. In [54], due-dates of all waiting jobs were represented

in the state for maximizing throughput. To minimize the
total tardiness in a single machine scheduling problem, [55]
utilized the slack time, which refers to the difference between
the processing time and remaining time until due-dates of a
job. Washneck et. al. [18] accommodated setup constraints in
a semiconductor production scheduling problem forminimiz-
ing due-date deviations. Since their state included the setup
status of all machines and due-dates of all jobs, DNNs in
[18] should be trained again when solving new scheduling
problems whose number of jobs is different from those of
the training. Luo et. al. [21] focused on new job insertions
in the flexible job shop scheduling problem under ready
time constraints with the total tardiness objective. For a state
that consists of seven features, an action is determined by
selecting one of the heuristics. Yet, they did not consider setup
constraints.

III. PROBLEM DESCRIPTION
In this section, we describe UPMSP with SDFST considered
in this paper. There are NJ jobs where the jth job is denoted
as Jj. Each job belongs to one of NF families from the set
F = {1, 2, . . . ,NF }. Each job can be processed by one of
any NM machines where the ith machine is denoted as Mi.
The processing time is denoted as pi,j when the job Jj is
performed onMi. A job is finished after being processed once
on one of the machines. Let P(f) be the total number of the
jobs that belong to family f , which indicates the production
requirements of family f . As a result, the following equation
holds:

NF∑
f=1

P(f) = NJ (1)

At the beginning of the scheduling, due-dates of Jj, denoted
as dj, are given. Let Gi denote the current setup status of Mi.
Gi is an element of F and equivalent to g if the job of family
g can be processed on the machine without a setup change. If
a job of family f is assigned on Mi whose Gi is g, the setup
time, denoted as σf ,g, is incurred before the job is processed
on the machine.

The goal of the scheduling is to allocate each job to one of
the machines in order to minimize the total tardiness, denoted
as TT , which is defined as

TT =
NJ∑
j=1

max(0, cj − dj) (2)

where cj is the completion time of Jj. When there is no setup
time, the scheduling problem considered becomes equivalent
to the problem in [8], which is proven to be NP-hard. Finally,
the assumptions made in this paper are listed below.
• At the beginning of the scheduling, all jobs are ready to
be processed, and all machines have been set up.

• There is no machine breakdown.
• After the setup change of a machine is finished for pro-
cessing a job, the machine immediately starts to process
the job.

101392 VOLUME 9, 2021

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

TABLE 1. Five matrices and one vector that compose a state.

• Machine can only process one job at a time.
• The preemption is not allowed.
• The moving time for each job is zero.

IV. PROPOSED METHOD
We propose a DRL-based scheduling method in this section
which is divided into four subsections. First, we describe
the MDP to solve UPMSP with SDFST constraint. Second,
the proposed parameter sharing architecture is introduced.
Finally, a training algorithm and the flowchart are described.

A. MDP FORMULATION
For employing DRL, the scheduling problem considered in
this paper is formulated as MDP. We denote the state, action,
and reward at timestep k as sk , ak , and rk , respectively. After
the agent executes an action ak , the state transition takes place
from sk to sk+1. Then, reward rk and next state sk+1 are
observed. We denote the time interval from sk until sk+1 as
the period k . In this paper, we model that the time spent in
each period, denoted as T , is constant. We define in detail the
action, state, reward, and state transition in the following.

1) ACTION
When an action is defined for each pair of a job and a
machine, the size of the action space grows quickly as the
numbers of jobs and machines increase. To reduce the size of
action space, we define an action as a tuple of a job family
and a machine setup status. The action set A is defined as
follows.

A = {(f , g)|f = 1, . . . ,NF , g = 1, . . . ,NF } (3)

Then, we denote the feasible action set at sk as Ak ⊂ A. An
action ak = (fk , gk) indicates that a job of family fk will be
assigned on a machine whose setup status is gk during the
period k , where ak ∈ Ak . We note that ak is feasible only if
there is a waiting job of family fk and an idle machine whose
setup status is gk in the period k .

2) STATE
When adopting RL-based methods to solve scheduling prob-
lems, the state is usually represented by utilizing observations
on the current status of machines and jobs. If the dimension
of a state varies as production requirements and due-dates
of jobs change, the DNN is required to be re-trained when-
ever such changes occur. To solve the scheduling problems

FIGURE 1. The 2D matrix representations of sk . Red, green, and blue
colors indicate family 1, 2, and 3, respectively. The numbers inside the
matrices correspond to the values in sk .

without re-training DNNs even when such changes occur,
we propose a family-based state representation whose dimen-
sionality is independent of the production requirements and
due-dates of jobs.

The proposed state consists of five 2D matrices and one
vector. Table. 1 describes them in terms of notations, names,
and dimension. To help the understanding of sk , we present
an example of sk in a scheduling problem with three families,
as depicted in Fig. 1. Next, we define the details of sk . It is
noted that the index k is omitted in each of the five matrices
and vector for the sake of conciseness.
• Sw: To accommodate the due-dates of waiting jobs,
the value of the f th row in this matrix refers to the num-
ber of waiting jobs for family f where their due-dates
belong to one of periods. For separately counting each
waiting job Jj with respect to their remaining time until
due-dates, denoted as δj = dj − kT , Sw(f , n) is defined
as follows.

Sw =


|{Jj ∈Wk (f) | δj ≤ (1− Hw)T }| n = 1
|{Jj ∈Wk (f) | δj > (Hw − 1)T }| n = 2Hw
|{Jj ∈Wk (f) |

⌈
δj
T

⌉
= n− Hw}| otherwise

(4)

where Wk (f), d·e, and Hw refer to the set of waiting
jobs that belong to family f at sk , ceiling function, and a
positive integer smaller than maxj dj/T , respectively. As
indicated by Eq. (4) and the vertical line on the top of
Fig. 1(a), Sw(f , 1) and Sw(f , 2Hw) refer to the number of
waiting jobs for family f where their δj are smaller than
(1−Hw)T and larger than (Hw−1)T , respectively. This
representation aims to restrict the number of columns
in Sw into 2Hw while capturing due-dates of all waiting
jobs in the matrix. The practical rationale behind Eq. (4)

VOLUME 9, 2021 101393

B. Paeng et al.: DRL for Minimizing Tardiness in Parallel Machine Scheduling

is that jobswhose due-dates are quite far from the current
period have a smaller impact on executing an appropriate
action than the other jobs. In Fig. 1(a), Sw(1,Hw) is
equal to 6, which indicates that there are six waiting jobs
whose family is 1 and

⌈
δj
T

⌉
= 0.

• Sp: This matrix contains the number of in-progress jobs
for each family of which their remaining processing time
is included in one of periods. In-progress jobs refer to the
ones that are currently being processed on a machine.
Since the tardiness of in-progress and finished jobs are
already determined, due-dates of in-progress jobs are
not relevant to minimizing the tardiness. Meanwhile,
the remaining processing time of in-progress jobs affects
the completion time of the waiting jobs that will be
assigned after in-progress jobs are completed. There-
fore, each job Jj that belongs to Pk (f) is classified
according to the remaining processing time, denoted as
ρj, where Pk (f) is the set of in-progress jobs of the
family f at sk . Then, we define Sp(f , n) as below.

Sp =

{
|{Jj ∈ Pk (f) | (n− 1)T < ρj ≤ nT }| n < Hp
|{Jj ∈ Pk (f) | (n− 1)T < ρj}| n = Hp

(5)

where Hp is a positive integer less than maxj ρj/T . We
note that the dimension of the column in Sp is con-
strained to Hp in a similar way to Eq. (4). For example
in Fig. 1(b), Sp(2, 1) is equal to 1, which indicates
that there exists one job satisfying the following two
conditions: the job belongs to Pk (2), and its remaining
processing time is shorter than T .

• Ss: To capture the family setup time for predicting
the tardiness that will be incurred after sk , Ss(f , g)
represents the required setup time to process a job
of family f on a machine whose setup status is g.
Specifically,Ss(f , g) is defined as follow.

Ss(f , g) =

{
σf ,g (f , g) ∈ Ak

σmax otherwise
(6)

where σmax refers to the maximum setup time. If (f , g) /∈
Ak , Ss(f , g) is set to σmax to consider the worst case.

• Su, Sa, and ESf : These are devised to incorporate the his-
tory of the job, machine, and agent status until sk , which
has been known to be effective for solving scheduling
problems based on DRL [20]. First, Su(f , 1) and Su(f , 2)
respectively refer to the amounts of processing and
setup time until sk that have been spent for processing
jobs of the family f . Su(f , 3) is the number of finished
jobs whose family is f . Next, Sa represents the last
action ak−1. By using one-hot encoding [56], Sa(·, 1)
and Sa(·, 2) denoteNF -dimensional vectors that indicate
the family of a job and the setup status of a machine,
respectively. Finally, ESf consists of the three historic
features that cannot be grouped into a specific family.
ESf (1), ESf (2), and ESf (3) are respectively equal to rk−1,
k , and a binary value that is set to 1 if sk is terminal,

Algorithm 1 State Transition by an Action

Input: ak = (fk , gk),Wk =
NF⋃
f ′=1

Wk (f ′)

Output: State sk+1, reward rk ,Wk+1
1: M← {Mi|Gi = gk}, i = 1, . . . ,NM
2: M∗← argmin

Mi∈M
(
∑

j′ pi,j′), where Jj′ ∈Wk (fk)

3: whileWk 6= ∅ and mini′ Ei′ < (k + 1)T do
4: Mi← argmini′ Ei′
5: g← Gi
6: if M∗ = Mi then
7: f ← fk
8: else
9: f ← argmin

f ′
σf ′,g, where |Wk (f ′)| > 0

10: end if
11: Jj← argmin

Jj′∈Wk (f)
dj′

12: Assign Jj on Mi
13: Ei← Ei + pi,j + σf ,g
14: Wk ←Wk \ {Jj}
15: end while
16: Obtain transited state sk+1
17: Calculate rk from Eq. (8)

otherwise 0. Figs. 1(e) and (f) provide the following four
information: k = 5, r4 = −1.7, a4 = (1, 2), and s5 is
not terminal.

3) REWARD
The reward proposed in this paper is motivated by [37] in
the sense that rk is calculated by considering job delays
which occurred only during the period k . However, since
we assumed that the time spent in each period is always
equal to T , the reward in [37] is redefined in this paper to
accommodate such assumption by using the following clip
function.

λk (t) = max(kT ,min((k + 1)T , t)) (7)

Then, rk is defined as follows.

rk =
NJ∑
j=1

−max(0, λk (cj)− λk (dj)) (8)

Eq. (8) states that the reward is equivalent to the negative
sum of the job tardiness clipped by Eq. (7). When computing
rk , we assumed that cj is set to be infinite if Jj is waiting until
sk+1. As a result, the total sum of rewards is equal to TT ,
which was proven in [37].

4) STATE TRANSITIONS
After executing ak , the state transition from sk to sk+1 occurs.
Algorithm 1 describes the procedure for the state transition.
Let Ei be the time when the current job performed onMi will
be finished.

101394 VOLUME 9, 2021

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

FIGURE 2. The proposed DNN architecture with parameter sharing. The red, green, blue, and brown colors represent different
families. The sky color refers to the hidden layers and output layer.

FIGURE 3. An example of a schedule obtained from state transitions. Red,
green, and blue colors indicate family 1, 2, and 3, respectively.

In line 1, we obtain a machine set M that consists of the
machines whose setup status is gk . Among M, we select the
machine M∗ where the sum of processing time for the jobs
in Wk (fk) is the shortest (line 2). Lines 3–15 continue until
satisfying the following two conditions: there is at least one
waiting job, and the minimum of Ei among all machines do
not exceed the end time of the current period k . In line 4,
the machineMi whose Ei is the smallest among all machines
is selected. Then, the setup status of the machine, called g,
is obtained (line 5). In lines 6–10, we determine the family of
a next job that will be performed onMi, denoted as f . IfM∗ is
equal toMi, f is set to fk by following ak (line 7). Otherwise, f
is selected tominimize the setup time incurred onMi (Line 9).
Among waiting jobs whose family is f , the job Jj with the
earliest due-date is selected (line 11). After Jj is assigned on
Mi (line 12), both Ei and Wk are updated (lines 13 and 14).
Finally, sk+1, Ak+1, and rk are obtained (lines 16 and 17).

5) EXAMPLE
Fig. 3 depicts a schedule that is built during the periods k
and k + 1. At sk , M1 and M2 are respectively performing J1
and J2, and the jobs J3 to J7 are waiting for being assigned.
Since ak is equal to (2, 1), a job of the family 2 should be

assigned on a machine whose setup status is 1. By following
lines 2 and 11 in Algorithm 1, J5 is assigned on M2, and
σ2,1 is incurred before processing the job. Meanwhile, J3 and
J4, which respectively belong to family 1, are consecutively
allocated to M1 whose G1 is 1. At the end of the period k ,
sk+1 and rk are obtained as the consequences of the state
transition. After executing ak+1 = (1, 3), the job J7 of family
3 is allocated on M1 whose setup status is 1. In summary,
J3, J4, and J5 are scheduled according to ak and J6 and J7
according to ak+1.

B. DNN ARCHITECTURE
A deep Q-network (DQN) was employed to estimate a Q-
value given a state [17]. DQN takes a state s as an input
and outputs Q-values for all possible actions, called Qθ (s, a),
where θ is the network parameters and a ∈ A. Fig. 2.
depicts the proposed fully-connected network architecture
with parameter sharing that has been adopted for solving sin-
gle lot-sizing [57], and job scheduling problems in computing
platforms [22].

The input of DQN is equal to a matrix that is constructed
by concatenating the five matrices Sw, Sp, Ss, Su, and Sa.
Each row vector of the input is connected to a block that
consists of several hidden layers. To reduce the network
parameter size and increase the training efficiency, the param-
eters for each block are set to be the same. The last hidden
layer is composed by concatenating the values in the last
layers of NF blocks and ESf . Finally, the number of nodes
in the output layer is equal to the number of all possible
actions. The ReLU function [58] was adopted as an activation
function except for the output layer to represent negative
Q-values.

C. TRAINING DQN
Algorithm 2 describes the training procedure of the pro-
posed DQN. Given a scheduling problem for training DQN,
a scheduling process is repeated until there is no waiting job
(lines 3–16). We refer to the completion of one scheduling

VOLUME 9, 2021 101395

B. Paeng et al.: DRL for Minimizing Tardiness in Parallel Machine Scheduling

FIGURE 4. A flowchart of the proposed algorithms.

Algorithm 2 DQN Training Procedure
Input: Scheduling problem
Output: Q-network
1: Initialization: Set network Qθ with random weight θ ,

target network Q
θ̂
with θ̂ = θ , and replay buffer B to size

NB.
2: for e = 1, 2, . . . , NE do
3: k ← 0
4: Initialize Fj, dj of NJ jobs, and status of NM machines.
5: Observe sk andWk
6: whileWk 6= ∅ do
7: With probability ε select ak randomly from Ak
8: otherwise ak ← argmax

a∈Ak

Q(sk , a)

9: Get sk+1, Ak+1, rk ,Wk+1 from Algorithm 1
10: Store transition (sk , ak , rk , sk+1) in B
11: Sample NTR transitions (su, au, ru, su+1) ∈ B
12: Calculate loss L from (9)-(11)
13: Perform a gradient descent step on L w.r.t. θ
14: k ← k + 1
15: end while
16: Synchronize θ̂ to θ at every NU episodes
17: end for
18: return Q-network

process as an episode, and e indicates the index of the episode
currently being performed. The scheduling processes con-
tinue until e reaches the number of training episodes, denoted
as NE .

At the start of an episode, k is set to 0, and NJ jobs
and NM machines are initialized (lines 3 and 4). In line 5,
the agent initially observes the sk withWk . For each timestep
k , the agent selects ak from the ε-greedy policy [36] presented
in lines 7 and 8, where ε ∈ [0, 1] is a probability to select
an random action. After the state transition takes place from

TABLE 2. Dataset.

sk to sk+1 (line 9), the transition, represented as a quadruple
of state, action, reward, and next state, is stored in replay
buffer (line 10). The replay buffer and its size are denoted
as B and NB, respectively. If the number of stored transitions
in B exceeds NB, the oldest ones are removed. Line 11 indi-
cates that NTR transitions are sampled to train DQN, where
NTR is the number of sampled transitions. Given a transition
(su, au, ru, su+1), the temporal difference error, called ηu, are
calculated by the prediction Qθ (s, a) and target Q-value [17]
as follows.

ηu = ru + γ max
a′∈Au+1

Q
θ̂
(su+1, a′)− Qθ (su, au) (9)

where γ and θ̂ respectively indicate the discount factor
[36] and the parameters of a target DQN which has the
same network architecture as DQN for training. In Eq. (9),
ru + γ maxa′ Qθ̂ (su+1, a

′) indicates a target Q-value which
is set to ru when su+1 is terminal. We denote the temporal
difference loss from sampled transitions as L(θ), which is
defined as follows.

L(θ) =
1
NTR

NTR∑
u=1

h(ηu) (10)

101396 VOLUME 9, 2021

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

where h is the loss function, defined as below.

h(η) =


1
2
η2 if η ≤

1
2
,

1
2
(|η| − (

1
2
)2) otherwise.

(11)

In Eq. (11), we adopted Huber loss [59] instead of
mean-squared error for further enhancing the stability of
DQN training [20]. By calculating L(θ), the network parame-
ter θ is updated (lines 12 and 13). Line 16 shows that the target
network parameter θ̂ is periodically replaced to the θ [17].
Finally, the trained DQN is acquired at the end ofNE episodes
(line 18). Fig. 4 depicts the overall flowchart of the proposed
algorithms.

After DQN training, a test procedure is implemented to
solve the scheduling problems whose production require-
ments and due-dates change from those of the training prob-
lems. During the test procedure, random actions (line 8 in
Algorithm 2) are not executed any more. The rest of the pro-
cedure is identical to Algorithm 2 except the lines 10–13 and
16 that are required to train a DQN.

V. EXPERIMENTS
A. DATASETS
We prepared 8 datasets that simulated the semiconduc-
tor wafer preparation facilities in South Korea. Table. 2
presents NM , NJ , NF , and due-date tightness, denoted as τ ,
for the scheduling problems in each dataset. Except for τ ,
datasets 1 and 3 are equivalent to datasets 2 and 4, respec-
tively. Moreover, NM and NJ of datasets 5–8 are 2.5 times
larger than those of datasets 1–4, respectively.

Each dataset has 330 different scheduling problems which
are divided into 300 problems for training the proposed DQN,
and the other problems for validating the trained DQN. Fig. 5
depicts the distributions of production requirements for each
family. In particular, across all datasets, production require-
ments were perturbed by at least 37%.

For each scheduling problem, dj of NJ jobs were set to be
uniformly distributed between L(0.5 − τ) and L(1.5 − τ),
where L indicates an expected makespan adopted in several
studies [9], [11], [30]. To simulate the real-world scenario,
each machine performs a job at the beginning of the schedul-
ing, where its remaining processing time was randomly
generated.

B. EXPERIMENTAL SETTINGS
Experiments were conducted on a Xeon E5 2.2-GHz PC
with 126-GB memory. When employing DRL-based meth-
ods, choosing appropriate values of hyperparameters plays a
crucial role in the performance of DNN. Since it is challeng-
ing to determine optimal values of hyperparameters due to
their huge search space, we implemented the random search
[60], and found the values that achieved the best performance.

For performing a gradient descent step, we adopted
RMSProp optimizer [61] where the learning rate is set to
2.5 × 10−3. In the ε-greedy policy, the initial value of

FIGURE 5. The ranges of variability in production requirements for
8 datasets.

FIGURE 6. Mean tardiness results with changes in Hw and Hp on
dataset 1. (a) Hw with Hp = 5. (b) Hp with Hw = 6.

ε is set to 0.2. The value decays linearly to zero until e
reaches 0.9 × NE . Besides, NB, NU , NTR, and γ is set
to 105, 50, 64, and 1, respectively. Finally, we set NE =
105, T = 2

3 p̄ in datasets 1–4, and NE = 1.5 × 104,
T = 1

2 p̄ in datasets 5–8, respectively, where p̄ is the aver-
age processing time over all pairs of jobs and machines.
Each shared block consists of three hidden layers where
the numbers of nodes in the first, second, and third layers
are 64, 32, and 16, respectively. For each dataset, after the
trained DQNs were stored when e is equal to 0.91 × NE ,
0.92 × NE , . . . , 0.99 × NE , and NE , respectively, they were
used for performance comparisons.

Figs. 6(a) and (b) illustrate the mean tardiness results (in
hours) on dataset 1 by varying Hw and Hp, respectively. In
the experiments, the mean tardiness is calculated by dividing
TT to NJ . We note that the values of Hw and Hp were chosen
in the range described in Eqs. (4) and (5), respectively. In
Fig. 6(a), TT significantly decreased until Hw reaches 6,
which reveals the validity of Sw. On the other hand, the per-
formance changes were negligible when Hw exceeds 6. This
implies that the advantage of classifying waiting jobs in terms
of their due-dates is diminished due to the increase in the
dimension of Sw. As shown in Fig. 6(b), the performance
improvement achieved by varying Hp was less significant
than varying Hw. This can be attributed to the fact that Sw
contains more observations than Sp since the number of
waiting jobs is larger than those of in-progress jobs in most
periods. As a result, the rest of the experiments were carried
out with the best values of Hw and Hp, which were 6 and 5,
respectively.

VOLUME 9, 2021 101397

B. Paeng et al.: DRL for Minimizing Tardiness in Parallel Machine Scheduling

TABLE 3. Mean tardiness results of the proposed method and the other methods. Bold marks indicate the best results among all methods for each
dataset.

C. PERFORMANCE COMPARISON

In order to show the effectiveness of the proposed method,
we compared performances of IG in [11] and two RL-based
methods, which are two-phase DQN (TPDQN) [18], and QL
method with linear basis functions (LBF-Q) [37], respec-
tively. The parameters of IG were the same as those in [11].
Since the production scheduling in the semiconductor manu-
facturing systems is usually carried out on an hourly basis
[14], IG was terminated after an hour. For LBF-Q and
TPDQN, ten models were stored as described in Section V-B
for performance comparisons, respectively. The rest of the
hyperparameters were the same as those in [18], [37],
respectively.

Furthermore, we made comparisons between our method
and four rule-based methods: BATCS [31], shortest setup
time with earliest due date (SSTEDD), least slack remain-
ing (LSR) [13], COVERT [62]. LSR and COVERT are
widely adopted to minimize due-date related objectives,
while BATCS is effective when solving scheduling problems
with SDFST. In particular, SSTEDD selects the jobs which
require the shortest setup time and decides a job with the
earliest due-date among those jobs.

Table. 3 presents the mean tardiness results (in hours) of
ours and the other methods. Among the rule-based methods,
SSTEDD outperformed the other methods in all datasets.
Meanwhile, LSR and COVERT yielded 3.2 times longer
TT than the other rule-based methods in the best case and
11.3 times in the worst case. It can be said that address-
ing sequence-dependent setups is crucial for minimizing
TT of the scheduling problems considered. It was observed
that TT achieved by LBF-Q and TPDQN was longer than
SSTEDD for all datasets. This may be due to the fact that
the family setups were not accommodated in their state
and action representations. Although the performances of IG
were better than those of the rule-based and other RL-based
methods for all datasets, TT achieved by IG was 13% to
55% longer than those of the proposed method. Based on
these results, the proposed method appears to be effective
for solving scheduling problems even when the production
requirements and due-dates are changed from those of the
training.

TABLE 4. Computation time results (in seconds) of SSTEDD, IG, LBF-Q,
TPDQN, and the proposed method.

Table. 4 presents the average computation time taken by
our method, TPDQN, LBF-Q, IG, and SSTEDD. We only
presented the results of SSTEDDwhose average computation
time is the shortest among the four rule-based methods. The
computation time results of LBF-Q and TPDQN were longer
than those of the proposed method for all datasets. This might
be related to the fact that Q-values are computed by the
proposed method at each period, different from LBF-Q and
TPDQN that computeQ-values whenever allocating a job to a
machine. Moreover, the ratio of average computation time for
the datasets 5–8 to that for datasets 1–4 was 5.56 for LBF-Q,
6.23 for TPDQN, and 3.98 for the proposed method, respec-
tively. This observation can be attributed to the fact that the
number of parameters for the proposed DQN is independent
of NM and NJ , different from LBF-Q and TPDQN.
Compared to the best rule, the computation time of the

proposed method was increased by 8.8 to 12 times for the
datasets 1–4, and 6.7 to 7.9 times for the datasets 5–8, respec-
tively. Nevertheless, the results demonstrate that the proposed
method built a schedule less than 20s for all datasets. Dif-
ferent from metaheuristics and rule-based methods, the pro-
posed DRL-based method can quickly obtain a new schedule
by using the trained DQN, which suggests the viability of
the proposed method in terms of the computation time for
real-world manufacturing systems with parallel machines.

To examine the robustness of the proposed method when
both processing and setup time is stochastic, we carried out

101398 VOLUME 9, 2021

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

FIGURE 7. Mean tardiness results of PABS, FBS-1D, and ours across all datasets.

TABLE 5. The mean tardiness (in hours) of SSTEDD, IG, LBF-Q, and the
proposed method on datasets 1 and 5.

additional performance comparisons. Specifically, both pi,j
and σf ,g were not known in advance and set to be uniformly
distributed between [0.8pi,j, 1.2pi,j] and [0.8σf ,g, 1.2σf ,g],
respectively. Each test scheduling problems was solved
30 times with different random seeds.

Table. 5 shows the average and standard deviation of the
mean tardiness (in hours) for SSTEDD, IG, LBF-Q, and our
method. For datasets 1 and 5, both the average and standard
deviation of TT yielded by the proposed method were the
lowest among all methods. Based on these results, the pro-
posed method seems to be robust even when processing and
setup time are stochastic.

We further analyzed the effectiveness of the proposed
state representation and parameter sharing architecture. To
solely investigate the performance improvements achieved
by the state representation and parameter sharing, we com-
pared the proposed method with two modified baseline
methods. First, we adopted production attributes-based state
representation (PABS) proposed in [37]. Next, the pro-
posed family-based state representation was utilized as
one-dimensional vector (FBS-1D) by flattening and concate-
nating Sw, Sp, Ss, Su, Sa, and ESf . For PABS and FBS-1D,
we utilized the fully-connected network with three hidden
layers where the number of nodes were the same as men-
tioned in Section. IV-B. The rest of the details are equivalent
to the proposed method. Note that PABS and FBS-1D were
the same except for the state representation.

Fig. 7 highlights the mean tardiness results (in hours) of
PABS, FBS-1D, and ours in datasets 1–8. For all datasets,
FBS-1D consistently outperformed PABS with respect to
TT . Specifically, TT achieved by FBS-1D was 70% lower
than those of PABS in datasets 1–4 and 34% lower for
datasets 5–8, respectively, which demonstrate the superiority
of the proposed state representation. Furthermore, compared

to FBS-1D, the performances of the proposed method were
30% better for datasets 1–4 and 47% in datasets 5–8, respec-
tively. Based on the above observations, parameter sharing
appears to be more efficient for solving scheduling problems
with large numbers of jobs and machines.

VI. CONCLUSION
In this paper, we proposed a DRL-based method for solving
UPMSPs with SDFST constraint to minimize the total tar-
diness. To cope with the variabilities in production require-
ments and due-dates while addressing SDFST, we proposed
a novel state representation whose dimension is invariant to
such variabilities. Furthermore, we suggested the parameter
sharing architecture to learn DQN parameters effectively and
reduce the parameter size. As a result, the trained DQN was
able to quickly solve unseen scheduling problems whose pro-
duction requirements and due-dates are different from those
considered in training.

To examine the performance of the trained DQN, the pro-
posed method was compared to IG, four rule-based methods,
LBF-Q, and TPDQN. The experimental results demonstrated
that our method outperformed the existing methods in terms
of the total tardiness for all datasets. Moreover, the compu-
tation time of the proposed method was shorter than those of
IG and two RL-based methods. Through further experiments,
it was verified that both the proposed state representation
and parameter sharing architecture have contributed to the
performance improvements.

Yet, the proposedDQNposes a limitationwhen the number
of families changes since a re-training procedure is required.
To address such limitation, we plan to develop the state and
action whose dimensions are independent of the number of
families. Furthermore, some assumptions made in this paper
related to the ready time of jobs and machine breakdown will
be relaxed in the future work. Finally, the network architec-
ture can be improved by utilizing other deep learning models,
such as recurrent DNNs, and convolutional neural networks.

REFERENCES
[1] A. Allahverdi, ‘‘The third comprehensive survey on scheduling problems

with setup times/costs,’’ Eur. J. Oper. Res., vol. 246, no. 2, pp. 345–378,
2015.

VOLUME 9, 2021 101399

B. Paeng et al.: DRL for Minimizing Tardiness in Parallel Machine Scheduling

[2] Y.-R. Shiue, K.-C. Lee, and C.-T. Su, ‘‘A reinforcement learning approach
to dynamic scheduling in a product-mix flexibility environment,’’ IEEE
Access, vol. 8, pp. 106542–106553, 2020.

[3] T. Yang, Y.-F. Wen, Z.-R. Hsieh, and J. Zhang, ‘‘A lean production system
design for semiconductor crystal-ingot pulling manufacturing using hybrid
taguchi method and simulation optimization,’’ Assem. Autom., vol. 40,
no. 3, pp. 433–445, Jan. 2020.

[4] W. L. Pearn, S. H. Chung, and M. H. Yang, ‘‘The wafer probing schedul-
ing problem (WPSP),’’ J. Oper. Res. Soc., vol. 53, no. 8, pp. 864–874,
Aug. 2002.

[5] L. Mönch, J. W. Fowler, and S. J. Mason, ‘‘Semiconductor manufacturing
process description,’’ in Production Planning and Control for Semicon-
ductor Wafer Fabrication Facilities. New York, NY, USA: Springer, 2013,
pp. 11–28.

[6] L. Shen, L. Mönch, and U. Buscher, ‘‘An iterative approach for the serial
batching problem with parallel machines and job families,’’ Ann. Oper.
Res., vol. 206, no. 1, pp. 425–448, 2013.

[7] C. A. Sáenz-Alanís, V. D. Jobish, M. A. Salazar-Aguilar, and V. Boyer,
‘‘A parallel machine batch scheduling problem in a brewing company,’’
Int. J. Adv. Manuf. Technol., vol. 87, nos. 1–4, pp. 65–75, 2016.

[8] J. Du and J. Y.-T. Leung, ‘‘Minimizing total tardiness on one
machine is NP-hard,’’ Math. Oper. Res., vol. 15, no. 3, pp. 483–495,
Aug. 1990.

[9] J.-F. Chen, ‘‘Scheduling on unrelated parallel machines with sequence-
and machine-dependent setup times and due-date constraints,’’ Int. J. Adv.
Manuf. Technol., vol. 44, nos. 11–12, pp. 1204–1212, Oct. 2009.

[10] S.-W. Lin, C.-C. Lu, and K.-C. Ying, ‘‘Minimization of total tardiness on
unrelated parallel machines with sequence- and machine-dependent setup
times under due date constraints,’’ Int. J. Adv. Manuf. Technol., vol. 53,
nos. 1–4, pp. 353–361, Mar. 2011.

[11] J. C. S. N. Pinheiro, J. E. C. Arroyo, and L. B. Fialho, ‘‘Scheduling
unrelated parallel machines with family setups and resource constraints
to minimize total tardiness,’’ in Proc. Genetic Evol. Comput. Conf. Com-
panion, Jul. 2020, pp. 1409–1417.

[12] K.-C. Ying and S.-W. Lin, ‘‘Unrelated parallel machine scheduling with
sequence-and machine-dependent setup times and due date constraints,’’
Int. J. Innov. Comput., Inf. Control, vol. 8, no. 5, 2012, pp. 3279–3297.

[13] Y. H. Lee, K. Bhaskaran, andM. Pinedo, ‘‘A heuristic to minimize the total
weighted tardiness with sequence-dependent setups,’’ IIE Trans., vol. 29,
no. 1, pp. 45–52, Jan. 1997.

[14] J. Lim,M.-J. Chae, Y.Yang, I.-B. Park, J. Lee, and J. Park, ‘‘Fast scheduling
of semiconductor manufacturing facilities using case-based reasoning,’’
IEEE Trans. Semicond. Manuf., vol. 29, no. 1, pp. 22–32, Feb. 2016.

[15] W. Zhang and T. G. Dietterich, ‘‘A reinforcement learning approach to job-
shop scheduling,’’ in Proc. IJCAI, vol. 95, 1995, pp. 1114–1120.

[16] T. Gabel and M. Riedmiller, ‘‘Adaptive reactive job-shop scheduling with
reinforcement learning agents,’’ Int. J. Inf. Technol. Intell. Comput., vol. 24,
no. 4, pp. 14–18, 2008.

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
and S. Petersen, ‘‘Human-level control through deep reinforcement
learning,’’ Nature, vol. 518, pp. 529–533, 2015.

[18] B.Waschneck, A. Reichstaller, L. Belzner, T. Altenmuller, T. Bauernhansl,
A. Knapp, and A. Kyek, ‘‘Deep reinforcement learning for semiconductor
production scheduling,’’ in Proc. 29th Annu. SEMI Adv. Semiconductor
Manuf. Conf. (ASMC), Apr. 2018, pp. 301–306.

[19] C.-L. Liu, C.-C. Chang, and C.-J. Tseng, ‘‘Actor-critic deep reinforcement
learning for solving job shop scheduling problems,’’ IEEE Access, vol. 8,
pp. 71752–71762, 2020.

[20] I.-B. Park, J. Huh, J. Kim, and J. Park, ‘‘A reinforcement learning approach
to robust scheduling of semiconductor manufacturing facilities,’’ IEEE
Trans. Autom. Sci. Eng., vol. 17, no. 3, pp. 1420–1431, Jul. 2020.

[21] S. Luo, ‘‘Dynamic scheduling for flexible job shop with new job insertions
by deep reinforcement learning,’’ Appl. Soft Comput., vol. 91, Jun. 2020,
Art. no. 106208.

[22] D. Zhang, D. Dai, Y. He, F. S. Bao, and B. Xie, ‘‘RLScheduler: An auto-
mated HPC batch job scheduler using reinforcement learning,’’ 2019,
arXiv:1910.08925. [Online]. Available: http://arxiv.org/abs/1910.08925

[23] A. Kramer and A. Subramanian, ‘‘A unified heuristic and an annotated
bibliography for a large class of earliness–tardiness scheduling problems,’’
J. Scheduling, vol. 22, no. 1, pp. 21–57, Feb. 2019.

[24] M.A. Bozorgirad andR. Logendran, ‘‘Sequence-dependent group schedul-
ing problem on unrelated-parallel machines,’’ Expert Syst. Appl., vol. 39,
no. 10, pp. 9021–9030, 2012.

[25] O. Shahvari and R. Logendran, ‘‘An enhanced tabu search algorithm to
minimize a bi-criteria objective in batching and scheduling problems on
unrelated-parallel machines with desired lower bounds on batch sizes,’’
Comput. Oper. Res., vol. 77, pp. 154–176, Jan. 2017.

[26] A. Ekici, M. Elyasi, O. Ö. Özener, and M. B. Sarıkaya, ‘‘An application of
unrelated parallel machine scheduling with sequence-dependent setups at
vestel electronics,’’ Comput. Oper. Res., vol. 111, pp. 130–140, Nov. 2019.

[27] J. R. Zeidi and S. MohammadHosseini, ‘‘Scheduling unrelated parallel
machines with sequence-dependent setup times,’’ Int. J. Adv. Manuf. Tech-
nol., vol. 81, nos. 9–12, pp. 1487–1496, 2015.

[28] C. N. Potts and M. Y. Kovalyov, ‘‘Scheduling with batching: A review,’’
Eur. J. Oper. Res., vol. 120, no. 2, pp. 228–249, 2000.

[29] R. H. Suriyaarachchi and A. Wirth, ‘‘Earliness/tardiness scheduling with a
common due date and family setups,’’Comput. Ind. Eng., vol. 47, nos. 2–3,
pp. 275–288, Nov. 2004.

[30] D.-W. Kim, D.-G. Na, and F. F. Chen, ‘‘Unrelated parallel machine
scheduling with setup times and a total weighted tardiness objective,’’
Robot. Comput.-Integr. Manuf., vol. 19, nos. 1–2, pp. 173–181, Feb. 2003.

[31] S. J. Mason, J. W. Fowler, and W. M. Carlyle, ‘‘A modified shifting
bottleneck heuristic for minimizing total weighted tardiness in complex
job shops,’’ J. Scheduling, vol. 5, no. 3, pp. 247–262, 2002.

[32] O. L. V. Costa and M. D. Fragoso, ‘‘Discrete-time LQ-optimal control
problems for infinite Markov jump parameter systems,’’ IEEE Trans.
Autom. Control, vol. 40, no. 12, pp. 2076–2088, Dec. 1995.

[33] J. Wang, ‘‘H∞ synchronization for fuzzy Markov jump chaotic systems
with piecewise-constant transition probabilities subject to PDT switch-
ing rule,’’ IEEE Trans. Fuzzy Syst., early access, Jul. 29, 2020, doi:
10.1109/TFUZZ.2020.3012761.

[34] H. Shen, M. Dai, Y. Luo, J. Cao, and M. Chadli, ‘‘Fault-tolerant fuzzy con-
trol for semi-Markov jump nonlinear systems subject to incomplete SMK
and actuator failures,’’ IEEE Trans. Fuzzy Syst., early access, Jul. 24, 2020,
doi: 10.1109/TFUZZ.2020.3011760.

[35] M. L. Puterman,MarkovDecision Processes: Discrete Stochastic Dynamic
Programming. Hoboken, NJ, USA: Wiley, 2014.

[36] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, USA: MIT Press, 2018.

[37] Z. Zhang, L. Zheng, andM. X.Weng, ‘‘Dynamic parallel machine schedul-
ing with mean weighted tardiness objective by Q-learning,’’ Int. J. Adv.
Manuf. Technol., vol. 34, nos. 9–10, pp. 968–980, Oct. 2007.

[38] Z. Zhang, L. Zheng, N. Li, W. Wang, S. Zhong, and K. Hu, ‘‘Mini-
mizing mean weighted tardiness in unrelated parallel machine schedul-
ing with reinforcement learning,’’ Comput. Oper. Res., vol. 39, no. 7,
pp. 1315–1324, Jul. 2012.

[39] B. Yuan, L. Wang, and Z. Jiang, ‘‘Dynamic parallel machine scheduling
using the learning agent,’’ in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage.,
Dec. 2013, pp. 1565–1569.

[40] B. Yuan, Z. Jiang, and L. Wang, ‘‘Dynamic parallel machine scheduling
with random breakdowns using the learning agent,’’ Int. J. Services Oper.
Informat., vol. 8, no. 2, pp. 94–103, 2016.

[41] Y.-R. Shiue, K.-C. Lee, and C.-T. Su, ‘‘Real-time scheduling for a smart
factory using a reinforcement learning approach,’’ Comput. Ind. Eng.,
vol. 125, pp. 604–614, Nov. 2018.

[42] J. Shahrabi, M. A. Adibi, and M. Mahootchi, ‘‘A reinforcement learning
approach to parameter estimation in dynamic job shop scheduling,’’ Com-
put. Ind. Eng., vol. 110, pp. 75–82, Aug. 2017.

[43] Y.-F. Wang, ‘‘Adaptive job shop scheduling strategy based on weighted
Q-learning algorithm,’’ J. Intell. Manuf., vol. 31, no. 2, pp. 417–432,
Feb. 2020.

[44] Y. Cheng, J. Peng, X. Gu, F. Jiang, H. Li, W. Liu, and Z. Huang, ‘‘Optimal
energy management of energy internet: A distributed actor-critic reinforce-
ment learning method,’’ in Proc. Amer. Control Conf. (ACC), Jul. 2020,
pp. 521–526.

[45] M. Nazari, ‘‘Reinforcement learning for solving the vehicle routing
problem,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, Feb. 2018,
pp. 9839–9849.

[46] Y. Ye, D. Qiu, J. Li, and G. Strbac, ‘‘Multi-period and multi-spatial
equilibrium analysis in imperfect electricity markets: A novel multi-
agent deep reinforcement learning approach,’’ IEEE Access, vol. 7,
pp. 130515–130529, 2019.

[47] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, ‘‘Resource manage-
ment with deep reinforcement learning,’’ in Proc. 15th ACMWorkshop Hot
Topics Netw., Nov. 2016, pp. 50–56.

101400 VOLUME 9, 2021

http://dx.doi.org/10.1109/TFUZZ.2020.3012761
http://dx.doi.org/10.1109/TFUZZ.2020.3011760

B. Paeng et al.: Deep RL for Minimizing Tardiness in Parallel Machine Scheduling With Sequence Dependent Family Setups

[48] Y. Bao, Y. Peng, and C. Wu, ‘‘Deep learning-based job placement in
distributed machine learning clusters,’’ in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Apr. 2019, pp. 505–513, doi: 10.1109/
INFOCOM.2019.8737460.

[49] A. Mirhoseini, ‘‘Device placement optimization with reinforcement learn-
ing,’’ in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 2430–2439.

[50] Z. Cao, H. Zhang, Y. Cao, and B. Liu, ‘‘A deep reinforcement learning
approach to multi-component job scheduling in edge computing,’’ in Proc.
15th Int. Conf. Mobile Ad-Hoc Sensor Netw. (MSN), Dec. 2019, pp. 19–24.

[51] D. Shi, ‘‘Intelligent scheduling of discrete automated production line
via deep reinforcement learning,’’ Int. J. Prod. Res., vol. 58, pp. 1–19,
Jun. 2020.

[52] C.-C. Lin, D.-J. Deng, Y.-L. Chih, and H.-T. Chiu, ‘‘Smart manufacturing
scheduling with edge computing using multiclass deep Q network,’’ IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019.

[53] B.-A. Han and J.-J. Yang, ‘‘Research on adaptive job shop schedul-
ing problems based on dueling double DQN,’’ IEEE Access, vol. 8,
pp. 186474–186495, 2020.

[54] T. E. Thomas, J. Koo, S. Chaterji, and S. Bagchi, ‘‘MINERVA: A rein-
forcement learning-based technique for optimal scheduling and bottleneck
detection in distributed factory operations,’’ in Proc. 10th Int. Conf. Com-
mun. Syst. Netw. (COMSNETS), Jan. 2018, pp. 129–136.

[55] S. Zheng, C. Gupta, and S. Serita, ‘‘Manufacturing dispatching using
reinforcement and transfer learning,’’ 2019, arXiv:1910.02035. [Online].
Available: http://arxiv.org/abs/1910.02035

[56] D. Harris and S. Harris, Digital Design and Computer Architecture.
San Mateo, CA, USA: Morgan Kaufmann, 2010.

[57] H. Rummukainen and J. K. Nurminen, ‘‘Practical reinforcement learning-
experiences in lot scheduling application,’’ IFAC-PapersOnLine, vol. 52,
no. 13, pp. 1415–1420, 2019.

[58] V. Nair and G. E. Hinton, ‘‘Rectified linear units improve restricted
Boltzmann machines,’’ in Proc. Int. Conf. Mach. Learn. (ICML), 2010,
pp. 807–814.

[59] P. J. Huber, ‘‘Robust estimation of a location parameter,’’ Ann. Math.
Statist., vol. 35, no. 1, pp. 73–101, 1964.

[60] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[61] T. Tieleman and G. Hinton, ‘‘Lecture 6.5-RMSPROP: Divide the gradient
by a running average of its recent magnitude,’’ COURSERA, Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[62] A. P. J. Vepsalainen and T. E. Morton, ‘‘Priority rules for job shops with
weighted tardiness costs,’’ Manage. Sci., vol. 33, no. 8, pp. 1035–1047,
1987.

BOHYUNG PAENG received the B.S. degree
in electrical engineering from KAIST, South
Korea, in 2013. He is currently pursuing the
Ph.D. degree with the Information Management
Laboratory, Department of Industrial Engineer-
ing, Seoul National University, South Korea.
His current research interests include scheduling,
deep reinforcement learning, and deep learning
applications.

IN-BEOM PARK received the Ph.D. degree
in industrial engineering from Seoul National
University, Seoul, South Korea, in 2020. He is
currently a Postdoctoral Researcher in industrial
engineering with Sungkyunkwan University. His
current research interests include scheduling man-
ufacturing systems, machine learning, and deep
reinforcement learning.

JONGHUN PARK received the Ph.D. degree in
industrial and systems engineering with a minor
in computer science from the Georgia Institute of
Technology, Atlanta, in 2000. He is currently a
Professor with the Department of Industrial Engi-
neering, Seoul National University (SNU), South
Korea. Before joining SNU, he was an Assistant
Professor with the School of Information Sciences
and Technology, Pennsylvania State University,
University Park, and the Department of Industrial

Engineering, KAIST, Daejeon. His research interests include generative
artificial intelligence and deep learning applications.

VOLUME 9, 2021 101401

http://dx.doi.org/10.1109/INFOCOM.2019.8737460
http://dx.doi.org/10.1109/INFOCOM.2019.8737460

