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ABSTRACT This paper introduces a fast stochastic surrogate modeling technique for the frequency-domain
responses of linear and passive electrical and electromagnetic systems based on polynomial chaos expan-
sion (PCE) and principal component analysis (PCA). A rational PCEmodel provides high accuracy, whereas
the PCA allows compressing the model, leading to a reduced number of coefficients to estimate and thereby
improving the overall training efficiency. Furthermore, the PCA compression is shown to provide additional
accuracy improvements thanks to its intrinsic regularization properties. The effectiveness of the proposed
method is illustrated by means of several application examples.

INDEX TERMS Multiport systems, polynomial chaos, principal component analysis, rational modeling,
surrogate modeling, variability analysis, uncertainty quantification.

I. INTRODUCTION
Uncertainty quantification is becoming ubiquitous in many
engineering domains. In fact, the intrinsic variability of many
design parameters, such as geometry and material properties,
may induce large stochastic variations in the system perfor-
mance metrics of interest. These effects must be carefully
assessed and accounted for in robust designs. In this scenario,
traditional Monte Carlo-based simulations become a major
bottleneck owing to the massive amount of data they typically
require.

Therefore, alternative and more efficient strategies were
investigated in the past decade. In this regard, a standard and
well-recognized approach for stochasticmodeling is provided
by the polynomial chaos expansion (PCE) framework. These
methods approximate the stochastic quantities of interest
using polynomial bases that are orthogonal w.r.t. to the distri-
bution of the uncertain parameters [1], thus enabling a precise
uncertainty quantification in terms of statistical moments and
distribution functions. The PCE framework became widely
popular also in the field of electrical engineering [2], e.g.,
to investigate the impact of process variations in large-scale
integration circuits [3]–[17]. The available techniques can be
subdivided into two classes: intrusive ones [3]–[8], chiefly
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based on the so-called stochastic Galerkin method, favor
model accuracy and interpretability at the expense of imple-
mentational easiness, as they require access to the system
equations and hardly apply to nonlinear problems. On the
other hand, collocation approaches [9]–[17] are essentially
black box, and merely leverage a collection of responses
computed for some suitable configurations of the uncertain
parameters, thus similarly to Monte Carlo, but being more
parsimonious in the number of samples required.

Regardless of the aforementioned differences, conven-
tional applications make use of single expansions, which are
linear in their coefficients. Recently, rational PCEs [18]–[20]
were proposed for accuracy improvement in the uncertainty
quantification of stochastic linear systems in the frequency
domain (FD) [21]. Indeed, the technique was proven to pro-
vide a far more accurate model for generic FD network
responses, and an exact model for the responses of lumped
circuits [22]. The method is non-intrusive and features an
iterative re-weighted linear least-square regression for the
determination of the expansion coefficients. Compared to the
standard single PCE, the main drawback of rational PCEs is
the reduced computational efficiency, since in this case the
regression matrix to be inverted differs for each frequency
point and for each output of interest. This makes the method
unsuitable for the characterization of large multi-port struc-
tures and/or fine frequency sweeps.
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In order to alleviate this shortcoming, we introduce here
a compression strategy, based on principal component anal-
ysis (PCA) [23], that allows for a considerable reduction
of the number of regression problems to be solved, thus
remarkably improving the efficiency in large-size problems.
This approach was recently used in conjunction with generic
surrogate modeling techniques to improve the efficiency of
stochastic time-domain circuit simulations [24]. In this paper,
it is adapted for the use with rational PCEs in the FD. There-
fore, compared to [24], the main novel contribution is in the
use of rational PCEs as surrogate models, which were shown
to provide remarkably better accuracy for the uncertainty
quantification of FD network responses. Moreover, novel
theoretical insights are provided, and the behavior of the PCA
coefficients w.r.t. the original stochastic variables is high-
lighted and discussed. In particular, it is found that optimal
accuracy is obtained by matching the expansion order to
the number of principal components, when feasible. Several
application examples, ranging from a trivial analytical case to
distributed circuits and electromagnetic structures, illustrate
and validate the advocated approach.

The rest of the paper is organized as follows. Section II
summarizes the state of the art of PCE-based surrogate mod-
eling, outlining both standard and rational model structures.
Section III introduces the proposed PCA compression. A sim-
ple illustrative example is discussed in Section IV, whereas
more realistic application test cases are provided in SectionV.
Finally, conclusions are drawn in Section VI. Through-
out the paper, plain x, lowercase bold x, and uppercase
bold X variables denote scalar, vector, and matrix quantities,
respectively. Superscript T stands for transpose and H denotes
conjugate transpose (Hermitian).

II. STATE-OF-THE-ART POLYNOMIAL CHAOS MODELING
We consider a generic P-port electrical system affected
by d uncertain parameters collected in vector ξ =

(ξ1, . . . , ξd ). We assume that the FD system response can be
evaluated (e.g., through a circuit or field solver), at any fre-
quency and fixed configuration of the uncertain parameters ξ .

A. CONVENTIONAL MODEL: SINGLE PCE
In the standard PCE framework [2], any FD port characteri-
zation S at a given complex frequency sm ∈ {2π fm}Mm=1 is
modeled as the following PCE

S(sm, ξ ) ≈ Ŝm(ξ ) =
L∑
`=1

Sm,`ϕ`(ξ ), (1)

where S, Ŝm,Sm,` ∈ CP×P. The basis functions {ϕ`}L`=1
are suitable multivariate polynomials that are orthogonal
w.r.t. the joint probability density function of ξ , as discussed
later in Section III. It should be noted that the model (1)
is discrete over the frequencies sm and continuous over the
uncertain variables ξ . A continuous model also w.r.t. fre-
quency can be obtained by applying vector fitting to the
PCE coefficients [25].

The model coefficients are computed by solving the linear
regression problem

xm,ij = argmin
x

∥∥9x− bm,ij∥∥2 (2)

in the least-square sense over a set {ξ k}
K
k=1 of samples of the

uncertain parameters (typically, randomly drawn), where:
• xm,ij = (Sm,ij,1, . . . , Sm,ij,L)T ∈ CL , i.e., a vector
collecting all PCE coefficients for the element (ij) of
matrix S at the frequency sm;

• bm,ij =
(
Sij(sm, ξ1), . . . , Sij(sm, ξK )

)T
∈ CK is a vector

collecting the element (ij) of matrix S evaluated at the
frequency sm for all the regression samples of ξ ;

• 9 ∈ CK×L with entries 9k,` = ϕ`(ξ k ), for k =
1, . . . ,K , ` = 1, . . . ,L, i.e., a matrix containing all the
basis functions evaluated at the regression samples.

The solution to (2) is well-known and reads

xm,ij = 9+bm,ij, (3)

where 9+ = (9H9)−19H denotes the Moore-Penrose
pseudo-inverse [26] of 9.

At this point, it is important to note that matrix 9 is
independent on the frequency and response matrix element.
Therefore, the full characterization of the model (1) can
be carried out simultaneously by stacking the regression
data bm,ij for all frequency points and port variables into a
single matrix

B =

←− bT
1,11 −→

...

←− bT
M ,PP −→

 ∈ CMQ×K , (4)

with Q = P2, and computing

X =
(
9+BT

)T
, (5)

which collects all model coefficients in (1) with the same
ordering as in (4).

Despite a remarkable computational efficiency, it was
shown in [21] that the model (1) is not very accurate for elec-
trical/electromagnetic systems, especially at high frequency
and for distributed and/or strongly resonant structures. More-
over, the number K of regression samples required to ‘‘train’’
the model becomes rapidly prohibitive when the expansion
order is increased.

B. RATIONAL PCE MODEL
For the aforementioned reasons, an element-wise rational
model of the form

Sij(sm, ξ ) ≈ Ŝm,ij(ξ ) =

∑L
`=1 Nm,ij,` ϕ`(ξ )

1+
∑L
`=2 Dm,ij,` ϕ`(ξ )

(6)

for i, j = 1, . . . ,P, was put forward [21]. In [22], it was
further shown that such a model is exact for lumped systems,
provided that a suitable truncation strategy is used.
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The model coefficients in (6) are obtained through the
iterative solution of the linearized regression problem(
nνm,ij
dνm,ij

)
= argmin

n,d∥∥∥∥(1νm,ij9 −1νm,ij9 ′m,ij)(nd
)
−1νm,ijbm,ij

∥∥∥∥
2

(7)

in the least-square sense, in which ν denotes the iteration
index, 9 and bm,ij are defined as in (2), and in addition:

• nνm,ij = (N νm,ij,1, . . . ,N
ν
m,ij,L)

T
∈ CL , i.e., a vector

collecting the numerator coefficients at iteration ν;
• dνm,ij = (Dνm,ij,2, . . . ,D

ν
m,ij,L)

T
∈ CL−1, i.e., a vector

collecting the denominator coefficients at iteration ν;
• 9 ′m,ij ∈ CK×(L−1) with entries 9 ′k,` = Sij(sm, ξ k )9k,`,
for k = 1, . . . ,K , ` = 2, . . . ,L;

• 1νm,ij is a diagonal matrix collecting the inverse of the
denominator PCE at the iteration ν − 1 evaluated at the
regression samples. It is initialized to the identity matrix,
and updated throughout the iterations as

1νm,ij =

[
diag

{
9

(
1

dν−1m,ij

)}]−1
.

The regression problem (7) has 2L − 1 unknowns, corre-
sponding to the numerator and denominator PCE coefficients.
In [21], a Latin hypercube sampling strategy was used to
generate the K random samples of ξ for the regression, and
K � 2L − 1 was taken for the system to be sufficiently
overdetermined. The iterative re-weighting is used to elim-
inate the bias introduced by the linearization [27]. Iterations
stop after convergence is detected.

The above-described approach has one important limita-
tion. The regression matrix in (7) depends on both frequency
and port response, hence the iterative regression solution
must be carried out separately for each frequency point sm
and for each input-output pair (ij). This leads to a possibly
large number MQ of separate, independent (and iterative)
calculations. Therefore, the approach becomes intractable for
the responses of systems with many ports evaluated over a
fine frequency sweep. A compression strategy is proposed in
the next section to alleviate this problem.

Before continuing, we would like to remark at this point
that for reciprocal systems, Sij(sm) = Sji(sm) ∀i, j,m, and
therefore the modeling reduces to the triangular part of S,
leading to Q = P(P + 1)/2 unknowns instead of Q = P2.
A further reduction may occur for symmetrical structures.
In the following, Q will denote in general the actual number
of distinct port responses to be modeled. It is important to
remark that, however, any redundancy in the data is automat-
ically removed by the compression strategy introduced in the
next section.

Throughout the following, we will refer to the ensem-
ble of stochastic responses {S(sm, ξ k )}

M ,K
m,k=1 that is used to

train the model, collected into matrix (4), as the ‘‘training
dataset’’.

III. PCA-COMPRESSED POLYNOMIAL CHAOS MODELING
In order to reduce the exorbitant number of MQ regres-
sion solutions that is required by the full characterization of
the model (6) for all port responses and frequency points,
a compression strategy is introduced using PCA [23]. This
approach is motivated by the fact that the responses of a linear
system exhibit some amount of interdependency between
different ports and frequency points, which can be effectively
handled by compressing the data into a reduced subset by
means of PCA [24].

A. EIGENVALUE-BASED CALCULATION
The approach starts by interpreting the MQ × K matrix B,
defined in (4), as a collection of K realizations of
a MQ-variate stochastic variable β. Next, the experimental
covariance matrix of β, i.e.,

Kβ = E{(β − E{β})(β − E{β})H}

≈

∑K
k=1

(
βk − µβ

) (
βk − µβ

)H
K − 1

=
B̃BBB̃BBH

K − 1
(8)

is computed, where Kβ ∈ CMQ×MQ, βk ∈ CMQ is the
kth column of B,

µβ =
1
K

K∑
k=1

βk (9)

is the mean estimated over the stochastic samples, and

B̃BB = BBB − (µβ ⊗ 11×L), (10)

where 11×L ∈ RL is a row vector of ones.
Given the eigenvalue decomposition of Kβ , i.e.,

eig(Kβ ) = 838H, (11)

where 3 is a diagonal matrix collecting the eigenval-
ues {λn}

MQ
n=1 of Kβ , assumed to be sorted in descending

order, and 8 is the corresponding matrix of eigenvectors,
the realizations {βk}

K
k=1 of the original training dataset can

be expressed as [23]

βk = µβ +

MQ∑
n=1

Zk,nφn (12)

where φn denotes the nth eigenvector (i.e., the nth column
of 8), whereas the coefficients Zk,n are obtained as

Zk,n = φH
n (βk − µβ ). (13)

The expansion (12) can be truncated to retain only the
first n̄ eigenvectors, corresponding to the most significant
eigenvalues, based on a pre-defined relative threshold. This
is the so-called PCA, leading to the approximation

βk ≈ β̂k = µβ +

n̄∑
n=1

Zk,nφn (14)

of the data in (4). As it will be shown by the application exam-
ples, n̄ ≪ MQ (typically, two to three orders of magnitude
less).
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Now, the key point is that the collection of the
PCA coefficients Zk,n can be seen as a set of K realiza-
tions of n̄ stochastic variables stemming from (and hence,
depending on) the original random parameters ξ . As such,
each of the n̄ PCA coefficients can be represented using the
rational PCE model (6) as

Zn(ξ ) ≈

∑L
`=1 Nn,`ϕ`(ξ )

1+
∑L
`=2 Dn,`ϕ`(ξ )

, (15)

with n = 1, . . . , n̄, and coefficients computed as in (7)
using the samples {Zk,n}Kk=1. The fundamental difference,
compared to (6), is that (15) requires to construct only
n̄ rational models, instead ofMQ.
Once the model (15) is computed, it is used to gener-

ate new random samples for the PCA coefficients in (14),
which in turn allows obtaining new samples for the ran-
dom variables β. The corresponding samples for the original
port variables are recovered by assembling a new dataset B
and reshaping it back to the original form according to (4).
It should be noted that the proposed method no longer com-
putes the PCE coefficients of the port variables as in (1)
or (6). Samples thereof are instead obtained directly from
the rational PCE model (15) of the PCA components. The
PCA compression is also applicable in conjunction with the
conventional PCE, yet without significant benefit on neither
the computational efficiency nor the accuracy, as we will
show later on.

B. SVD-BASED CALCULATION
The evaluation of the eigenvalue decomposition (11) is not
efficient for very large-sized matrices, which is often the case
in practice. Conveniently, the eigenvalue decomposition of
the covariance matrix (8) can be reformulated as a singular
value decomposition (SVD) [23]. Consider the ‘‘economy-
size’’ SVD of the entire zero-meaned training dataset B̃BB

svd(B̃BB) = U6VH (16)

where, since MQ > K , U ∈ CMQ×K , 6 ∈ RK×K is a
diagonal matrix collecting the singular values {σn}Kn=1 of B̃BB in
descending order, andV ∈ CK×K . Recalling that the singular
values of a matrix M correspond to the square root of the
eigenvalues of MMH, and that the left-singular vectors are a
set of corresponding orthonormal eigenvectors [26], then the
eigenvalues in (11) are related to the singular values in (16)
by

λn =
σ 2
n

K − 1
(17)

whereas the eigenvectors (columns of8) and the left-singular
vectors (columns ofU) are proportional up to a complex con-
stant with unit magnitude, and hence they are interchangeable
in (12)–(14). Because of (17), a relative threshold ε on the
singular values of B̃BB is equivalent to a relative threshold ε2 on
the eigenvalues of Kβ .

C. ERROR OF PCA TRUNCATION
First of all, we assume all the training samples in dataset BBB
to be an exact representation of the true system response,
with no associated ‘‘measurement error’’. Let us consider a
PCA truncation based on a relative threshold ε on the singular

values of the zero-meaned dataset B̃BB. We denote with B̂BB the
corresponding approximation of BBB, i.e., a matrix collecting
columnwise the approximated samples {β̂k}

K
k=1 in (14), and

with K
β̂
the corresponding experimental covariance matrix.

Thanks to the properties of singular values [28], the following
relations hold for the approximation error:

‖B̂BB −BBB‖2 ≡ σn̄+1 =
σn̄+1

σ1
‖B̃BB‖2 ≤ ε‖B̃BB‖2 (18)

where σn̄+1 is the first discarded singular value, and the
standard matrix 2-norm ‖M‖2 = max(σ (M)) = σ1 has been
used.Moreover, using (17), the error on the covariancematrix
can be expressed as

‖K
β̂
−Kβ‖2 ≡

σ 2
n̄+1

K − 1
=

(
σn̄+1

σ1

)2

‖Kβ‖2 ≤ ε2‖Kβ‖2.

(19)

Finally, the following property holds for the root-
mean-square error (RMSE) over the individual
realizations βk :√√√√ 1

K

K∑
k=1

‖β̂k − βk‖
2
2 =

1
√
K
‖B̂BB −BBB‖F ≤ ‖B̂BB −BBB‖2

≤ ε‖B̃BB‖2, (20)

where ‖ · ‖F denotes the Frobenius norm and the property
‖M‖F ≤

√
r‖M‖2, where r ≤ K is the rank, has been

used. Therefore, the PCA approximation error is rigorously
controlled by means of the truncation threshold. It should be
noted that the overall approximation error is the sum of the
contributions of the PCA truncation and of the PCE approx-
imation of the PCA coefficients, which is in turn controlled
by letting the expansion order be sufficiently high.

D. PCE TRUNCATION
Without loss of generality, we assume the components of the
random vector ξ be independent and identically distributed
(i.i.d.), with probability density function (PDF) w(ξ ). In this
case, the basis functions in the PCE are constructed as the
product

ϕ`(ξ ) =
d∏
j=1

ζαj (ξj), (21)

where {ζα(ξ )}∞α=0 are univariate polynomials of degree α
satisfying the orthogonality condition∫

R
ζα(ξ )ζγ (ξ )w(ξ )dξ = 0, α 6= γ. (22)

An implicit mapping is introduced between the scalar
index ` and a vector of univariate degrees α = (α1, . . . , αd )
in (21).
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With the above definitions, three truncation strategies of
increasing sparsity are typically defined for the PCE [2], [29],
given an expansion order p:

• tensor product (TP), such that ‖α‖∞ ≤ p and leading to
L = (p+ 1)d terms;

• total degree (TD), such that ‖α‖1 ≤ p and leading to
L = (p+ d)!/(p!d !) terms;

• hyperbolic, such that ‖α‖u ≤ p, with 0 < u < 1.

The above truncation strategies are equivalent for the univari-
ate case (d = 1).

A TD truncation is typically used for conventional single
PCE models [2], since the higher-order interactions included
in a TP of the same degree are often negligible. On the other
hand, it was shown that using a TP truncation of order p = 1
for both the numerator and denominator of a rational model
yields an exact model for lumped circuits [22]. Because of the
PCA transformation, however, the exactness no longer holds
for the PCA coefficients in (15), even for lumped systems.
Therefore, whereas in [21] the above property motivated,
by extension, the choice of a TP truncation also for distributed
systems, although generally with p > 1, here we will also
consider the more compact TD truncation for the rational
model (15).

E. SAMPLING STRATEGY
Low-discrepancy sequences are frequently used in quasi-
Monte Carlo simulations to speed-up the convergence
of sampling-based techniques [30]. They are fully deter-
ministic sequences of multivariate samples with optimal
space-filling properties. Two notable examples thereof are
the Sobol [31] and Halton [32] sequences. Their samples,
which we denote with {(η1,k , . . . , ηd,k )}Kk=1, are uniformly
distributed in the hypercube [0, 1]d . Normally-distributed
samples are obtained through the inverse probability
transform [33]

ξj,k = F−1N (ηj,k ), ∀j, k (23)

where F−1N is the inverse of the cumulative density function
of the standard normal distribution. It is important to mention
that the first element of the sequence is always the origin
and it has to be discarded when transforming into a normal
distribution, since F−1N (0) = −∞. This operation involves
a negligible computational cost. Hence, we did not consider
alternative methods, such as the Box-Muller transform [34],
for improving the computational efficiency.

Figure 1 shows the distribution of K = 100 bivariate
(d = 2) Gaussian samples drawn according to plain ran-
dom number generation (like in standard Monte Carlo),
Latin hypercube sampling, Sobol sequence, and Halton
sequence. The samples from the low-discrepancy sequences
are more evenly spread in the space. In this paper,
we draw training samples according to a Sobol sequence
in place of the Latin hypercube sampling strategy used
in [21].

FIGURE 1. Distribution of K = 100 bivariate Gaussian samples drawn
according to different schemes.

IV. ILLUSTRATIVE EXAMPLE
We start by considering a trivial analytical example consisting
of a parallel RLC circuit, whose impedance reads

Z (s) =
sRL

R+ sL + s2RLC
. (24)

Given the rational form of (24), and contrary to the con-
ventional single PCE, a first-order rational PCE (6) with
TP truncation is exact, as was rigorously proven for the
general case in [22].

We start by considering a univariate case in which only the
inductance L is uncertain, following a Gaussian distribution
with a nominal value of 3 H and a standard deviation of 0.6 H
(i.e., 20% relative). The resistance is R = 2 � and the
capacitance isC = 4 F. For the calculation of the model coef-
ficients, we consider K = 50 impedance samples evaluated
for inductance values generated from a Sobol sequence.

We first illustrate the impact of the PCA compression on
the classical, single PCE. Therefore, we assess the modeling
error for different PCA truncation thresholds and PCE orders.
Figure 2 shows the behavior of the root-mean-square error
(RMSE), calculated over 10000 samples of the stochastic
inductance. The average and maximum error over frequency,
obtained by applying the PCE directly to FD data (dashed
yellow lines), are compared against the results achieved in
conjunction with PCA compression of the training dataset
with various truncation thresholds on the singular values,
namely ε = {10−2, 10−3, 10−4, 10−5} (solid red lines).
It is noted that the error does not monotonically decrease
with increasing order. This is because the model coeffi-
cients of higher-order expansions are computed with lower
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FIGURE 2. Average (left) and maximum (right) RMSE over frequency
obtained with single PCEs of various orders, applied to FD data (dashed
yellow lines) or in conjunction with PCA compression with different
truncation thresholds (solid red lines).

accuracy (or higher variance) with a given training dataset,
since the number of unknowns to be estimated by the regres-
sion increases. This phenomenon is called the ‘‘bias-variance
tradeoff’’ in statistical learning theory [35], and can be mit-
igated using LASSO or Ridge regressions. It was observed
in [21] that the number of required samples increases super-
linearly with the number of unknown coefficients to estimate,
thus making the use of high-order classical PCEs impractical
for the modeling of FD responses. Moreover, the PCA trunca-
tion threshold is found to have little influence, especially on
the maximum error. From ε = 10−4 and below, the FD and
PCA-compressed solutions provide the same accuracy up to
the fourth digit, meaning that the PCA compression error has
become practically negligible compared to the PCE error. The
error of a first-order rational PCE model is found instead to
be limited to machine precision, as expected.

Next, we focus on the proposed modeling scheme,
i.e., the PCA-compressed rational approximation discussed
in Section III. We first investigate the accuracy of the rep-
resentation (15) of the principal components, for different
expansion orders of the numerator and denominator, and then
we analyze the resulting accuracy on the impedance. To this
end, we start by considering a PCA compression with a
truncation threshold of ε = 10−2. This leads to retaining
n̄ = 4 PCA coefficients out of the 501 original frequency
samples, with a reduction to a mere 0.8% of the original
data. Figure 3 reports a parametric analysis of the four
PCA coefficients {Zn}4n=1 as a function of the normalized
inductance value, denoted with ξ . The solid blue lines show
the magnitude of the actual value of Zn, obtained by pro-
jecting the corresponding impedance samples via (13). The
dashed red lines are single PCEmodels of order p = 3, which
yield the best model accuracy according to Fig. 2, and yet
exhibit a rather large error for all PCA coefficients, especially
for |ξ | > 2.1 The dotted curves are rational PCE models of
various orders. In particular, each panel shows the rational
models of order p = n − 1 and p = n. This comparison
leads to the interesting observation that a nth-order rational

1Since ξ is Gaussian distributed, the probability that |ξ | > 2 is below 5%,
whereas the probability that |ξ | > 3 is below 0.3%.

FIGURE 3. Magnitude of the PCA coefficients for the impedance of the
parallel RLC circuit with uncertain inductance. Blue solid lines: actual
value; red dashed line: single PCE model of order p = 3; yellow, purple,
green, and cyan dotted lines: rational PCE models of order p = 1,2,3,4,
respectively.

PCEmodel is very accurate for the nth coefficient Zn, whereas
a rather large error is observed if a lower order is used. More
precisely, models of order p ≤ n − 1 result to be highly
inaccurate, whereas using p ≥ n ensures excellent accuracy.
Therefore, the order of the PCA coefficients seems to increase
linearly with the index.

This is further confirmed by the plots in Fig. 4, which
now report the average and maximum RMSE on the
FD impedance obtained by applying a rational PCE in con-
junction with PCA compression, for different expansion
orders and truncation thresholds. The dots mark the point at
which the expansion order pmatches the number of principal
components n̄ for the corresponding truncation threshold. It is
indeed noted that the accuracy does not significantly improve
by further increasing the expansion order beyond that value.
This corroborates the conclusion that such model is virtually
exact, with the residual error on the impedance being due to
the PCA truncation. Moreover, there is no significant differ-
ence in using different truncation thresholds when p < n̄.

FIGURE 4. Average (left) and maximum (right) RMSE over frequency
obtained with rational PCEs of various orders, applied in conjunction with
PCA compression with different truncation thresholds. The dots mark the
point at which the expansion order matches the number of principal
components.
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Table 1 summarizes the key figures concerning the accu-
racy for the various cases. The first row reports the best
accuracy that is achieved with a single PCE, i.e., by using
order p = 3. As already noted, no significant difference
is found by applying the PCE directly in the FD or to the
PCA-compressed variables. A rational model in the FD is
exact, thereby leading to a vanishing error. A very good
accuracy is still attained by applying the rational model to the
PCA compressed variables. As noted from Fig. 4, the error
saturates at p = n̄. However, compared to a single PCE,
a lower error is obtained also for p < n̄ (regardless of the
truncation threshold), as is shown, e.g., for the case with
p = 3. Indeed, albeit no longer being exact, a rational PCE
applied in conjunction with PCA compression provides a
modeling error that is about one order of magnitude lower
than the one obtained with the conventional single PCE.

TABLE 1. Accuracy of various PCE models for the impedance of the
parallel RLC circuit with uncertain inductance.

We perform a similar analysis by now considering all three
RLC elements to be uncertain, each with a Gaussian distribu-
tion and a 20% relative standard deviation. For the regression,
we takeK = 1200 samples, again from a Sobol sequence and
deliberately high for the regressions with various expansion
orders to be sufficiently overdetermined. We first consider a
direct FD modeling with both a single and a rational PCE.
The former is computed using a TD truncation of order
p = 5, which yields the best accuracy with the given training
dataset. For the latter, a first-order TP truncation is used,
yielding again an exact model. The corresponding RMSEs
are provided in the first two rows of Table 2.
We then apply a PCA compression using a threshold of

ε = 10−2. As a result of the increased variability caused
by the two additional uncertain elements, n̄ = 8 terms are
now retained. Figure 5 shows the scatter plots pairing the
magnitude of the PCA coefficients {Zn}8n=1, calculated from
101 impedance samples using (13), with the corresponding
values obtained using various rational PCE models. Specifi-
cally, each plot shows the prediction of a rational model with
TP truncation of order p = n − 1 (with the exception of the
plot for Z1, as p = 0would correspond to a constant function),
a TD truncation of order p = n, and a TP truncation of order
p = n. Keeping in mind that an accurate model results in the
points to be aligned along the bisector y = x (dashed line),
Fig. 5 allows us to draw the following conclusions:

FIGURE 5. Scatter plots of the PCA coefficients Zn for the impedance of
the parallel RLC circuit with three uncertain elements (rational PCE model
vs actual value). Cross, circle, and dot markers: (n− 1)th-order TP,
nth-order TD, and nth-order TP models, respectively.

• A TP rational PCE of order p = n virtually provides an
exact model for the corresponding PCA coefficient Zn,
similarly to the univariate case;

• A TD truncation of order p = n also provides an
acceptable model for higher-index PCA coefficients.

The appropriateness of the rational models of matching order
is further confirmed by the rapid convergence of the iterative
regression scheme, which does not occur for p < n.

Table 2 provides the information on the RMSE achieved by
using rational PCEs in conjunction with PCA compression.
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TABLE 2. Accuracy of various PCE models for the impedance of the
parallel RLC circuit with all uncertain elements.

The best compromise on the accuracy is found by using a
TD truncation and letting p = n̄ for all PCA coefficients,
although a marginal saving in computational cost could be
attained by tuning the order for each individual Zn. Compared
to single PCEs, a lower error is again achieved with rational
PCEs, even when p < n̄ is used.

V. APPLICATION EXAMPLES
In this section, we confirm the previous results through
the application of the proposed method to more meaningful
examples. All the structures are deliberately taken from the
existing literature.

We assess the performance based on the achieved RMSE
and on the ability of accurately reproducing probability dis-
tributions at a specific frequency. In addition, we show that
very good accuracy is usually obtained also for the entire
FD response for some specific random parameter configura-
tions, even though PCE-based methods tend to favor global
statistical accuracy on a large ensemble of parameter configu-
rations, at the expense of the accuracy on specific realizations.

All simulations are performed on a Dell Precision
5820 workstation with an Intel(R) Core(TM) i9-7900X,
CPU running at 3.30 GHz, and 32 GB of RAM.

A. NETWORK OF COUPLED TRANSMISSION LINES
We consider here the nine-port network with coupled
microstrip lines analyzed in [21]. The structure is shown
in Fig. 6 and consists of three sections with coupled
microstrip lines interconnected by lumped elements. Because
of reciprocity, the number of distinct port variables that needs
to be considered is Q = 45. We simulate the S-parameters
of the network with HSPICE at M = 401 equally-spaced
frequency points from dc to 20 GHz. Hence, the naive calcu-
lation of rational PCE models for all S-parameters requires
MQ = 18045 separate solutions of the linearized regres-
sion (7). For the error assessment, we calculate 5000 samples
of the scattering matrix.

In a first instance, we assume a uniform variability of the
length of the microstrip lines, in the interval [2.4, 3.6] cm,
and we compute K = 30 training samples using a Sobol
sequence. Then, we apply a PCA compression to the training
dataset using a threshold of ε = 10−2 on the singular values.
This leads to retaining only n̄ = 8 principal components,
i.e., less than 0.05% of the original data. Figure 7 shows

FIGURE 6. Schematic of the nine-port network with coupled microstrip
lines [21], with port definition.

FIGURE 7. Magnitude of the PCA coefficients for the S-parameters of the
network with coupled microstrip lines of uncertain length. Blue solid
lines: actual value; red dashed lines: single PCE model of order p = 3;
yellow, purple, and green dotted lines: rational PCE models of order
p = 3, p = 5, and p = 8, respectively.

the behavior of the PCA coefficients (solid blue lines) as a
function of the normalized length ξ , and compares it against
a single PCE model of order p = 3 (dashed red line), which
yields the lower maximum RMSE with the given training
data, and rational PCE models of order p = 3, p = 5,
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TABLE 3. Accuracy and computational times of various PCE models for the S-parameters of the network with coupled microstrip lines of uncertain length.

and p = n̄ = 8 (dotted yellow, purple, and green lines,
respectively). It is confirmed that a rational model of a given
order is accurate up to the PCA coefficient of the same
index, and that choosing an order that matches the number
of retained PCA coefficients ensures high overall accuracy.
The conventional single PCE model exhibits a large error for
all PCA coefficients instead.

Next, we lower the PCA truncation threshold to ε = 10−3,
which leads to n̄ = 11. In the top and bottom-left panels
of Fig. 8, we compare some random samples of a subset of
S-parameters from the reference HSPICE simulation (solid
blue lines) with the predictions obtained using a conventional
single PCE of order p = 3, applied directly to the FD
data (dashed red lines), and the proposed PCA-compressed
rational models of order p = n̄ = 11 (dotted green lines).
A remarkably better accuracy is obtained with the latter
approach, whereas the former is accurate only at low frequen-
cies. The bottom-right panel shows instead the RMSE over
the 5000 reference samples achieved by the conventional sin-
gle PCE and by the PCA-compressed rational models (solid
red and dashed green lines, respectively), for all the 45 dis-
tinct S-parameters. As in the previous examples, applying a
single PCE in conjunction with PCA compression provides
similar accuracy. On the other hand, it is confirmed that the
rational models provides a model that is orders of magnitude
more accurate.

Table 3 provides the main figures concerning the accuracy
and computational time of the various approaches, including
the direct FD application of rational PCEs as in [21]. This
approach is still feasible for this one-dimensional example,
but the processing time is already over 10× higher than with
the corresponding PCA-compressed model. The computa-
tional cost of the latter is comparable to the more efficient
(yet inaccurate) single PCE, for which the computational gain
achieved with the PCA-compression is marginal (about 2×).
The largest gain achieved by the PCA compression is on the
model training (i.e., the calculation of the model coefficients
through regression), but it does yield an improvement also on
the model evaluation time.

It is further established that rational PCE models provide
far superior accuracy compared to the conventional single
PCE models. As was already observed in Section IV, it is

FIGURE 8. Top and bottom-left panels: comparison between a subset of
actual S-parameter samples (solid blue lines) of the network with
coupled microstrip lines of uncertain length and their PCE models
(dashed red lines: conventional FD single PCE model of order p = 3;
dotted green lines: PCA-compressed rational PCE model of order p = 11).
Bottom-right panel: RMSE error for all S-parameters (solid red lines:
FD single PCE; dashed green lines: rational PCE with PCA compression).

found that taking p > n̄, or lowering the PCA truncation
thresholdwithout increasing the expansion order accordingly,
do not substantially improve the accuracy (results not shown
in the table). Finally, it is confirmed that similar accuracy is
attained when applying a conventional single PCE model to
FD and PCA-compressed data.

Next, we consider the same network but with uncertainty
in the substrate thickness and relative permittivity, both fol-
lowing a Gaussian distribution with a 10% relative standard
deviation. For training the models, we use K = 100 samples
from a bivariate Sobol sequence (cfr. Fig. 1). By setting
a PCA truncation threshold of ε = 10−3, the training
dataset is reduced to n̄ = 14 principal components. We use
a TD truncation for both single and rational PCE models.
As already noted, for this distributed structure, the use of a
more ‘‘expensive’’ (in terms of unknowns) TP truncation for
rational models is not motivated by their exactness, not even
in the FD as opposed to the lumped case in Section IV.

Figure 9 reports the average (left panel) and maximum
(right panel) RMSE, calculated over 5000 samples of the
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FIGURE 9. RMSE of the FD single PCE (red lines), FD rational PCE (yellow
lines), and PCA-compressed rational PCE (green lines) for the network
with coupled microstrip lines and uncertain substrate thickness and
permittivity, as a function of the PCE order. Left and right panels refer to
the average and maximum error over frequency and port, respectively.

S-parameters, obtained with various PCE models of increas-
ing order. In particular, the expansion order is increased
until the training of the rational models becomes unfeasible,
i.e., the pertinent regression problem is underdetermined).
This occurs at a lower expansion order compared to sin-
gle PCEs, given the higher number of unknowns (almost
double). With the available data, it is not possible to match
the order of the rational model with the number of retained
PCA coefficients, since L = 120 for p = n̄ = 14, and
therefore K < 2L − 1.

It is observed that the error of the single PCE (red lines)
steadily increases for expansion orders above three. Once
again, this is a classical manifestation of the bias-variance
tradeoff. On the other hand, the error of the rational PCEmod-
els is always well below the error of the single PCEs. It is also
interesting to note that the PCA-compressed model achieves
higher average RMSE compared to the direct FD modeling,
but lower maximum RMSE. This is readily explained by
the fact the iterative re-weighed regression (7) can locally
exhibit poor convergence, and hence a relatively larger error,
at some specific frequencies. However, these artifacts are
‘‘smoothed out’’ when working on the compressed data, with
PCA intrinsically acting as a regularizer.

Figure 10 compares the PDF of a selection of S-parameters,
computed at 18 GHz with the same three methods. Specifi-
cally, the distribution of the reference samples (histogram) is
compared against the PDFs obtained with a FD single PCE of
order p = 3 (solid red lines), a FD rational PCE of order p = 5
(dashed yellow lines), and a PCA-compressed rational PCE
of order p = 8 (dashed green lines). These models provide
the best accuracy with the given training data, according to
Fig. 9. The FD and PCA-compressed rational models provide
similar accuracy, which is far better than the one attained with
a single PCE. However, the FD model takes 138.2 s for the
training, as opposed to a mere 0.6 s required by the advocated
PCA-compressed method.

To better investigate the efficiency of the proposedmethod,
Table 4 compares the computational times for training the
rational models of increasing order considered in Fig. 9.
The processing time of the PCA-compressed models remains

FIGURE 10. PDF of a subset of S-parameters of the network with coupled
microstrip lines and uncertainty in the substrate thickness and
permittivity, computed at 18 GHz. The distribution of the reference
samples (histogram) is compared to the predictions obtained with a
single PCE of order p = 3 (solid red line), a FD rational PCE of order p = 5
(dashed yellow line), and a rational PCE of order p = 8 in conjunction
with PCA compression (dashed green line).

TABLE 4. Training times of the rational PCE models for the S-parameters
of the network with coupled microstrip lines of uncertain substrate
thickness and permittivity.

feasible and within seconds, whereas the construction in
the FD rapidly scales up to several minutes. For this very
reason, the analysis in [21] was limited to a small subset
of S-parameters. For this test case, the PCA compression
leads to a speed-up of two to three order of magnitudes.

B. COUPLED-LINE MICROSTRIP BANDPASS FILTER
The next test case considers the coupled-line bandpass filter
investigated in [36], consisting of six microstrip resonators
and shown in Fig. 11. The structure consists of a perfect
electric conductor (PEC) cover, an alumina layer with a
thickness of 0.635 mm, relative permittivity εr = 9.9, and
loss tangent tan δ = 0.0009, and a gold layer with a thick-
ness of 0.178 mm. Two-port S-parameters, evaluated with
the Keysight Advanced Design System (ADS) Momentum
simulator atM = 300 frequency points from 1GHz to 7GHz,
are available for 400 configurations of the width of the inner
microstrip sections W and their gap S, both in the range
[0.635, 0.889] mm and evaluated on a uniform 20× 20 grid.

We consider the two parameters to be uniformly dis-
tributed, andwe use Legendre polynomials as basis functions.
We use half of the points (i.e., K = 200) as training sam-
ples, and the remainder of the points as validation samples.
Specifically, we select the training samples as the available
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FIGURE 11. Top view of the coupled-line bandpass filter [36].

configurations that lie the closest to the first 200 points
of the Sobol sequence. The result is illustrated in Fig. 12,
where filled dots and circles denote training and validations
samples, respectively, in normalized units. Choosing a PCA
truncation threshold of ε = 10−3 leads to n̄ = 11. A rational
model of matching order has L = 78 terms and can be
therefore feasibly trained.

FIGURE 12. Training (red dots) and validation (blue circles) parameter
samples for the microstrip bandpass filter.

Figure 13 shows the comparison between the reference
S-parameters (solid blue lines) and the corresponding pre-
dictions obtained with the PCA-compressed rational model
(dashed green lines) for a selection of five validation points.
In addition, the dotted red line shows the RMSE over
the 200 validation samples, which turns out to be well
below −50 dB outside the bandpass region. The mean and
maximum RMSE over frequency and ports are 1.3587 ×
10−3 and 1.3840 × 10−2, respectively. The training of the
n̄ = 11 rational models for the principal components
requires 2.1 s.

C. PATCH ANTENNA
This example refers to the patch antenna analyzed in [37] and
shown in Fig. 14. The patch has a size of 16 × 12.5 mm.
The dielectric layer has a thickness of 0.794 mm and relative
permittivity εr = 2.213. One-port S-parameters (reflection
loss), evaluated again with the ADS Momentum solver at
M = 250 frequency samples from 1 MHz to 20 GHz, are
available for 1000 combinations, on a 10 × 10 × 10 cube,

FIGURE 13. S-parameters of the coupled-line microstrip bandpass filter.
Solid blue lines: reference responses from ADS Momentum; dashed green
lines: predictions of the PCA-compressed rational model; dotted red
lines: RMSE error over all the validation samples.

FIGURE 14. Top view of the patch antenna [37].

of the three parameters indicated in Fig. 14, namely the feed
stub length L ∈ [4, 10] mm, width W ∈ [2.5, 4] mm,
and offset S ∈ [7, 9] mm. Like in the previous example,
a subset of samples (250, in this case) that lie the closest
to the Sobol sequence, are selected as training data, and the
remaining 750 samples are used for validation. We apply a
PCA compression with a truncation threshold of ε = 10−2,
which leads to n̄ = 15. In this case, it is unfeasible to train a
model of matching order, which would have L = 816 terms
at the numerator and denominator. We therefore consider an
expansion order of p = 5 and a TD truncation.

Figure 15 provides the comparison for a selection of
S-parameter samples. As before, solid blue lines are the
reference S-parameters from the ADS simulation, the dashed
green lines are the corresponding predictions obtained with
the PCA-compressed rational model, and the dotted red line
is the RMSE over all the validation samples. Despite using a
non-optimal expansion order, very good agreement is again
established, with an average and maximum RMSE over fre-
quency of 3.5831 × 10−2 and 6.0897 × 10−2, respectively.
The model training takes 2.5 s.
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FIGURE 15. Reflection loss of the patch antenna. Curve identification is
as in Fig. 13.

D. PCB INTERCONNECT WITH SLOTTED GROUND PLANE
The last example concerns the PCB interconnect with slot-
ted ground plane considered in [38] and shown in Fig. 16.
A copper microstrip line with width t = 0.12 mm and a
thickness of 35 µm runs over a square dielectric substrate of
size a × b, with a = b = 100 mm, thickness h = 0.3 mm,
and relative permittivity εr = 4.3. The bottom ground plane
has a transversal slot of width w = 0.12 mm, with a nominal
length L and offset d from themidpoint of 15mm each. These
two parameters are considered as independent Gaussian ran-
dom variables with a 10% relative standard deviation.

FIGURE 16. PCB interconnect with slotted ground plane [38].

S-parameter samples are computed with Dassault Sys-
tèmes Simulia CST Studio Suite from dc to 10 GHz for
1000 random configurations of the uncertain parameters,
drawn according to a Latin hypercube design. A rational
model with Hermite basis functions of order p = 4 is trained
using the samples that lie the closest to the first K = 50
points of the normally-distributed bivariate Sobol sequence,
whereas the rest of the samples is used for validation. Using
a PCA truncation threshold of ε = 10−3 leads to retaining
n̄ = 27 principal components, making it unfeasible to train a
rational model of matching order.

Figure 17 compares a selection of five validation
S-parameter samples from the CST simulation (solid blue
lines) to the predictions obtained with the PCA-compressed
rational model (dashed green lines). An excellent agreement
is once again established, despite the large variability of the

FIGURE 17. S-parameters of the PCB interconnect with slotted ground
plane. Solid blue lines: reference responses from the CST simulation;
dashed green lines: predictions of the PCA-compressed rational model.

response, occurring especially at frequencies above 5 GHz.
For this example, the average and maximum RMSE over
frequency and port are 2.4394 × 10−2 and 7.3570 × 10−2,
respectively. The training of the model requires 0.2 s.

Furthermore, Fig. 18 shows the PDF of the S-parameters
computed at 7 GHz, i.e., the location of the large resonance
exhibited by the insertion loss. The proposedmethod achieves
a high accuracy, while requiring a very limited training time.

FIGURE 18. PDF of the S-parameters at the frequency of 7 GHz.
Histogram: distribution of the reference samples; line: prediction
obtained with the PCA-compressed rational model.

VI. CONCLUSION
This paper presented an effective method for constructing
rational surrogate models for the uncertainty quantification
of linear and passive electrical circuits and electromagnetic
structures in the FD, possibly characterized by large datasets
in terms of frequency points and number of ports. Rather
than training a separate surrogate model for each frequency
point and port variable of interest, the data is first compressed
using PCA, and a rational model is trained for the principal
components only. PCEs are leveraged for the numerator and
denominator of the principal components.

VOLUME 9, 2021 102743



P. Manfredi, S. Grivet-Talocia: Fast Stochastic Surrogate Modeling via Rational PCEs and PCA

Several theoretical insights were provided. First of all,
it was demonstrated that setting a relative truncation threshold
for the PCA, based on the magnitude of the singular values
of the dataset matrix, allows for a rigorous control of the
compression accuracy. Second, it was shown that using a
rational model for the principal components, in place of the
standard single PCE, yields a much better accuracy, in anal-
ogy with what was already observed for the direct application
of rational models to FD data. Moreover, numerical results
show that a model with an expansion order matching the
number of principal components yields the best accuracy,
although this is not always feasible as it potentially leads to
a model of intractable size. Nevertheless, very good accuracy
is also attained with lower expansion orders. Finally, it was
observed that the PCA-compressed modeling often achieves
a lower maximum error over frequency compared to the
FD modeling, thanks to the intrinsic regularization properties
of the PCA.

The technique was successfully validated based on several
application examples, ranging from a simple analytical test
case to distributed circuits and electromagnetic structures, for
which excellent accuracy was established. Compared to the
direct FD modeling, the advocated method requires a much
lower training time, in the order of a few seconds instead of
several minutes. However, the method is currently limited to
a small number of random variables, and it was tested up
to three uncertain parameters. Plans for future work include
addressing the scalability in terms of number of uncertain
parameters, possibly through the use of kernel-based expan-
sions and/or sparse regressions, as well as a more in-depth
investigation of the PCA performance.
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