
Received June 2, 2021, accepted June 27, 2021, date of publication July 15, 2021, date of current version August 9, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3097537

A Highly Modular Software Framework
for Reducing Software Development
Time of Nanosatellites
AISHA K. EL ALLAM 1, ABDUL-HALIM M. JALLAD 2,3, (Member, IEEE),
MOHAMMED AWAD1, MAEN TAKRURI 4, (Senior Member, IEEE),
AND PRASHANTH R. MARPU5, (Senior Member, IEEE)
1Department of Computer Science and Engineering, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
2Department of Electrical Engineering, United Arab Emirates University, Al Ain, United Arab Emirates
3National Space Science and Technology Center, United Arab Emirates University, Al Ain, United Arab Emirates
4Department of Electrical, Electronics and Communications Engineering, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
5Group 42, Abu Dhabi, United Arab Emirates

Corresponding author: Abdul-Halim M. Jallad (a.jallad@uaeu.ac.ae)

This work was supported in part by the United Arab Emirates Space Agency.

ABSTRACT The standardization of the physical aspects of nanosatellites (also known as CubeSats) and
their wide adoption in academia and industry has made the mass production and availability of off-the-shelf
components possible. While this has led to a significant reduction in satellite development time, the fact
remains that a considerable amount of mission development time and effort continues to be spent on flight
software development. The CubeSat’s agile development environment makes it challenging to utilize the
advantages of existing software frameworks. Such an adoption is not straightforward due to the added
complexity characterized by a steep learning curve. A well-designed flight software architecture mitigates
possible sources of failure and increases mission success rate while maintaining moderate complexity. This
paper presents a novel approach to a flight software framework developed specifically for nanosatellites.
The software framework is characterized by simplicity, reliability, modularity, portability, and real-time
capability. The main features of the proposed framework include providing a standardized and explicit
skeleton for each module to simplify their construction, offering standardized interfaces for all modules
to simplify communication, and providing a collection of ready-to-use common services open for further
enhancement by CubeSat software developers. The framework efficiency was demonstrated through a
software developed for the MeznSat mission that was successfully launched into Low Earth Orbit in
September 2020. The proposed software framework proved to simplify software development for the
application developer while significantly enhancing software modularity.

INDEX TERMS CubeSat, flight software, nanosatellites, software architecture.

I. INTRODUCTION
Nanosatellites are loosely defined as satellites with a total
mass of less than 10 Kgs. The introduction of the CubeSat
standard has led to a reduction in the cost, development
time, and engineering effort associated with launching these
nanosatellites through the standardization of hardware mod-
ules and subsystems. However, much less attention has been
given to the software architecture, qualities, and character-
istics despite their being mission-critical components [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

Additionally, the need for a short orbit time has been impacted
by long software development cycles due to the traditional
custom approach of creating unique software for each mis-
sion. This recent realization has led to several attempts to
develop a software architecture that asserts correct function-
ality as well as completes an adaptable standard counter-
part of CubeSat hardware. The software architecture is the
set of structures needed to reason about the system and its
properties. The reasoning should be about vital attributes of
the system, including functionality achieved by the system,
system’s availability in the face of faults, the difficulty of
making specific changes to the system, and many others [2].

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 107791

https://orcid.org/0000-0001-8157-568X
https://orcid.org/0000-0002-1874-7722
https://orcid.org/0000-0001-9785-3920
https://orcid.org/0000-0001-7300-9215


A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

TABLE 1. Common architectural components among existing frameworks.

In the process of pursuing an architectural design to fulfill
well-established requirements such as modularity [1], [3],
reliability [2], [4], and reusability [2], [5], existing archi-
tectures instinctively formed a common standard system of
elements. This is demonstrated in Table 1, in which many
architectures follow a modular structure. The elements are
static modules of some kind, such as classes, layers, or a
division of functionality [2]. Despite their varying complex-
ity, implementation, and language of choice, the architectures
were designed to follow very similar concepts encapsulating
the software into a layered hierarchy with the core functional-
ity divided into two: common functionalities and user-defined
functionalities. Reusability is promoted by having the appli-
cation built as a combination of standard functionalities that
capture the main behavior common to all nanosatellites, and
application-specific functionalities, which are specified by
the user for each separate project. All the listed frameworks
divide each layer’s functionality into modules and define the
possible dependencies between modules such that they can
be added, modified, and removed without affecting the entire
system. Each of the frameworks presented in Table 1 uses
a different concept as their core unit to achieve modular-
ity e.g., Application in NanoSat MO framework, Client in
SUCHAI, and Components in F Prime. The application level
functionalities may be either taken over from the standard
functionalities or created as standalone instantiations of the

defined modular unit. The main differences lie in the inter-
action pattern, the number of core functionalities offered,
semantic standardization of messages or commands, and how
portability is achieved through the layers beneath. Regard-
less of the implementation details, the learning curve asso-
ciated with the frameworks mentioned in this article, and
generally in the scope of nanosatellite software frameworks,
is steep considering a CubeSat project’s agile nature. Never-
theless, the trends observed in Table 1 provide a good starting
point in constructing an architecture that suits the CubeSats
requirements.

This paper proposes a software framework for CubeSat
missions that expedites the CubeSat software development
cycle using the methodology described in Fig. 1. We achieve
this by providing the tools that allow developers to con-
struct and tailor their flight software in short development
cycles. These tools combine design flexibility, explicit soft-
ware design and reliability features uniquely required by
CubeSat missions. Although several other software frame-
works for satellites were reported in the literature, most of
them target larger satellites requiring very complex mis-
sion flight software with great emphasis on reliability rather
than simplicity. When used for nanosatellites, these frame-
works lead to additional complexity and longer develop-
ment times given the steep learning curve involved. Many
software projects fail to manage complexity because they

107792 VOLUME 9, 2021



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

FIGURE 1. The methodology used to develop the framework starts by
collecting data based on previous work and current cubesat missions and
frameworks. Next, the data is analyzed and categorized based on
common and mission-specific requirements before being implemented in
a case study.

do not consider control of complexity to be part of the
architecture [6].

The proposed framework provides multi-level flexibil-
ity by allowing developers to define the services they
would like to include, allowing easy interfacing to the
application layer, and providing a template and a skele-
ton for developing custom services. The software frame-
work emphasizes development simplicity through the explicit
definition of module skeletons and interfaces. In addition,
the framework ensures reliability that is embedded within
the system design. The article also contributes to the liter-
ature by providing an up-to-date requirements analysis of
flight software frameworks concerning nanosatellites and
briefly reviews the relevant projects and research in this
area.

The paper begins by outlining the characteristics of exist-
ing frameworks and defines the most desired attributes of a
flight architecture based on literature and experience. These
attributes are described within the proposed architectural
software design before their applications are demonstrated
based on own experience in building MeznSat, a CubeSat for
Greenhouse Gases Monitoring [7].

II. IDENTIFYING THE REQUIREMENTS
The past two decades of space missions reveal some common
behavioral patterns for CubeSats. Requirements were created
to satisfy the functional traits and qualities of flight software
given the limitations and external conditions that affect the
development environment such as funding and piggyback
launch opportunities. Ideally, the functional requirements
must be fulfilled through the period of development without

deteriorating the quality of the non-functional requirements.
Based on our previous experience developing software for
CubeSats and our review of the literature, we have identified
a set of requirements that we believe are necessary for a
flight software framework that facilitates a shorter software
development lifecycle especially within an agile, flexible, and
time-constrained development environment. In this section,
we present these requirements and the motivations behind
them.

Non-functional requirements constitute the justifications
of design decisions and constrain the way in which the
required functionality may be realized [13]. Defining an
appropriate set of requirements necessitates a clear under-
standing of the quality attribute itself and how it drives the
system to reach the desired outcome. The accumulation of the
design decisions based on these quality attributes formulates
the architectural blocks. Several attempts to define a general
set of requirements common to all nanosatellites forming the
basis of the software architecture have been reported in the
literature [4], [13]. The most repetitive features include mod-
ularity [1], [3], [14], reusability [2], [5], [11], [15], extensibil-
ity [15], [1], portability [5], [15], [14] re-configurability [16],
scalability [5], [14], fault tolerance [3], [17], and auton-
omy [1], [3], [17]. Frequently, the definition of a par-
ticular feature varies slightly from one solution to the
other. In KubOS [12], the portability of services with no
code change is possible given that they are ported to a
KubOS-supported On-Board Computer (OBC). In contrast,
in cFS [9], portability is defined as having an Operating
System Abstract Layer (OSAL) to provide portability to
different OS (Linux, RTEMS, FreeRTOS, etc.). Similarly,
reliability in Manyak [3] meant that the uplink time must
be maximized, while Normann and Birkeland [15] refers
to the ability of the OBC to recover from transient errors
such as Single Event Latches (SEL) and Single Event Upsets
(SEU). In other papers, they are used interchangeably, for
example ‘‘reliability’’ in Miranda et al. [14] is a synonym to
‘‘robustness’’ in Pessans-Goyheneix et al. [16]. The question
then becomes: what does it mean to be ‘‘x’’ in the context
of a flight software for a small satellite? While many of
these attributes are essential in the domain of space mission
software, a notable attribute that is often left behind, perhaps
due to traditional hardware centric approach, is the level of
complexity (or simplicity) of flight software development.
The term ‘‘complexity’’ for software remains ill-defined and
loosely used [18], leading to various definitions with differ-
ent meanings. In Zuse [18] various definitions of software
complexity are presented, however it is highlighted that ‘‘the
measurement of complexity is synonymous with determin-
ing the degree of difficulty in analyzing, maintaining, test-
ing, designing and modifying software.’’ This definition is
also supported by researchers in the CubeSat flight software
community defining the importance of reduced complexity
leading to ease of understanding, a gentle learning curve and
having a Minimum Viable Product (MVP) up and running in
the least amount of time [4].

VOLUME 9, 2021 107793



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

TABLE 2. Attributes driving the architectural design as compared in
previous frameworks.

In a mission-critical agile environment, the CubeSat archi-
tect’s very high tendency to overshadow the quality attributes
in efforts to satisfy the functional behavior of the system
without constraint is more of a reason to keep these frame-
works easy to deploy and integrate since they must encap-
sulate the anticipated attributes [19]. Table 2 summarizes
the general attributes, including simplicity, which we believe
should drive CubeSat software’s design pattern. The table
also indicates whether other software frameworks achieve
them or not. The simplicity level of the frameworks was
measured by attempting to implement the same use case using
each framework and by analyzing previous literature.

Having quite the flight heritage, the NASA cFS frame-
work [9] is a strong candidate for satellites in general.
However, it is still technically challenging for new users to
configure and deploy due to its embedded history with big
complex satellites, and thus lacks the aforementioned sim-
plicity [20]. Also, as a governmental organization, it is diffi-
cult for NASA to implement an open-source product business
model [21]. Although the OpenSatKit [20] was created to
lessen these problems, it introduces its own learning curve
with additional complexity from two other bundled tools, the
COSMOS and the 42 Simulator. F prime by the Jet Propulsion
Laboratory is another open-source framework byNASA [11].
Unlike cFS, it is specifically tailored for small-scale systems,
reducing complexity, and uses static topologies with types
connections to provide strong compile-time guarantees.

On the other hand, SUCHAI [4] was able to capture
the essence of simplicity through an architecture based on
a command processor design pattern, in which commands
can be added through a simple interface. Chosen by design,
the asynchronous nature of the architecture, however, expels
the real-time requirement by having inaccurate timings for
its command execution. For instance, a flight plan schedule
could be delayed due to the long execution time of a previous
command call. The architectural design of having all the
commands go through a proxy-like component and having
this very component responsible for any additional control
strategies required by the CubeSat may further jeopardize
the real-time execution and reduce the modularity of func-
tionalities. Ideally, real-timeliness must be realized while
maintaining an organized execution flow.

While LVCUGEN promotes modularity and software
reuse [35], the framework was developed with a completely

different set of design goals than the nanosatellite frameworks
considered in this paper. Thus, the authors did not investigate
it further.

The common non-functional requirements of CubeSats are
summarized as follows:

NFR1The flight software shall be simple and explicit. This
is measured by how fast the programmer could plug-and-play
with the framework at hand and understand how to interface
between modules.

NFR2 The software shall be modular and extensible in the
sense that a new functionality should not majorly affect sepa-
rate functionalities and extending to a functionality should not
result in changing several separate areas of the structure. This
enhances maintainability and modifiability of the software in
the long run.

NFR3 Portability. With the growing number of space-
grade components and platforms on the market (microcon-
trollers, operating systems etc.), the flight software shall be
built with the possibility in mind of porting it to other hard-
ware and software targets.

NFR4 Reliability. The flight software shall adopt tech-
niques that enhance robust and reliable data communication
between its components and reinforce software assurance
techniques such as software resets.

NFR5 The flight software shall have the ability to sup-
port real-time operations from both the OS and framework
levels. The OS must handle inter-component communica-
tion and intra-component deadlines to satisfy their real-time
requirements. This is usually fulfilled by utilizing an RTOS.
Simultaneously, the framework architecture patterns of data
and control interaction among the components must not be
constructed in any way that delays the flow of commands.
This quality is part of enhancing the performance of the
system.

It is worth noting that some software requirements such
as Fault Detection Isolation and Recovery (FDIR), schedula-
bility and system reconfiguration are required for the actual
mission flight software, and is not a requirement for the soft-
ware framework design. FDIR implementation for example
requires tight interaction between software and hardware to
determine what kinds of hardware and software detectors,
monitors, sensors and actuators are best suited for the mission
and the FDIR software will be designed accordingly [37].
In other words, FDIR implementation is the responsibility
of the flight software developer. The proposed framework -
as with the other frameworks reviewed in this paper - is
designed to be a tool for flight software developers to design
flight software for nanosatellites. Final mission software will
have to incorporate these important requirements of flight
software, which in the context of the proposed frameworkwill
be designed as dedicated software modules.

III. SOFTWARE ARCHITECTURE DESIGN
Based on the requirements identified in section 2 and previous
experience in designing and implementing flight software
for CubeSats, we propose a solution based on a four-layer

107794 VOLUME 9, 2021



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

architecture. The solution emphasizes simplicity and explic-
itness while respecting the need for reliability and real-time
operations for space applications. The idea is for flight soft-
ware engineers to be able to adopt the framework with a
minimal learning curve. The proposed framework has the
following features: (1) Standardized and explicit skeletons for
each module that would simplify their construction; (2) Stan-
dardized interfaces for all modules that would facilitate their
communication; (3) Uses C language as it is the most com-
monly used in space software; (4) A collection of common
services that are ready to use and extend. Standardizing the
skeletal architecture of a module and its communication rein-
forces reusability while reducing the learning curve associ-
ated with having several custom architectural components.
Modules are defined as a set of related functionalities encap-
sulated in a task or a thread.

FIGURE 2. General architecture overview.

The overall architecture of the proposed framework is
shown in Fig. 2. This architecture follows a layered approach
as layered structures cut propagation of errors [1] and engen-
der portability [2], as demonstrated earlier in Table 1. The top
layer is the application layer and contains mission-specific
modules to be developed by the mission software team.
Examples of such modules would include payload opera-
tion, attitude control, housekeeping, and spacecraft initializa-
tion procedure. Beneath the application layer is the services
layer, which provides reusable modules that are common to
CubeSats in general and would include modules such as file
management and event logging. Users may simply use the
services to fulfill their mission applications or create their
own services. This approach provides a growing library of
services that can be used as needed by any CubeSat software
team. The services layer sits on top of a real-time oper-
ating system. Typically, an Operating System Abstraction
Layer (OSAL) will be present in order to allow multiple
operating systems to be used with the framework and there-
fore achieve portability across OS’s (NFR.3). FreeRTOS is
vastly popular within the CubeSat community/industry due
to its lightweight memory footprint (5 to 10 KB of ROM).

In addition, it provides a variety of ports to commonly
used microcontrollers which makes it a good choice in
space to reduce development time and improve the learning
curve [22]. Hence, we base the framework implementation
on FreeRTOS at this stage, with future work being planned to
integrate other operating systems such as Linux and RTEMS
with the OSAL. AHardware Abstraction Layer (HAL) is also
available for commonly used CubeSat hardware, including
the drivers required by the Operating System and the appli-
cation (UART, I2C, etc.).

The main components that make up the architecture
are the application modules, service modules, and request
and response interfaces. The architecture separates service
requests from their execution by requiring application mod-
ules to communicate the requests to the service module.
Historically, the request-response paradigm has been adopted
in many specific fields due to its simple but powerful mes-
saging pattern [23]; it is especially common in client–server
architectures [24]. In the subsections below, we provide
details of each component within the framework.

A. REQUESTS AND RESPONSES
Communication to and from application and service modules
is made through a common interface to maintain the modu-
larity of the software, and therefore add and remove modules
seamlessly without affecting the rest of the system. Namely,
the interfaces that need to be respected are the ‘‘request’’ and
‘‘response’’ interfaces. Requests and responses are mecha-
nisms for inter-component communication made through a
communication object (e.g., Queues). A request is typically a
command made to another module to perform some service
such as writing to a file; while, a response signals the comple-
tion of that service along with information about its execution
state.

In order to prevent the involuntary suspension of the exe-
cution of an application module (or a service user in general)
while waiting for a response to the request, a request/response
for a service is designed to follow a similar form of split-phase
programming [25]. The first phase consists of issuing the
request by the applicationmodule, which returns immediately
indicating whether the request was placed or not. The sec-
ond phase involves the service provider issuing a signal to
indicate if the request was successfully received to reinforce
the reliability of communication (NFR.4). Failure to provide
this signal will signal the application module to repeat the
request based on the request’s importance. In the event that
the application module was expecting a response, it will then
optionally choose to place a block on the response with a
dedicated timeout or resume operation before periodically
checking for the response.

Great emphasis is placed on timeouts in the process of
communication between modules because they can indicate
a service failure in the layer below. The fault can be dealt
with directly in the mission module or by another service
that performs health and recovery techniques (general reset,
component reset, etc.) based on each service’s heartbeat. In its

VOLUME 9, 2021 107795



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

simplest form, a request consists of a command that encap-
sulates all the required information needed for its execution
by another module and is represented by a C struct. The
information included in the C structure communicated to the
service user is:
• Identification: used to identify a command/action within
a service uniquely.

• Parameters: the values required by the service in order
to execute the command.

• Priority: urgent requests can be given a high priority,
while normal requests are given the default priority.

• Response state: indicates if the service user is interested
in receiving the response to this request. This can be
used if the user wants to defer response management to
the service module itself. Similarly, the service module
can also choose to defer response handling to another
service. This avoids the compulsory coupling of the
response to the sender of the request.

• Response queue: pipe in which the responses related to
this request are placed if the response state is true.

• Signal: indicates that the request has been successfully
and reliably communicated to the service.

Other useful information related to the request such as the
timestamp, source, and CRC is automatically appended when
the request is made to enhance reliability (NFR.4) through the
integrity of command transmission, comprehensive data log-
ging, and increasing error detection strategies while reducing
the developer’s effort. The request has the property of pri-
ority, pertinent to the quality attribute of real-time execution
(NFR.5). Implementation wise, the priority of a request is
used to decide whether it should be sent to the front or to
the back of a service request queue to provide precedence to
urgent requests if other requests already existed in the request
queue as depicted in FIGURE 3.

FIGURE 3. High priority requests are sent to the front while normal
requests are sent to the back.

The response consists of information about the request
execution result from a service provider to the service user
who made the request. In addition to meta data such as the
timestamp, CRC, and source, the response consists of a C
struct (Fig. 4) which encapsulates information such as:

• Identification: used to identify a reply within a module
uniquely

• Result Code: stores the result/telemetry of the
execution

FIGURE 4. Request structure from an app module to a service module
with a reply structure from the service to the app.

B. APPLICATIONS MODULES
The application modules consist of mission-specific require-
ments that can be fulfilled through the help of reusable service
modules. A CubeSat software developer composes an appli-
cation by writing requests to a service provider and receiving
responses as the service user. An application module can
only be a service user, therefore sending requests to other
services and reacting to the received responses appropriately.
Additionally, application modules are not allowed to commu-
nicate with each other directly to organize the architectural
execution flow of program and to make the design more
routine and predictable. Direct communication via requests
and responses jeopardizes the architectural framework. How-
ever, communications between mission modules can be made
through a routing service in the service layer if this function-
ality is desired.

Typically, an application module is represented by a task.
A task is the multitasking unit used by the framework and
is a higher-layer abstraction of the operating system-specific
task/thread/process implemented in the OSAL. For instance,
creating a task in the software would be done using
OS_create_task which would consequently create a task in
FreeRTOS or a process in Linux. All modules created will
be associated with an ID/Name in order to be referenced and
identified by the service layer applicably.

FIGURE 5. The sequence of request and response cycle between an
application module and service.

FIGURE 5 illustrates the sequence of communication
between a service user, the Payload application module, and

107796 VOLUME 9, 2021



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

a reusable service, the Event Logger. The Payload module
starts by creating and sending a request before checking if
the request was successfully received or not. Based on the
requirements of the application module, it can then decide
to block on the response queue with a timeout or execute
other operations before checking again. The figure depicts a
non-blocking check in which the Payload module performs
some other computation before it checks again and reads the
response.

The standard skeletal architecture of the application mod-
ule will therefore consist of making service requests followed
by confirming their reception, reading their responses and
processing them if desired along with other mission-specific
operations and control strategies. Listing 1 demonstrates a
housekeeping application mission that runs periodically to
collect data before requesting the common file management
service in order to store it into non-volatile storage. The
housekeeping module waits for the response to be available
for a maximum of 10 seconds before moving on.

LISTING 1. Skeletal view of a housekeeping application module
communicating HK to the file manager service.

Since services are identified by the commands they pro-
vide, a service user (application module) will need to look at
a manual-like script (commented header file, word manual,
etc.) in order to understand how to interact with the ser-
vice, including the parameters required per ID. A verification
check is performed for each command directed at a service to
check if the command request is valid. Although the check is
implemented as a function call for requests at arrival, its inclu-
sion as an architectural component is also plausible. In this
case, requests will go through the verifier component before
being redirected to their dedicated service. The component
must be implemented with a requirement of low latency per
command to prevent command execution delays.

C. REUSABLE SERVICE MODULES
A reusable service module provides common functionali-
ties that are usually required by all CubeSats. A service is
defined by the nature of the commands it provides; therefore,

a command is identified by a unique ID within a service.
A service abstracts a hardware resource (ex. Time service
abstracts the hardware RTC) or provides common functional
sequences (e.g., a service to aggregate data coming from other
services). A group of ID’s can be reserved for each service
that defines its own ground interface for the ground operator
to interact with the service. In the framework, a service is
characterized and identified by a C struct with the following
members:

• Name: a name to uniquely identify the service
• Function prototype of the service
• Parameters the service takes in if any
• Request queue: each service maintains its own queue for
other service users to place their requests through.

• A preliminary list of all the commands offered by the
service

All service interfaces are provided through service.h and con-
sist of creating, deleting and managing a service in general.
The initial configuration of a service is made through popu-
lating the structure and passing it into a function call to start
the service in the main, as demonstrated in Listing 2, while
modification to a service can be made at runtime through
shared memory regions (global variables).

LISTING 2. Entry point of flight software.

Like the application modules, a service module is repre-
sented by a task, however, with a different standard skeletal
body. Unlike the application modules, services can commu-
nicate with each other via the same interfaces an application
module and a service module communicate. The service’s
adapted skeletal body consists of conditional statements that
execute the request based on the ID. Typically, any mod-
ule providing a common service must follow this skeletal
body implementation in order to be added to the service
layer. Listing 3 demonstrates how a file management service
would appear. Consequently, removing a functionality from
a service will only require the removal of its corresponding
conditional statement and functional extensibility (NFR.2)
is achieved in a service by the addition of a conditional
statement for a new command.

VOLUME 9, 2021 107797



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

LISTING 3. File management service pseudo-code.

The following extensible set of services define solutions
required by previously deployed CubeSats that can be imple-
mented in the service layer:

• Event Logger Service: Consists of a service that logs
events into a non-volatile memory location on the OBC,
usually being the SD card. Logging events and espe-
cially errors are critical to assess the operation of the
satellite, identify faults, and measure the effectiveness of
the fault tolerance and recovery strategy onboard [26].

• File Manager Service: Provides an interface for protect-
ing and managing files such as storing and retrieving
data from non-volatile memory locations on the OBC.
This may be utilized by the Housekeepingmission appli-
cation to store the collected data from the subsystem to
the SD card.

• Parameter Manager Service: Provides an interface for
storing and managing system and operational param-
eters such as the status of the satellite, time, counter,
etc. The service takes care of protecting simultane-
ous accesses to the parameter storage location, usually
the FRAM, and enables parameter defaulting when the
satellite is required to reset to a valid state in case of an
anomaly [27].

• Activity Scheduler Service: Enables the execution of
scheduled events based on a timestamp or count
down [27], [4].

• Mode manager Service: Disables and enables other
services and mission applications based on the satel-
lite’s predefined operation modes. Modes of opera-
tions help manage the satellite state based on events
that may put the satellite at risk. The simplest form

of using this service is defining what services/mission
apps should run during nominal operations versus Safe
mode [26], 28], [29], [13].

• Health and Monitor Service: Executes events based on
values and events [26]. Mission modules may commu-
nicate with this service based on a custom pre-defined
period to confirm their heartbeat. In case a mission mod-
ule fails to deliver the heartbeat request in its designated
time, this service may restart it (watchdog).

• Ground Contact Service: provides a common interface
for sending and receiving telecommands and telemetry
from the ground. Each service offers a ground interface
that the ground contact service is familiar with. (A task
that sends telemetry to the ground, all other services can
pass telemetry to its queue.)

• Software Bus Service: provides a shared communication
channel that facilitates connections and communication
between software modules.

The architecture above addresses the set of NFRs identified
in section II as follows:

NFR1 - Simplicity and Explicitness: The explicit and solid
definition of the software unit (application modules and ser-
vices) skeletons and the interfaces. The skeletons and inter-
faces are designed to be as explicit and straightforward as
possible.

NFR2 - Modularity and Extensibility: Adding a new func-
tionality consists of either adding a new service module,
adding a new App module, or extending on the conditional
statements of an existing module.

NFR3 - portability: An OSAL layer enables porting to
other OSs.

NFR4 - Reliability: Components interact in one defined
way to aid reliability [2]. The requests and responses follow
a reliable 2-phased sequence for communication between
applications and services while allowing them to carry the
necessary information.

NFR5 - Real-time: Requests have a priority level to deter-
mine precedence for execution backed up by an RTOS.

IV. MEZNSAT: A CASE STUDY
Four verification and validation methods for small satellites
were identified in the survey conducted by Jacklin [36].
These four methods, identified based on a review of more
than 165 articles, are as follows: 1. Simulation and testing,
2. Model-based software design and verification, 3. formal
methods, and 4. fault-tolerant software design and verifica-
tion by run-time monitoring. The first method, namely the
extensive testing of flight satellite software functionality and
performance using flight hardware, testbeds, and simulation
tools, is themost commonmethod for satellite software assur-
ance [36]. We have plans to expand our project’s scope by
developing a software simulator capable of offering module
developers the ability to validate and verify each module
without the need for flight hardware. However, this is beyond
the scope of this article, which focuses on the software frame-
work architecture. Hence the V&V is done through actual

107798 VOLUME 9, 2021



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

testing on flight hardware, as demonstrated by the case study
presented in the section.

This section demonstrates the proposed software archi-
tecture applied to MeznSat; a CubeSat developed jointly by
the American University of Ras Al Khaimah (AURAK) and
Khalifa University (KU) [7]. MeznSat is a 3-unit (3U) Cube-
Sat with exterior dimensions of 10cm × 10cm × 30cm and
a mass of approximately 4 kg. Equipped with two imaging
payloads, the primary scientific objective is to explore the
performance of sensing in the shortwave infrared (SWIR)
region (1000–1650 nm) to detect the levels of greenhouse
gasses. The tentative secondary experiment is to investigate
the possibility of detecting algal blooms using the SWIR
spectrometer data. MeznSat was successfully launched on
September 28, 2020.

Through practical demonstration, the architecture will be
evaluated for the correctness of the described qualities while
fulfilling the CubeSat’s functionality. The essential functions
of the CubeSat software are common to all spacecrafts, with
the primary behavior summarized in the following points:

FR1 Shall have the capability to periodically collect and
store telemetry in non-volatile storage.

FR2 Shall have the capability to execute scheduled pay-
load operations at a designated time.

FR3 Shall have a telemetry and telecommand interface to
send data and receive commands from the ground station.

FR4 Shall automatically switch to Safe mode in the event
of some predefined faults.

FR5 Shall log occurring events on the satellite.

FIGURE 6. Application and service layers of MeznSat flight software
based on the proposed architecture. The arrowed connections
demonstrate the flow of requests and responses. Control strategies such
as signals are not demonstrated shown in this diagram.

Based on these requirements, the two-layered architecture
formulated in FIGURE 6 contained the following mission
modules, with some of the services mentioned in the previous
section.
• Safe check module: runs the fault detection and recov-
ery algorithm based on health variables and signals
to satisfy FR4. It communicates with the Mode Man-
ager Service in order to switch modes of the satellite
based on the modes defined in the concept of opera-
tions. Modes are defined by the enabled functionality
of the satellite, consequently the running modules. For
instance, the Payload module will be suspended to pre-
vent payload operation during Safe mode.

• Housekeepingmodule: satisfies FR1 by aggregating data
from several subsystems into a specific sequence of data
stored via the File Manager to be readily available for
download.

• Payload module: implements payload calibration in
which the two payloads take several images at approx-
imately the same time. It communicates with the
File Manager service to store payload outputs as
per FR2. Due to the high volume of data com-
ing from the payloads, the File Manager offers two
open-source compression schemes to compress the data
before storage. The first scheme, miniLZO, uses the
Lempel–Ziv–Oberhumer (LZO), a portable, lossless
data compression algorithm focusing on decompression
speed [30]. The second scheme, miniZ, is a lossless,
high-performance data compression library in a single
source file that implements the zlib (RFC 1950) and
Deflate (RFC 1951) compressed data format specifica-
tion standards [31].

• Ground contact: handles incoming commands from the
ground stations, requesting services based on the com-
mand before sending back the response as an ACK,
NACK or telemetry. This module communicates with
every service in order to make them accessible to the
ground station. The nature of the architecture encour-
ages this module to be implemented as a service as well.
It comes back to the desired flow of commands and the
offered command functionality based on the software
architect.

• Initial Checksum: handles initialization activities such
as 30 minutes idle time post-deployment and antenna
deployment.

• Beacon: sends a periodic beacon consisting of cru-
cial system variables. This module does not make any
requests to any service; however, the ground operator
may still alter a few functionalities, such as the period
of transmission through the Parameter Manager.

The housekeeping mission module collects around
400 bytes of raw data from several subsystems before it
requests their storage into one of the SD cards onboard.
A typical design would consist of creating one task which
collects and stores the data as well. Amore modular approach
will consist of two tasks that communicate through a queue
that is configured only to take in an array size of 400 bytes.
Hardcoding mission-specific values eliminate the possibility
of reusability and extensibility in future missions. Alterna-
tively, the flight architecture commonizes the components to
enable communicating different data types of different sizes
and customizes operation on data based on the ID in a service.
Consequently, the data and the data size must be sent as
parameters of a request as demonstrated in FIGURE 7.

The payload operations sequence is an example of ful-
filling the mission requirements through control signals
and services. Scheduled payload operations begin with the
operator sending a designated command with a timestamp,
as demonstrated in Fig. 8. The Ground contact app module

VOLUME 9, 2021 107799



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

FIGURE 7. Specific un-reusable implementation vs common reusable
implementation.

FIGURE 8. Payload operation process. The process starts with a command
from the ground station to schedule a payload execution. The ground
contact sends a request to both the activity scheduler and parameter
manager to store the time schedule. The activity Scheduler starts a timer
that notifies the payload app module when to run.

communicates the timestamp through a request to theActivity
scheduler, starting a timer. The Payload App module runs
when the timer is off through receiving a signal (i.e., binary
semaphore) from the Activity Scheduler. The parameter man-
ager is used to store the timestamp in case of a reset in order
to avoid loss of the schedule data and consequently miss a
payload operation opportunity.

Carefully designed modes of operation of a CubeSat con-
tribute to the mission success by managing the state of
the satellite based on planned and unplanned events. The
design is usually driven by the mission payload, power and
communications budgets, along with a fault detection, isola-
tion and recovery plan based on the software and hardware
components. The architecture complements this requirement
through a Mode Manager Service in which the currently
running components define the mode of operation. MeznSat
is designed to change modes from normal mode in which
all functionalities are running as usual to safe mode based
on several observed critical variables. Once the safe mode is
enabled, minimum functionality is achieved by suspending
non-major tasks to isolate possible sources of the problem,
lowering the risk of permanent failure until human operators
inspect it in a ground station range.

Specifically, the MeznSat observes multiple telemetry
points including three main critical variables in the safe
application module: total voltage, tumbling angle and reset
signal. FIGURE 9 demonstrates how the CubeSat switches to
safe mode once the voltage becomes lower than a predefined
threshold. A request is made to the Mode Manager to disable
the payload mission module and the activity service to stop
payload operation and to prevent further scheduled operations

FIGURE 9. Switch from normal mode to Safe mode procedure based on
voltage. Add payload off procedure.

as per the safe mode requirement. The safe mission module
also requests to change the rate of the beacon to lower power
consumption and turn off any payload if they were already
powered on.

A notable example of the importance of modemanagement
on flight software occurred when no ground contact was
established with the satellite for 168 hours during one of the
endurance test sessions. The EPS was previously configured
to proceed with a special type of reset if no contact was
established for a long time, in which all its configured values
would revert to their original values. The original configura-
tion turns on the payloads after a reset, which is undesirable
for the mission due to their high-power consumption. The
safe mode protected the satellite from a complete power drain
and potentially a total mission failure by disabling payload
operation and allowing the CubeSat to charge until the ground
operator reverted the EPS configuration values to the desired
mission configuration.

V. DISCUSSION
CubeSat Software development forms a bottleneck in the
CubeSat development cycle. In this paper, we presented a
software framework to overcome this issue. It is a simple
framework that can reduce flight software development time
while maintaining CubeSat missions’ required reliability lev-
els. The proposed framework’s design philosophy depends
on defining standardized skeletons for the building blocks of
the software and standardizing the interfaces between them.
Standardization would provide a pre-defined structure to the
software developer that would simplify the software construc-
tion process. Mission services can be built with well-defined
interfaces that can be used by mission software developers to
construct their applications by interfacing with these services.

To quantify the main attribute of the architecture’s sim-
plicity, we used the Halstead metrics [32] to measure a
flight software’s cognitive complexity with and without the
framework. Unlike the widely known asymptotic complex-
ity metrics, which are commonly expressed in terms of the
‘‘Big O notation,’’ the Halstead metrics aim to measure the
cognitive algorithmic complexity. These metrics facilitate
this by defining functions of operators and operands’ counts
with the target to gauge certain qualities such as vocabulary,

107800 VOLUME 9, 2021



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

volume, level, trouble, programming exertion, and required
programming time [32]. The metrics count on four software
measures: n1 represents the distinct operators; n2 represents
the distinct operands; N1 is the total number of occurrences
of operators; and N2 is the total number of occurrences of
operands. As such, we may derive program characteristics
such as:
• The program size as determined by the length (L)N1 +

N2, the vocabulary (VOC) n1 + n2, and volume (VOL)
L ∗ log2VOC .

• The difficulty (D) of the program as the redundancy of
the implementation n1/2 ∗ N2/n2.

• The mental activity or effort (E) required to develop and
write down a program as D ∗ VOL.

TABLE 3. Halstead measure on two MeznSat apps with and without the
framework.

TABLE 3 shows the cognitive algorithmic complexity of
two application modules implemented for the MeznSat soft-
ware with and without the framework (FW). Without the
framework, the Housekeeping task is responsible for collect-
ing and storing the data itself, along with logging its events
directly in the non-volatile memory. With the framework,
storing and logging the events are assigned to their dedicated
services which reduces the size of the application, relocating
the majority of the difficulty and effort to the services. As for
the Payload application module, the differences in difficulty
is moderate because it depends heavily on the hardware of
the payload on MeznSat. However, other measurements such
as the volume and effort are apparent with the framework’s
presence because multiple operations are simply reduced to a
service request call.

The results above show that the framework allowed for
a reduction in the flight software development effort by an
average of 61.5%. This quantitative evaluation of the reduc-
tion in complexity introduced due to the software framework
has also been verified qualitatively by the software engineers
involved in the flight software development. The involved
software engineers reported that they were able to finalize
tasks with comfort and less effort when they utilized the
framework.

The proposed framework is planned to be used for addi-
tional CubeSat missions currently under development. The
modularity of the system will allow the framework to offer
an extensible library of software services and modules with
flight heritage, as more missions adopt it for developing flight
software.

VI. CONCLUSION AND FUTURE WORK
Architectural rules and attributes exist in order to achieve
the desired functionality while confirming their correctness
by construction and technique. The work described in this
paper identifies five quality attributes that an architect should
adopt in building the flight software of a CubeSat. Namely,
it should be explicit and straightforward to avoid software
complications found in bigger satellites (NFR1), it should
be modular and extensible (NFR2), it should be portable
(NFR3), it should be reliable to support mission success
(NFR4), and it should achieve respect real-time needs of
the application (NFR5). These attributes were identified by
studying previous flight software frameworks and by assess-
ing the requirements of MeznSat as a case study. The paper
also presents a software framework targeting CubeSat mis-
sions, reflecting the identified requirements. The framework
adopts a layered architecture with explicit definitions of mod-
ule skeletons and interfaces to enforce software development
simplicity. The framework was verified through the develop-
ment of software for the MeznSat mission that was recently
successfully launched to space. The softwaremade use of five
service modules and six application modules. The application
modules were built to satisfy specific mission requirements
such as payload and safe mode. On the other hand, the service
modules were built in a reusable fashion to meet common
CubeSat requirements. The approach facilitated a short devel-
opment cycle with reduced complexity as compared to other
satellite flight frameworks and as evident from the Halstead
metrics.

A developer may apply use cases (i.e., our approach in the
case study) to rationally assert the quality attributes as they
develop the software through time. However, these qualities’
preservation and assertion can be further enhanced through
software engineering tools such as deadlock and model
checkers, visual architecture evaluation tools, and evaluation
methods such as the Architecture Tradeoff Analysis Method
(ATAM). The next step would be to use these tools on the pro-
posed architecture to evaluate their effectiveness and enhance
the architecture based on the results.

The existence of modules to build upon is commonly used
to reduce development time as with the many middleware
architectures available across the various domains and appli-
cations. The available event logger service that was built dur-
ing MeznSat’s development can be initialized with suitable
parameters for another CubeSat mission rather than building
the service from scratch. The ready to use extendable col-
lection of common standards will only grow by having more
CubeSats utilize the proposed framework. Thus, the next step
would be to make it available for use by other CubeSat devel-
opers. In return, making it open-source will allow gathering
survey results on qualitative and quantitative measures such
as service creation time, total development time, and time to
modify or extend a functionality. However, due to the domain’
sensitivity and the stringent reliability requirements, a system
has to be designed to verify the level of testing and flight

VOLUME 9, 2021 107801



A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

heritage of each incorporated module. The availability of a
variety of operating ports is yet another method to reduce
development time. Therefore, extending the OSAL to support
other Operating Systems such as RTEMS is another future
milestone for the framework.

ACKNOWLEDGMENT
The authors would like to thank Dr. Omar Al Emam and
David Gil from the National Space Science and Technology
Center (NSSTC) for their valuable input.

REFERENCES
[1] C. Araguz, M. Marí, E. Bou-Balust, E. Alarcon, and D. Selva, ‘‘Design

guidelines for general-purpose payload-oriented nanosatellite software
architectures,’’ J. Aerosp. Inf. Syst., vol. 15, no. 3, pp. 107–119,
Mar. 2018.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed. Upper Saddle River, NJ, USA: Addison-Wesley, 2013.

[3] G. D.Manyak, ‘‘Fault tolerant and flexible CubeSat software architecture,’’
Ph.D. dissertation, Dept. Elect. Eng., California Polytech. State Univ., San
Luis Obispo, CA, USA, Jun. 2011.

[4] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A. Diaz, ‘‘An architecture-
tracking approach to evaluate a modular and extensible flight software for
CubeSat nanosatellites,’’ IEEE Access, vol. 7, pp. 126409–126429, 2019.

[5] J. Wilmot, L. Fesq, and D. Dvorak, ‘‘Quality attributes for mission
flight software: A reference for architects,’’ in Proc. IEEE Aerosp. Conf.,
Mar. 2016, pp. 1–7.

[6] R. C. Malveau and T. J. Mowbray, ‘‘Software architecture: Drill school,’’
in Software Architect Bootcamp, 2nd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2003, pp. 125–147.

[7] A.-H. Jallad, P. Marpu, Z. A. Aziz, A. Al Marar, and M. Awad,
‘‘MeznSat—A 3U CubeSat for monitoring greenhouse gases using short
wave infra-red spectrometry: Mission concept and analysis,’’ Aerospace,
vol. 6, no. 11, p. 118, Oct. 2019.

[8] C. Coelho, O. Koudelka, andM.Merri, ‘‘NanoSatMO framework: Achiev-
ing on-board software portability,’’ in Proc. SpaceOps Conf., May 2016,
p. 2624.

[9] NASA. Core Flight System. Accessed: Jul. 28, 2021. [Online]. Available:
https://cfs.gsfc.nasa.gov/Introduction.html

[10] A. Pasetti and V. Cechticky. (2017). The CORDET Framework C2
Implementation User Manual. P&P Software. [Online]. Available:
https://www.pnp-software.com/cordetfw/UserManual.pdf

[11] R. Bocchino, T. Canham, G. Watney, L. Reder, and J. Levison, ‘‘F Prime:
An open-source framework for small-scale flight software systems,’’ in
Proc. 32nd Annu. AIAA/USU Conf. Small Satell., 2018, pp. 1–19.

[12] (2014). A Flight Software Framework for Satellites. Kubos. [Online].
Available: https://www.kubos.com/kubos/

[13] D. Landes and R. Studer, ‘‘The treatment of non-functional requirements
in MIKE,’’ in Software Engineering—ESEC (Lecture Notes in Computer
Science). Berlin, Germany: Springer, 1995, pp. 294–306.

[14] D. J. F. Miranda, M. Ferreira, F. Kucinskis, and D. McComas, ‘‘A compar-
ative survey on flight software frameworks for ‘new space’ nanosatellite
missions,’’ J. Aerosp. Technol. Manage., vol. 11, pp. 1–13, Oct. 2019.

[15] M. A. Normann and R. Birkeland, ‘‘Software design of an onboard com-
puter for a nanosatellite,’’ Ph.D. dissertation, Dept. Eng. Cybern., Norwe-
gian Univ. Sci. Technol., Trondheim, Norway, 2016.

[16] M. Pessans-Goyheneix, J. Bønding, M. Burchard, T. Kasper, and F. Jensen,
‘‘Software framework for reconfigurable distributed system on
AAUSAT3,’’ Aalborg Univ., Aalborg, Denmark, Tech. Rep., 2008.
Accessed: Jul. 28, 2021. [Online]. Available: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.713.4456&rep=rep1&type=pdf

[17] A. Heunis, ‘‘Design and implementation of generic flight software for a
CubeSat,’’ M.S. thesis, Dept. Elect. Electron. Eng., Stellenbosch Univ.,
Stellenbosch, South Africa, Oct. 2014.

[18] H. Zuse, ‘‘Introduction,’’ in Software Complexity: Measures and Methods,
Berlin, Germany: W. de Gruyter, 1991, pp. 1–6.

[19] S. A. M. Johl, ‘‘A reusable command and data handling system for uni-
versity CubeSat missions,’’ M.S. thesis, Dept. Aerosp. Eng., Univ. Texas
Austin, Austin, TX, USA, Dec. 2013.

[20] D. McComas, ‘‘Increasing flight software reuse with OpenSatKit,’’ in
Proc. IEEE Aerosp. Conf., Mar. 2018, pp. 1–8.

[21] (Aug. 2019). OpenSatKit User’s Guide. 2nd ed. Emergent
Space Technologies. Woodbine, MD, USA. [Online]. Available:
https://github.com/OpenSatKit/OpenSatKit/blob/master/docs/OpenSatK
it_Users-Guide.pdf

[22] FreeRTOS. (2020). FreeRTOS FAQ—Links to All RTOS FAQ Pages.
[Online]. Available: https://www.freertos.org/FAQ.html

[23] G. Hohpe and B. Woolf, ‘‘Message construction,’’ in Enterprise Integra-
tion Patterns: Designing, Building, and Deploying Messaging Solutions.
Boston, MA, USA: Addison-Wesley, 2004, pp. 143–182.

[24] H. S. Oluwatosin, ‘‘Client-server model,’’ IOSR J. Comput. Eng., vol. 16,
no. 1, pp. 67–71, 2014.

[25] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, ‘‘TinyOS: An oper-
ating system for sensor networks,’’ in Ambient Intelligence, W. Weber,
J. M. Rabaey, and E. Aarts, Eds. Berlin, Germany: Springer, 2005,
pp. 115–148.

[26] S. Johl, E. G. Lightsey, S. M. Horton, and G. R. Anandayuvaraj,
‘‘A reusable command and data handling system for university cubesat
missions,’’ in Proc. IEEE Aerosp. Conf., Mar. 2014, pp. 1–13.

[27] S. F. Hishmeh, T. J. Doering, and J. E. Lumpp, ‘‘Design of fight software
for the KySat CubeSat bus,’’ in Proc. IEEE Aerosp. Conf., Mar. 2009,
pp. 1–15.

[28] H. A. Askari, E. W. H. Eugene, A. N. Nikicio, G. C. Hiang, L. Sha,
and L. H. Choo, ‘‘Software development for galassia CubeSat-design,
implementation and in-orbit validation,’’ in Proc. Joint Conf. 31st Int.
Symp. Space Technol. Sci. (ISTS), 2017, pp. 1–8.

[29] S. Nakajima, R. Funase, S. Nakasuka, S. Ikari, M. Tomooka, and
Y. Aoyanagi, ‘‘Command centric architecture (C2A): Satellite software
architecture with a flexible reconfiguration capability,’’ in Proc. 68th Int.
Astron. Congr. (IAC), Adelaide, SA, Australia, 2017, p. 17.

[30] R. Geldreich. (May 17, 2011). Miniz. Google Code. [Online]. Available:
https://code.google.com/archive/p/miniz/

[31] M. F. X. J. Oberhumer. (Mar. 1, 2017). Minilzo. LZO real-time
data compression library. [Online]. Available: https://www.oberhumer.
com/opensource/lzo/

[32] T. Hariprasad, G. Vidhyagaran, K. Seenu, and C. Thirumalai, ‘‘Software
complexity analysis using halstead metrics,’’ in Proc. Int. Conf. Trends
Electron. Informat. (ICEI), Tirunelveli, India, May 2017, pp. 1109–1113,
doi: 10.1109/ICOEI.2017.8300883.

[33] P. Arberet, J.-J. Metge, O. Gras, and A. Crespo, ‘‘TSP-based generic
payload on-board software,’’ inProc. Data Syst. Aerosp. (DASIA), Istanbul,
Turkey, May 2009.

[34] J. Galizzi, J.-J. Metge, P. Arberet, E. Morand, F. Vigeant, A. Crespo,
M. Masmano, J. Parada, I. Ripoll, V. Brocal, and F. Roubert, ‘‘LVCUGEN
(TSP-based solution) and first porting feedback,’’ in Proc. Embedded Real
Time Softw. Syst. (ERTS), Toulouse, France, Feb. 2012, pp. 1–8.

[35] F. Apper, A. Ressouche, N. Humeau, M. Vuillemin, A. Gaboriaud,
F. Viaud, and M. Couture, ‘‘Eye-Sat: A 3U student CubeSat from CNES
packed with technology,’’ in Proc. 33th Annu. Small Satell. Conf., Logan,
UT, USA, 2019, pp. 1–10.

[36] S. A. Jacklin, ‘‘Survey of verification and validation techniques for small
satellite software development,’’ Space Tech Expo, NASA Ames Res.
Center, Mountain View, CA, USA, Tech. Rep., May 2015.

[37] NASA-HDBK-2203, NASA, Washington, DC, USA. (Feb. 28, 2013).
NASA Software Engineering Handbook. Accessed: Jul. 28, 2021. [Online].
Available: https://swehb.nasa.gov/

AISHA K. EL ALLAM received the B.S. degree
in computer science (as a Valedictorian) from
AURAK, Ras Al Khaimah, United Arab Emirates,
in 2018. Upon graduation, she began to work
as a Research Engineer with Space Laboratory,
AURAKUniversity, developing the first 3U Cube-
Sat in the Country. Her focus was on designing the
concept of operations, command and data handling
systems, and the flight software architecture of the
satellite. Her research interests include artificial

intelligence, data analysis, flight software architectures, and the Internet of
Things.

107802 VOLUME 9, 2021

http://dx.doi.org/10.1109/ICOEI.2017.8300883


A. K. El Allam et al.: Highly Modular Software Framework for Reducing Software Development Time

ABDUL-HALIM M. JALLAD (Member, IEEE)
received the B.Eng. degree from the University of
Kent, U.K., in 2003, and the Ph.D. degree from
the University of Surrey, U.K., in 2009. At the
University of Surrey, he was a member of the
Surrey Space Centre, where he was involved in
several research and development projects in col-
laboration with Surrey Satellite Technology Ltd.,
(SSTL), where he was also the World Leader in
the development of small satellites. He has served

as the Director for the Center of Information, Communication and Net-
working Education and Innovation (ICONET), American University of Ras
Al Khaimah (AURAK). He is currently with the Department of Electrical
Engineering and the National Space Science and Technology Centre, United
Arab Emirates University. His research interests include embedded systems,
the Internet of Things, system-on-chip design, spacecraft on-board data
handling, middleware design, VLSI design, and reconfigurable architectures.
He has received several academic achievement prizes.

MOHAMMED AWAD received the M.Sc. and
Ph.D. degrees in computer science from the Uni-
versity of Houston, USA, in 2006 and 2011,
respectively. He joined the Department of Com-
puter Science and Engineering, School of Engi-
neering, American University of Ras Al Khaimah,
Ras Al Khaimah, United Arab Emirates, in 2013.
His research interests include machine learning,
e-learning, CubeSats, and security, more specifi-
cally E-voting and I-voting security. An additional

area of interest concerns safeguarding the transmission of biometric data and
integrating captured biometric data into the electoral process.

MAEN TAKRURI (Senior Member, IEEE)
received the B.Sc. and M.Sc. degrees in electrical
engineering from The University of Jordan, and
the Ph.D. degree in electrical engineering from
the University of Technology, Sydney (UTS),
Australia, in 2010. At UTS, he was a member
of the Centre for Real-Time Information Net-
works (CRIN). In 2008, he served as a Visiting
Researcher for the Department of Electrical and
Electronic Engineering, University of Melbourne,

Australia. He was the Chairman of the Department of Electrical, Electronics
and Communications Engineering, AURAK. He is currently the Director of
the Center of Information, Communication, and Networking Education and
Innovation (ICONET), American University of Ras Al Khaimah (AURAK).
His research interests include signal processing and data fusion, estimation
theory and target tracking, biomedical systems, machine learning, image
processing, and the Internet of Things.

PRASHANTH R. MARPU (Senior Member,
IEEE) received the M.Sc. degree in wireless
engineering from the Technical University of
Denmark, in 2006, and the Ph.D. degree from
TU Bergakademie Freiberg, Germany, in 2009.
He served as an Associate Professor for the
Department of Electrical Engineering and Com-
puter Science, Khalifa University of Science and
Technology (KUST), Abu Dhabi, United Arab
Emirates. He is currently working as a Technical

Lead in Space Program at Group 42, Abu Dhabi, United Arab Emirates.
He was involved in designing and building small satellites as the Project
Manager of four satellite projects. His research interests include space sys-
tems, remote sensing, and machine learning.

VOLUME 9, 2021 107803


