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ABSTRACT The ability to estimate radio coverage accurately is fundamental for planning and optimizing
any wireless network, notably when a new generation, as the 5th Generation (5G), is in an early deployment
phase. The knowledge acquired from radio planning of previous generations must be revisited, particularly
the used path loss and antennas models, as the 5G propagation is intrinsically distinct. This paper analyses a
new beamforming antenna model and distinct path loss models - 3rd Generation Partnership Project (3GPP)
andMillimetre-Wave BasedMobile Radio Access Network for Fifth Generation Integrated Communications
(mmMAGIC) - applying them to evaluate 5G coverage in 3-Dimensional (3D) synthetic and real scenarios,
for outdoor and indoor environments. Further, real 5GDrive Tests (DTs) were used to evaluate the 3GPP path
loss model accuracy in UrbanMacro (UMa) scenarios. For the new antenna model, it is shown that the use of
beamforming with multiple vertical beams is advantageous when the Base Station (BS) is placed below the
surrounding buildings; in regular UMa surroundings, one vertical beam provides adequate indoor coverage
and a maximized outdoor coverage after antenna tilt optimization. The 3GPP path loss model exhibited
a Mean Absolute Error (MAE) of 21.05 dB for Line-of-Sight (LoS) and 14.48 dB for Non-Line-of-Sight
(NLoS), compared with real measurements. After calibration, the MAE for LoS and NLoS decreased to
5.45 dB and 7.51 dB, respectively.Moreover, the non-calibrated 3GPP path loss model led to overestimations
of the 5G coverage and user throughput up to 25% and 163%, respectively, when compared to the calibrated
model predictions. The use of Machine Learning (ML) algorithms resulted in path loss MAEs within the
range of 4.58 dB to 5.38 dB, for LoS, and within the range of 3.70 dB to 5.96 dB, for NLoS, with the
Random Forest (RF) algorithm attaining the lowest error.

INDEX TERMS 5G, mmWaves, 3D propagation, path loss models, antenna models, beamforming, calibra-
tion, machine learning.

I. INTRODUCTION
The evolution of Mobile Wireless Networks (MWN), pro-
gressing from 4th Generation (4G) to 5G networks, has
introduced new technologies, new concepts, and even new
frequency bands. From the radio coverage perspective, both
Millimeter Waves (mmWaves) and Massive Multiple-Input
Multiple-Output (mMIMO) will be two of the most impactful
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technologies. Among other drivers, the subject of radio prop-
agation and channel modeling has become a hot research
topic for 5G, since it unlocks the fundamentals for plan-
ning 5G deployments, notably 5G coverage and interference
optimization.

The 5G radio network planning and optimization require
proper large-scale coverage prediction, adopting reliable
antenna gain and path loss models; even though both models
can be unified into one as in [1] or [2], the standard approach
is to consider them separately.

VOLUME 9, 2021
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 101787

https://orcid.org/0000-0002-2471-170X
https://orcid.org/0000-0003-0279-8741
https://orcid.org/0000-0003-0266-4022
https://orcid.org/0000-0002-0593-0405


M. Sousa et al.: Analysis and Optimization of 5G Coverage Predictions

As for the antenna gain models, with beamforming sup-
port, current approaches are mainly of two types. The first
considers the antenna gain as a result of the product between
the antenna array factor (modeling directivity), and the
antenna element radiation pattern. The second simplifies the
radiation pattern (e.g., to a flat-top antenna pattern) quanti-
fying the antenna array gains in a binary manner, according
to the width of beams. Whereas the former is more real-
istic, it requires information about the physical properties
of the antenna arrays; the latter is less accurate, but easily
implemented [3]–[5].

Concerning large-scale path loss models, these are usually
classified as stochastic or deterministic. Deterministicmodels
rely on electromagnetic fundamentals (e.g., Maxwell equa-
tions) to predict path loss, while stochastic models consider
probability distributions for the radio channel parameters,
obtained from extensive DT campaigns. The deterministic
models are more accurate than other modeling approaches.
However, they have high computational complexity and
require precise environment information. On the contrary,
models obtained by the stochastic approach are mathemati-
cally tractable but less accurate [6]. In coverage predictions
of large areas, the stochastic models are preferred due to their
computational efficiency.

This work has three main objectives: to evaluate 5G
coverage predictions using current stochastic path loss
and antenna models, in distinct propagation scenarios and
antenna beamforming configurations; to measure the path
loss prediction accuracy of current models; to increase the
path loss prediction accuracy, and assess the resulting 5G
coverage.

The main contributions of this paper are summarized as
follows:
• An extended and more detailed analysis of the beam-
forming antenna model, proposed by the authors in [7],
is performed including a new comparison with a single
beam antenna model.

• A detailed comparison, using two synthetic scenarios,
between the path loss predictions of the 3GPP TR
38.901, and the mmMAGICmodels is provided, consid-
ering the effects of existing (or not) LoS, distinct antenna
radiation patterns, and different frequencies.

• An analysis of 5G coverage in real scenarios, using high
resolution 3D data and real Mobile Network Opera-
tor (MNO) information, evaluating coverage impacts of
distinct building geometries. The 5G coverage analysis
includes also a detailed analysis of indoor coverage for
different antenna configurations.

• The assessment of the 3GPP TR 38.901 path loss model
accuracy is achieved considering real 5GDT campaigns,
with and without model calibration.

• The development and assessment of calibrated path loss
models for 5G coverage analysis is provided, based on
received power-dependent metrics (e.g., percentage of
the covered area or throughput).

• A set of data-driven path loss models, based on ML
regression algorithms over real 5G measurements are
derived, and their accuracy assessed.

This paper is organized as follows. After the introduction
provided in Section I, Section II presents the fundamental
concepts underlying this work and highlights related work.
Section III gives a brief description of the beamforming
antenna model that will be considered for the rest of the paper
and compares it with a single beam 3GPP antenna model.
In Section IV, the considered path loss models - 3GPP TR
38.901 andmmMAGIC - are overviewed. In sectionV, the 5G
coveragemetrics to be used in several scenarios are presented.
Section VI aims to evaluate 5G coverage, considering a set
of synthetic and real propagation scenarios, where distinct
antenna radiation patterns, carrier frequencies, and network
deployment types are assessed. In Section VII, DT data is first
used to quantify the prediction error of the considered path
loss model. This model is then calibrated with the DT path
loss measurements, and the resulting improvement of the
path loss prediction is evaluated. Finally, the DT data is used
with ML algorithms to develop data-driven path loss models,
that are compared with the standard path loss approaches.
Section VIII presents the main conclusions and final remarks.

II. BACKGROUND AND RELATED WORK
The field of radio propagation and channel modeling, partic-
ularly under the 5G framework and standards, has received
lots of attention and several new contributions. These are
summarized in [8], where the authors evaluate the main 5G
propagation challenges, outline solutions and directions for
the 5G usage scenarios. One of the greatest radio coverage
challenges towards 5G is created by the use of mmWaves.
Extensive overviews on this subject are presented in [9]–[11].

The use of mmWaves frequency bands causes severe signal
attenuation being the signal alsomore susceptible to blockage
and scattering. A way forward to increase coverage, at these
higher frequencies, is to employ mMIMO antennas and use
the higher gain of beamforming patterns.

Several architectures are proposed for beamforming anten-
nas, from analog to fully digital, and even hybrid. Hybrid
architectures achieve the best compromise between hard-
ware/cost and performance, thus are the most used [12]. For
all architectures, linear array antenna theory still applies to
derive an approximation of the antenna radiation pattern, F ,
according to:

F(θ, φ) = Felement (θ, φ)× AFarray(θ, φ) (1)

where θ and φ are the vertical and horizontal angles, Felement
is the array element radiation pattern, and AFarray is the array
factor that controls the directivity of the beams [13]. The array
factor also depends on the signal wavelength, on the spacing
between antenna elements and their total number, and on the
signal phase in each antenna element. In [14], the authors
provide an overview of the design of antenna arrays for
mmWave communications, including the array parameters.
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5G radio planning is generally conducted using stochastic
path loss models, from which two primary variants are con-
sidered: the Alpha-Beta-Gamma (ABG) and the Close In (CI)
models; both are frequency generic and can be also applied to
mmWave. The ABGmodel, also known as Floating Intercept
(FI) model, is given by [15]:

PLABG(f , d) = 10α log10
(d3D
1 m

)
+β + 10γ log10

( f
1 GHz

)
+ χABG

σ (2)

where α and γ are coefficients denoting the dependence of
path loss on distance and frequency, respectively, whereas
β is an optimized offset value. The variable d3D is the 3D
distance between the Transmitter (TX) and the Receiver (RX)
in meters, f is the carrier frequency in GHz, and χABGσ is the
Shadow Fading (SF) standard deviation. The coefficients α,
β and γ are obtained directly from real signal measurement
campaigns, fitting to the measured data.

The CI model is given by [15]:

PLCI(f , d) = FSPL(f , 1 m)+ 10n log10(d3D)+ χ
CI
σ (3)

where n denotes the only parameter of the model, known as
Path Loss Exponent (PLE), FSPL(f ,1 m) is the Free Space
Path Loss (FSPL) at a TX, RX separation of 1 m and carrier
frequency f , and χCI

σ is the SF standard deviation.
Results in [15] and [16] show that both the CI and the

ABG models exhibit similar performance when calibrated
with real DT measurements. However, when extrapolating
to frequencies outside the data used to fit the model, the CI
model is preferable due to its simplicity and higher stability.

Several 5G stochastic path loss models have been devel-
oped, such as the 3GPP TR 38.901 [17], the NYUSIM [18],
and the mmMAGIC [19]. While both the 3GPP TR
38.901 and the mmMAGIC are ABG based models,
the NYUSIM path loss model is based on the CI variant.
Deterministic models, as the Mobile and Wireless Com-
munications Enablers for Twenty-twenty Information Soci-
ety (METIS) [20] and the IEEE 802.11ad [21] have also
been proposed, as well as semi-deterministic models, which
use a hybrid approach between stochastic and deterministic,
as the Millimetre-Wave Evolution for Backhaul and Access
(MiWEBA) [22].

Additionally, with a broad range of 5G applications and
services, several 5G coverage analyses have been carried
out evaluating its technical feasibility. In [23], the authors
evaluate the coexistence of dedicated indoor and outdoor
radio coverage solutions, in a synthetic scenario, formmWave
communications. The use of synthetic scenarios has also been
explored by the authors in [7]. In [23], a real scenario was
considered where the feasibility of reusing 4G legacy sites
for 3.5 GHz 5G networks was evaluated. The 5G coverage
analyses are mainly supported by path loss models, and
even though that most of the used path loss models were
developed through extensive measurements campaigns, these
campaigns have their specificity regarding the propagation

environment, used frequencies, etc.; further measurements,
in additional transmission conditions, are required to evalu-
ate the models’ accuracy and support the coverage analysis
results. In [24], the authors evaluated, with real measure-
ments, three candidate path loss models for the use over
the entire 5G microwave and mmWave radio spectrum: the
ABG, the CI, and the Close In Frequency (CIF). The authors
concluded that the three models are comparable in prediction
accuracy for large data sets. In [25], the authors verified a
Root Mean Square Error (RMSE) of 10.32 dB between the
measured path loss and the 3GPP UMa path loss predictions
using a carrier frequency of 27.1 GHz. However, the path
loss accuracy was only evaluated considering 14 distinct
measurement locations.

Finally, there is a recent trend in using ML algorithms
to develop data-driven path loss models from real measure-
ments. In [26], the authors applied Artificial Neural Networks
(ANNs) to predict the path loss achieving a mean error
of 0 dB and a maximum error of 22 dB compared with the
real measurements. The authors studied signal measurements
using a frequency of 881.52 MHz in a rural open area.
Additionally, the average received signal power was com-
puted by averaging signal measurements over a measurement
track of 300 wavelengths. Also, in [27], the use of ANNs
achieved a MAE of 4.74 dB considering a carrier frequency
of 1.8 GHz and radio measurements from 11 BSs. In [28],
a Deep Neural Network (DNN) was used to predict path loss
with a RMSE of 4 dB. However, the radio measurements
were limited to an university campus and used 4G as radio
technology. Nonetheless, it remains challenging to guarantee
that sufficient generalization is achieved when considering
ML-based models [29].

III. ANTENNA MODELS
This section starts by presenting the standard 3GPP antenna
model [17], which is a single beam model for both the
horizontal and vertical planes. Next, a new antenna model,
recently proposed by the authors in [7] that enables mul-
tiple beams in horizontal and vertical planes, is described.
Finally, a brief comparison between the two antenna models
is presented.

A. 3GPP ANTENNA MODEL
The horizontal radiation pattern of the 3GPP model is
given by:

AH (φ) = −min

{
12
(
φ − φaz

φ−3dB

)2

,Am

}
(4)

where φ (∈ [−180◦, 180◦]) is the horizontal angle measured
between the BS boresight and the line in the horizontal plane
connecting the User Equipment (UE) to the BS, φaz denotes
the fixed orientation angle of the BS boresight, φ−3dB is the
horizontal Half-Power Beamwidth (HPBW), and Am is the
maximum horizontal attenuation. The horizontal radiation
pattern is also presented in Fig. 1.
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FIGURE 1. Horizontal radiation pattern of the 3GPP antenna model
(φaz = 0◦; φ−3dB = 63◦; Am = 18 dB).

FIGURE 2. Vertical radiation pattern of the 3GPP antenna model (θtilt =
0◦; θ−3dB = 6.5◦; Am = 18 dB).

Similarly, the vertical radiation pattern is given by:

AV (θ ) = −min

{
12
(
θ − θtilt

θ−3dB

)2

,SLL

}
(5)

where θ (∈ [−90◦, 90◦]) is the vertical angle measured
between the horizon and the line connecting the UE to the BS,
θtilt denotes the antenna tilt and is measured between the hori-
zon and the line passing through the peak of the beam, θ−3dB
is the vertical HPBW, and SLL is the vertical Side-Lobe Level
(SLL). The vertical radiation pattern is depicted in Fig. 2.
Finally, the 3D antenna gain is obtained as:

G3D(θ, φ) = Gm −min{−[AH (φ)+ AV (θ )],Am} (6)

where Gm denotes the peak antenna gain in dBi. The 3D
representation of the 3GPP antenna gain is presented in Fig. 3.

B. BEAMFORMING ANTENNA MODEL
One of the main features of 5G is mMIMO antennas,
which allow beamforming. By forming extremely accurate
user-level narrow beams, signal coverage is improved, and
interference between cells is reduced [30]. This section
describes a new approach in antenna modeling that models
5G Active Antenna Systems (AASs) with beamforming.

FIGURE 3. 3D radiation pattern of the 3GPP antenna model (Gm =
18 dBi).

The horizontal radiation pattern, of the beamforming
antenna model, is defined by:

AH (φ) = −min

{
12
(
φ − kH (φ)
φ−3dB

)2

,Am

}
(7)

where kH (φ) is the offset angle for the horizontal beam
covering direction, φ:

kH (φ) = minrange,H + φAbeam

(
1
2
+ i(φ)

)
(8)

where minrange,H is the lower limit of the antenna horizontal
scanning range, φAbeam is a constant and i(φ) identifies the
used beam in the φ direction. The factor φAbeam is given by:

φAbeam =
maxrange,H − minrange,H

nH
(9)

wheremaxrange,H is the higher limit of the antenna horizontal
scanning range and nH is the number of horizontal beams.
The function i(φ), which identifies the beam covering

direction φ, is given by:

i(φ) = min
{⌊

max(φ − minrange,H , 0)
φAbeam

⌋
, nH − 1

}
(10)

Similarly, the vertical radiation pattern is obtained as
follows:

AV (θ ) = −min

{
12
(
θ − kV (θ )
θ−3dB

)2

,SLL

}
(11)

where kV (θ ) is the offset angle for the vertical beam covering
direction, θ :

kV (θ ) = minrange,V + θAbeam

(
1
2
+ j(θ )

)
(12)

where minrange,V is the inferior limit of the antenna vertical
scanning range, θAbeam is a constant and j(θ ) identifies the used
beam in the θ direction. The factor θAbeam is defined as:

θAbeam =
maxrange,V − minrange,V

nV
(13)

where maxrange,V is the superior limit of the antenna vertical
scanning range and nV is the number of vertical beams.
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The function j(θ ), which identifies the beam covering
direction θ , is given by:

j(θ ) = min
{⌊

max(θ − minrange,V , 0)
θAbeam

⌋
, nV − 1

}
(14)

The 3D antenna gain, G3D, of the beamforming antenna
model is obtained from (6).

Throughout this work, both antenna models were param-
eterized according to the datasheet of commercial anten-
nas. The commercial antenna, Kathrein 742212, was used
with the 3GPP antenna model, while the antenna Huawei
AAU5613, which supports beamforming, was used with
the beamforming antenna model. Additionally, the antenna
AAU5613 has distinct radiation patterns that are also
presented in Table 1.

TABLE 1. List of antenna configurations.

Note that the columns for the HPBW, in the case of the
beamforming model, correspond to the global radiation pat-
tern and not to the beams individually. As an example, and
considering the radiation pattern 9, the respective 3D gain
using the beamforming model is displayed in Fig. 4.

FIGURE 4. 3D radiation pattern of the beamforming antenna model with
radiation pattern 9 (4 horizontal beams, 2 vertical beams).

It is worth noting that in legacy antennas with a single
beam, the tilt direction coincides with the antenna maximum
gain. However, when considering beamforming radiation pat-
terns, withmultiple vertical beams, (see Fig. 4 as an example),
as on the vertical plane the maximum gain is not obtained
for θ = 0◦, the tilt direction does not provide the maximum
vertical antenna gain.

C. ANTENNA MODELS COMPARISON
In this section, the two antennamodels (3GPP and beamform-
ing) are compared, considering the radiation pattern 6 for the

TABLE 2. Antenna parameters for the comparison between the 3GPP and
the beamforming models.

beamforming model and the Kathrein antenna for the 3GPP
model. The parameters used in both models, are presented
in Table 2.

A simplified scenario, to study the antenna 3D gain of the
beamforming antenna model, is presented in Fig. 5 for the
horizontal plane.

The scenario has the following specifications: an area of 1
km× 1 km; a 3-sector BS at the center with an antenna height
of 25 m; a UE height of 1.5 m; and antenna tilt such that
the vertical gain in the horizon direction is 6 dB below the
maximum.

FIGURE 5. 3D gain of a beamforming antenna in the horizontal plane,
at a height of 1.5 m (top view).

Fig. 5 exhibits the influence of the horizontal beams
(eight by sector) while Fig. 6 exhibits the antenna model
gain distribution on the vertical plane (with a single vertical
beam).

To compare both antenna models, and evaluate the impact
of adopting beamforming, the 3D gain difference, in the
reference scenario, is represented in Fig. 7.
The beamforming antenna model has a 3D gain improve-

ment, relatively to the classical single beam radiation pattern,
that ranges from 0 dB to 16 dB, and is particularly relevant in
the areas between sectors. As can be concluded from Fig. 7,
with beamforming, radio coverage is no longer sector-based
(or cell-based) but beam-based.
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FIGURE 6. 3D gain of a beamforming antenna in the vertical plane, at an
azimuth of 7.5◦ (side view).

FIGURE 7. 3D gain difference between the beamforming and the 3GPP
model, in the horizontal plane, at a height of 1.5 m (top view).

IV. 5G PATH LOSS MODELS
The 5G standard introduced new enhancements to support its
services and use cases. Accordingly, the propagation model-
ing for 5G has been revised, considering new standards (e.g.
new frequency bands, beamforming antennas), leading to new
path loss models [8].

This section presents the two 5G path loss models consid-
ered in this paper, the 3GPP TR 38.901 and the mmMAGIC.

A. 3GPP TR 38.901 PATH LOSS MODEL
The current 3GPP path loss model, the 3GPP TR 38.901,
was developed over previous existingmodels, admitting some
of the new 5G propagation requirements. The latest version
is valid for a wide range of carrier frequencies (fc), from
0.5 GHz to 100 GHz, and a limited number of propagation
scenarios [8].

Focusing on the urban environments, the 3GPP path
loss model is valid for Urban Macro (UMa) and Urban

Micro (UMi) deployments. For these, the respective path
loss models for LoS links are dual-slope models, i.e., they
have different path loss functions depending on whether the
2-Dimensional (2D) distance between the BS and the UE,
d2D, is smaller than a breakpoint distance, d ′BP, or not (see
Table 3). The breakpoint distance is defined as the distance
from the BS to the point where the 1st Fresnel ellipsoid
touches the terrain and where the Path Loss Exponent (PLE)
shifts from free space (PLE = 2) to the asymptotic two-ray
ground bounce model (PLE = 4) [31]. The LoS breakpoint
distance, d ′BP, is given by:

d ′BP = 4
h′BSh

′

UE

λc
(15)

where h′BS and h
′

UE are the effective antenna heights at the BS
and the UE locations, given by:

h′BS = hBS + hgeospatial,BS − hgeospatial,UE
h′UE = hUE (16)

where, hBS and hUE are the BS and UE height above terrain,
hgeospatial,BS and hgeospatial,UE are, respectively, the BS and
UE heights above sea level. In NLoS conditions, the 3GPP
path loss model follows the ABG model, with an additional
correction term for the UE height. The 3GPP UMi and UMa
model parameters are presented in Table 3. Additionally,
the 3GPP models consider a log-normal distribution for the
SF, which is described by its standard deviation σSF (also
in Table 3).
The 3GPP TR 38.901 [17] has an Outdoor-to-Indoor (O2I)

penetration loss model, which is useful to describe the addi-
tional losses that an indoor UE may experience. Thereby,
the path loss experienced by an indoor user is given by:

PL = PLb + PLtw + PLin +N (0, σ 2
P) (17)

where PLb is the outdoor path loss, PLtw is the building
penetration loss through the external wall, PLin is the inside
loss, dependent on the depth into the building, and N is a
log-normal distribution, with zero mean and standard devi-
ation, σP, for the penetration loss. The penetration loss is
given by:

PLtw = PLnpi + 10 log10

N∑
i=1

(
pi × 10−

Lmaterial,i
10

)
(18)

where PLnpi is an additional loss added to the external wall
loss to account for non-perpendicular incidence, which is
5 dB in the 3GPP model, pi is the proportion of the i-th
material, under the condition that

∑N
i=1 pi = 1, for all the N

materials, and Lmaterial,i is the i-th material penetration loss.
The material penetration loss is given by:

Lmaterial,i = amaterial,i + bmaterial,i · fc (19)

where amaterial,i and bmaterial,i are material dependent loss
constants, and fc is the frequency. Penetration loss of several
materials may be found in [17].
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TABLE 3. UMa and UMi path loss models.

Additionally, two simplified O2I building penetration loss
models are provided in [17], a low-loss and a high-lossmodel,
depending on the building materials. The low-loss model is
given by:

PLtwlow = 5− 10 log10

(
0.3 · 10

−Lglass
10 + 0.7 · 10

−Lconcrete
10

)
(20)

where Lglass and Lconcrete are the material losses for glass
and concrete, respectively. The material losses depend on the
frequency, fc, according with:

Lglass = 2+ 0.2fc (21)

Lconcrete = 5+ 4fc (22)

The high loss model is given by:

PLtwhigh = 5−10 log10

(
0.7 · 10

−LIRRglass
10 +0.3 · 10

−Lconcrete
10

)
(23)

where LIRRglass is the penetration loss of infrared-reflective
glass:

LIRRglass = 23+ 0.3fc (24)

In this work, an intermediate model is used, where both
models (high and low-loss) contribute 50% to the total build-
ing penetration loss. The rationale is to take into account the
heterogeneity of real UMa and UMi environments considered
in this work.

B. mmMAGIC PATH LOSS MODEL
The mmMagic path loss model [19] resulted from a con-
sortium of industry, research centers, and universities in
a forefront project towards developing a channel model
aligned with the 5G propagation requirements. It has
adopted the channel modeling methodology of the 3GPP
3D model (3GPP TR36.873 [32]), and it used, as a
basis, the QuasiDeterministic Radio Channel Generator
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(QuaDRiGa) model [33]. The path loss model was developed
using measurement campaigns between 6 GHz and 100 GHz
in various propagation scenarios.

The mmMagic path loss model is valid for the UMi
and indoor scenarios. Again, for each propagation scenario,
the path loss expressions are different depending on whether
the UE has LoS, or not, to the BS. Also, the UMi path
loss model follows the ABG modeling with a log-normal SF
distribution, as presented in Table 3.
The O2I building penetration loss is modeled from

the 3GPP low and high-loss models with one additional
term to account for the elevation angle (θ) loss: Lel =
20 |θ/90◦| [19].
Table 3 presents the equations for both path loss models,

where d3D is the 3D distance between the BS and the UE, PL1
is the path loss for distances below the breakpoint distance,
d ′BP, PL2 is the path loss for distances above the breakpoint
distance and σSF is the SF standard deviation.

V. 5G COVERAGE ANALYSIS METRICS AND COVERAGE
SCENARIOS
This section describes the metrics used for the 5G coverage
analysis and the scenarios considered in rest of the work.

A. 5G COVERAGE ANALYSIS METRICS
The Reference Signal Received Power (RSRP), in dBm,
is given by (based on [34]):

RSRP = PRS + GBS − ATx + GUE − PL (25)

where PRS is the reference signal transmitted power in dBm,
GBS is the antenna gain in dBi (using the new beamforming
model), ATx is the BS cable losses (2 dB), GUE is the UE
antenna gain (2.15 dBi), and PL is the path loss, in dB, from
the respective path loss models.

The 5G RSRP is defined as the linear average over the
power contributions of the Resource Elements (REs) carrying
reference signal information [35]. In accordance, the 5G
coverage analysis considers the transmitted power in the
bandwidth of a single RE as a reference. The PRS is given by:

PRS = PTx,Max − 10 log10
(
NBW,µ
PRB × 12

)
(26)

where PTx,Max is the BS maximum transmitted power,
in dBm, NBW,µ

PRB is the number of Physical Resource Blocks
(PRBs) for bandwidth BW, and numerologyµ [36], and 12 is
the number of sub-carriers in one PRB.
The percentage of covered area is obtained by comparing

the RSRP with the receiver sensitivity, PRx,Sens, after adding
the Shadow Fading (SF) margin, MF (in dB), and the rain
attenuation margin MR (in dB), to the latter. The receiver
sensitivity was calculated according to [37]:

PRx,Sens = −174+ 10 log10 (SCS)+ NF + SNR (27)

where −174 is the thermal noise constant in dBm/Hz, SCS
is the Subcarrier Spacing (SCS) (according to µ), NF is

the receiver noise figure (9 dB), and SNR is the Signal-
to-Noise Ratio (SNR), in dB, calculated using Shannon’s
formula [38], with a target throughput of 100 Mbps. Thus,
for frequencies in the 3.5 GHz band, for a maximum band-
width of 100 MHz, the respective SNR was 0 dB, while
for the 28 GHz band (maximum bandwidth of 400 MHz),
the obtained SNR was −7.23 dB.
The SF margin, MF , guarantees a 95% cell area coverage

probability and is calculated assuming aGaussian distribution
with a standard deviation of σSF , which depends on the path
loss model (see Table 3). The rain margin,MR, was calculated
for a link availability of 99.95% of the time [39].

The throughput, Thput , was calculated to evaluate the
Quality of Service (QoS) for UEs, according to [40]:

Thput = 10−6 ·
K∑
i=1

×

(
v(i)layers · Q

(i)
m · f

(i)
· Rmax ·

NBW,µ
PRB · 12

TµS
· (1− OH (i))

)
(28)

where K is the number of aggregated Component Carriers
(CC), Rmax is the maximum coding rate and, for each i-th
CC: v(i)layers is the number of Multiple-Input Multiple-Output

(MIMO) layers,Q(i)
m is the maximummodulation order, f (i) is

the scaling factor, TµS is the Orthogonal Frequency Division
Multiplexing (OFDM) symbol duration in a subframe with
numerology µ, and OH (i) is the transmission overhead. The
parameters Rmax, and Q(i)

m , are given by a lookup table of
Channel Quality Indicator (CQI) versus SNR [41], consid-
ering that the SNR is calculated from the received power.

For the throughput estimation, and for the carrier frequency
of 3.5 GHz, a bandwidth of 100 MHz with a SCS of 60 kHz,
corresponding to 135 PRBs per subframe, was considered; for
the 28 GHz carrier frequency, a bandwidth of 400 MHz with
a SCS of 120 kHz, corresponding to 264 PRBs per subframe,
was selected. These bandwidths correspond to the maximum
standardized in 5G for the respective carrier frequencies. Fur-
thermore, two MIMO layers were assumed in the throughput
calculations. Overall, the 5G radio frame configurations, used
in this work, are presented in Table 4.

TABLE 4. 5G radio frame configurations.

B. SYNTHETIC SCENARIOS
The synthetic scenarios, despite being simpler approxima-
tions of reality, allow reproducible results and provide the
ability to test any simulation parameter. In the scope of this
work, they allow to test both path loss models (3GPP and
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mmMAGIC), distinct beamforming radiation patterns (see
Table 1), and two frequencies, 3.5 GHz and 28 GHz.

In this section two distinct synthetic scenarios are pre-
sented; an open area and aManhanttan-like.While the former
is particular to evaluate outdoor coverage, either in LoS or
NLoS, the latter allows to consider both outdoor and indoor
coverage.

1) OPEN AREA
The open area testing scenario consists of 19 BSs,
3-sectorized, arranged in a hexagonal grid [17]. For the UMa
scenario, the BSs antennas have a height of 25 m and an Inter-
Site Distance (ISD) of 500 m, while for the UMi scenarios,
the BSs height is 10 m and the ISD is 200 m; the UEs height
is fixed to 1.5 m. In the open area scenario, all UEs are
considered in either LoS or NLoS conditions, according to
the used path loss equation (LoS/NLoS). The scenario aims
to compare the outdoor coverage between LoS/NLoS condi-
tions, for the different path loss models (3GPP/mmMAGIC).

2) MANHATTAN-LIKE
The modified Manhattan-like scenario (see Fig. 8) considers
buildings and streets to create a scenario where both LoS and
NLoS conditions are simultaneous present.

FIGURE 8. Modified Manhattan-like synthetic scenario.

The resulting Manhattan-like scenario consists of a 5 × 5
building grid, where the building width is 40 m, and the street
is 20 m wide (16 m for road width and 2 m for each sidewalk
width). Sidewalks (in dark brown) around the buildings (light
brown) were added, separating them from the road. Buildings
are 25 m in height, having eight floors; each floor is 3 m in
height, and the sidewalks are 0.2 m in height. The BSs have
an antenna height of 10 m and are located on lampposts in the
middle of the sidewalks (i.e. 1 m away from the building wall
and 1 m away from the road edge), which are assumed to be
regularly distributed along the sidewalks.

For the sake of simplicity, in Fig. 8 only the lampposts
which support the BSs are represented (black dots). The
terrain is assumed to be flat.

The locations of the BSs were determined according to
link budget calculations to guarantee coverage in the whole
scenario. An indoor UE was considered using a carrier fre-
quency of 28 GHz, as it is the link condition with higher path
loss. In this setup, the MaximumAllowed Path Loss (MAPL)
is calculated by substituting the RSRP value in (25) by the
minimum power that should be received for having coverage
(i.e., PRx,Sens +MF +MR), and solving the equation in order
to PL. With the MAPL, the NLoS UMi mmMAGIC path loss
equation was used to calculate the MAPL cell radius (the
building penetration loss was taken into account according
to Section IV-A). Finally, with the cell radius and consid-
ering 3-sectorized sites, using the approximation of hexag-
onal service areas, the Inter-Site Distance (ISD) is obtained
by multiplying the cell radius by 1.5 [42], resulting in 15
3-sectorized BSs with an ISD of 92.5 m. Moreover, the cho-
sen locations for the BSs privileged LoS communications.
In theManhattan-like scenario, not only the outdoor coverage
is considered but also the indoor coverage, considering UEs
inside the buildings.

C. REAL SCENARIOS
For the real scenarios, both detailed 3D environment infor-
mation and data from real MNOs are required, especially the
location and parameters of real BSs. In this work, real sites
from BSs of legacy technologies were considered, allowing
to evaluate the future 5G coverage in a real scenario. The
considered real scenarios were predominantly UMa scenar-
ios, with a residual number of UMi BSs. Consequently, only
the 3GPP path loss model was used as the mmMAGIC is only
valid for UMi.
This section presents the real UMa environments in a

Lisbon centered area using 3D geospatial data [43]. The
considered geospatial data has an area of 5.5 km2 discrimi-
nating terrain, buildings, and clutter, with a 2 m resolution,
5 m planimetric accuracy (XY ), and vertical accuracy (Z )
between 2 m and 3 m. The following regular and irregular
urban scenarios were outlined to evaluate indoor coverage in
limited areas. The third scenario is a mixed scenario where
both outdoor and indoor coverage is assessed.

1) REGULAR URBAN
The regular urban area, represented in Fig. 9, is characterized
by a high building density with an average height of 20.1 m,
and a BS located on top of one building (blue marker), with
an antenna height of 26 m.

The macro BS is used by a MNO for legacy technolo-
gies. In the regular urban scenario, only indoor coverage is
assessed where the use of distinct beamforming radiation
patterns are evaluated.

2) IRREGULAR URBAN
Fig. 10 presents the irregular urban scenario composed of
buildings with irregular heights (average of 7.8 m), and
with a nonuniform building distribution. The considered BS
(blue marker) is located at 15 m height. The irregular urban
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FIGURE 9. Real regular urban environment.

FIGURE 10. Real irregular urban environment.

scenario intends to evaluate how the environment surround-
ing a BS influences the optimal radiation pattern in compari-
son with the regular urban scenario.

3) MIXED REGULAR/IRREGULAR URBAN
The mixed regular/irregular urban scenario is presented
in Fig. 11 where the considered area is limited to the loca-
tions where 3D environment data is available, represented in
red. In the mixed regular/irregular urban scenario, 20 macro
BSs are considered, of which 14 are 3-sectorized, while
the remaining have two sectors. These BSs are real legacy
sites from a Portuguese MNO. The coverage analysis is then
performed considering both outdoor and indoor locations.

VI. 5G COVERAGE ANALYSIS
The 5G coverage analysis is conducted on the scenarios
described in section V, evaluating the covered area, received
power, and user throughput. While in the synthetic scenarios
UMi deployments are considered, allowing the comparison
of the 3GPP and the mmMAGIC path loss models, the real
scenarios reflect UMa deployments using data from MNOs.
In both cases, the impact of distinct frequencies and the effect
of the different beamforming radiation patterns is assessed.
Two frequency bands were considered; a mid-band frequency
of 3.5 GHz, and a mmWave frequency of 28 GHz. For the

FIGURE 11. Real mixed regular/irregular urban environment.

3.5 GHz frequency only the 3GPP path loss model was used,
as the mmMAGIC is only valid for frequencies above 6 GHz.

A. COVERAGE ANALYSIS USING SYNTHETIC SCENARIOS
The main goals for the coverage analysis using synthetic
scenarios are the following: to compare the coverage pre-
dictions based on the 3GPP and the mmMAGIC path loss
models; to compare the coverage impact of using a mid-band
frequency with a mmWave frequency; to assess the beam-
forming coverage impact (its usage and the effect of distinct
radiation patterns). The antenna configurations, presented
in Table 1 (except for pattern 15), were considered.Moreover,
while in the open area scenario only outdoor coverage is
evaluated, separating LoS from NLoS propagation, in the
Manhattan-like scenario the coverage is evaluated consid-
ering outdoor and indoor propagation. In this work, it was
considered that a UE is in LoS if the 1st Fresnel Ellipsoid is
at least 60% unblocked (in the full extension of the direct ray
between the BS and the UE) [44].

The coverage is evaluated considering the percentage of
covered area, the percentile 5% and the average of the
throughput distribution, as in section V-A. The through-
put statistics are calculated considering only the areas with
coverage.

1) OPEN AREA
For the 3GPP and the mmMAGIC comparison, the open
area scenario implements the UMi configuration described in
section V-B1, with 19 BSs having an antenna height of 10 m
and an ISD of 200 m.

The received power was calculated using (25), and
the resulting received power Cumulative Density Function
(CDF) for LoS and NLoS are depicted in Fig. 12.
Table 5 presents the percentage of covered area and the user

throughput calculated as described in section V-A.
From both Fig. 12 and Table 5, the following conclusions

can be stated:
• Regarding the RSRP distributions, both path loss models
have similar behavior in LoS conditions; however, they
differ in the NLoS case, with a 26 dB difference in the
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TABLE 5. Coverage comparison, in the UMi open area, using the 3GPP and mmMagic path loss models, under distinct frequencies and antenna
configurations.

FIGURE 12. RSRP Cumulative Density Function (CDF) after applying the
3GPP UMi and mmMAGIC UMi models (28 GHz).

50% percentile for 28 GHz (see Fig. 12). In this case,
the mmMAGIC NLoS model predicts higher path loss
than the 3GPP. The observed power difference between
the two models is in line with the results in [31].

• Concerning the covered area, in LoS conditions 100%
coverage was obtained. In NLoS conditions, while
at 3.5 GHz almost 100% of coverage is provided,
at 28 GHz the coverage is insufficient due to the higher
path loss (Table 5). So, an ISD of 200 m, in NLoS
conditions, cannot provide full outdoor coverage with
any of the path loss models. Moreover, at 28 GHz, a low
5% percentile of user throughput is registered when
coverage is achieved, which inmost simulations is below
the requirement of an user data rate in the downlink
of 100 Mbps [45] (measured as the 5% point of the CDF
of the user throughput).

• Concerning the antenna configuration, while for LoS,
100% of the covered area was always attained, consid-
ering the NLoS (see Table 5), the use of beamform-
ing antennas compared with a traditional single-beam
antenna (Kathrein) enables a higher coverage percent-
age, due to higher directivity and gains. Regarding

the throughput results, in NLoS conditions, beamform-
ing led to higher throughput, particularly on pattern 6,
at 28 GHz; this pattern outperforms pattern 9, which has
two vertical beams instead of one, and pattern 1, which
has a narrower vertical HPBW.

2) MANHATTAN-LIKE SCENARIO
The Manhattan-like scenario has 15 BSs, with antenna
heights of 10m, andwith an ISD of 92.5m (see sectionV-B2).
The main difference in the Manhattan-like scenario, com-
pared with the open area, is that LoS/NLoS propagation are
jointly evaluated, since buildings are considered as propaga-
tion obstacles.

In the Manhattan-like scenario, the 3GPP and mmMAGIC
UMi path loss models were used according to the LoS/NLoS
conditions. Moreover, the respective indoor path loss mod-
els were used for the building areas. Besides the outdoor
and indoor path losses, the losses due to the building walls
were modeled by the 3GPP O2I penetration models (see
Section IV-A). Fig. 13 represents the resulting RSRP in a
vertical cut between a BS and a building.

The influence of the mentioned propagation mechanisms
can be noticed, as well as the effect of the beamforming
antenna, using the model from Section III-B.

Table 6 presents the throughput estimation (average and
percentile 5%) for outdoor and indoor locations. Moreover,
the BSs ISDwas determined using a link budget dimensioned
for 100% indoor coverage; thus, full coverage is attained in
the whole scenario.

From Table 6, the following conclusions can be drawn:
• The throughput comparison, between considering the
3GPP or the mmMAGIC path loss models, shows
fewer differences considering the NLoS scenario
(see section VI-A1). Moreover, the geometry of the
Manhattan-like scenario confers a larger area in LoS
than in NLoS. Thus, considering that the LoS path loss
predicted by the 3GPP model tends to be higher than the
mmMAGIC model, it leads to higher throughput values
when using the mmMAGIC model.
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TABLE 6. User throughput comparison in the Manhattan-like scenario using the 3GPP and mmMagic path loss models, under distinct frequencies and
antenna configurations.

FIGURE 13. Side view of the Manhattan-like scenario with pattern 9.

• TheUMi open area scenario (sectionV-B1) is defined by
an ISD of 200 m. In the Manhattan-like scenario, after
the dimensioning of the link budget for indoor coverage
with a carrier frequency of 28 GHz, an ISD of 92.5 m
was determined. Particularly at mmWave frequencies,
the BSs density is a critical factor to provide seamless
5G radio coverage. The average outdoor and indoor
peak throughput is 761 Mbps and 349 Mbps, respec-
tively, with a carrier frequency of 3.5 GHz. At 28 GHz,
the average outdoor and indoor peak throughput is
2.85 Gbps and 898 Mbps, respectively, considering the
3GPP path loss model and the antenna pattern 6. The
28 GHz frequency, despite higher path loss, benefits
from the additional available bandwidth to deliver higher
throughput.

• The use of beamforming led, in most cases, to higher
throughput, independently of the used pattern. Pattern
6 achieves the highest throughput values. Although,
in indoor scenarios, pattern 9 (with two vertical beams)
could be expected to provide higher indoor coverage,

its lower horizontal HPBW limits coverage in the hor-
izontal plane. Overall, for the different configurations
to achieve the best possible throughput, the number of
beams and the respective horizontal and vertical HPBWs
need to be aligned with the geometry of the considered
scenario.

• Finally, comparing the outdoor and the indoor coverage,
even the 5% percentile throughput for outdoor is above
224 Mbps, using the 3.5 GHz, and reaches at least
1 Gbps when considering 28 GHz. For the indoor cov-
erage, average throughput values around 300 Mbps and
800Mbps are achieved, for 3.5GHz and 28GHz, respec-
tively. Nevertheless, the indoor 5% percentile through-
put is below the 100 Mbps downlink requirement for the
user data rate [45].

In conclusion, a significant difference is observed in NLoS
conditions between the 3GPP path loss and the mmMAGIC
path loss models. However, since for the synthetic scenario
outdoor coverage is mostly done in LoS conditions this fact
has little impact in the results depicted in Table 6. Network
densification is required to deploy mmWave frequencies,
so that gigabit per second throughput can be obtained, even in
indoor scenarios. Coverage and user throughput are enhanced
when using beamforming, which is taken into account using
beamforming antenna models as presented in section III.

B. COVERAGE ANALYSIS USING REAL SCENARIOS
The 5G coverage analysis in real scenarios aims to evalu-
ate the indoor coverage and global coverage (outdoor and
indoor), using BSs locations from real MNO of legacy tech-
nologies. In the following scenarios, UMa deployments are
considered, as the locations of UMi deployments are residual
in the study area. Consequently, only the 3GPP path loss
model is used, as the mmMAGIC is not valid for UMa
scenarios.

The indoor coverage analysis examines the radio propa-
gation using the 3.5 GHz frequency, the impact of the radi-
ation patterns and antenna configuration parameters, and the
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antenna tilt influence. The regular and irregular scenarios (see
section V-C) are considered.

For the global coverage analysis, the mixed regu-
lar/irregular urban scenario (section V-C) is used considering
three distinct frequencies, 700 MHz, 3.5 GHz, and 28 GHz.

1) REGULAR URBAN
The regular urban scenario, presented in section V-C1,
is characterized by a BSwith an antenna height of 26m and an
average surrounding buildings height of 20.1 m. The beam-
forming radiation pattern 1 and 9 are considered to evaluate
the impact of multiple vertical beams. Moreover, the indoor
coverage is calculated according to different tilt values and
distinct vertical scanning ranges of beams (delimiting the
maximum and minimum vertical angle where energy is radi-
ated by the vertical beams). A lower vertical scanning range
of beams forces the radiated power to a narrower vertical area,
while a higher scanning range allows the radiated power to a
broader vertical area.

For the environment presented in Fig. 9, the indoor cov-
erage area (in percentage) was calculated using the 3GPP
path loss model, taking into account the losses due to outdoor
propagation, building penetration, and indoor propagation.
Two vertical scanning ranges with an amplitude of 15◦ and
30◦ were compared, and tilt values, varying from 0◦ to 12◦,
were also evaluated. The resulting indoor coverage percent-
ages for the radiation pattern 1 are presented in Fig. 14.

FIGURE 14. Regular urban indoor coverage as a function of the applied
downtilt (pattern 1).

Since the considered beamforming pattern has just one ver-
tical beam, changing the vertical scanning range did not affect
the indoor coverage percentage, as both curves overlap. With
lower downtilt values, the indoor coverage is smaller, but as
the downtilt increases, the radiation pattern is best pointed in
the direction of the buildings, and almost full indoor coverage
is attained. When the downtilt is high, the radiation pattern
points to the ground, deteriorating the indoor coverage again.

Fig. 15 details the indoor coverage results for pattern 9.

FIGURE 15. Regular urban indoor coverage as a function of the applied
downtilt (pattern 9).

For pattern 9, the scanning ranges provide different results;
the radiation pattern with the range [θtilt − 15◦, θtilt + 15◦]
and 0◦ tilt behaves as pattern 1 with a two degree tilt, as the
lower vertical beam points to the buildings whereas the upper
beam points to the sky. As the downtilt increases, the lower
beam starts pointing to the bottom of the buildings, while
the upper beam does not point yet in the direction where
most buildings would be covered, so the indoor coverage
deteriorates. When the maximum of the upper beam radiates
to the top of the building, indoor coverage improves. With
a smaller vertical scanning range of beams, [θtilt − 7.5◦,
θtilt + 7.5◦], indoor coverage is almost constant around 90%.
The wider the vertical scanning range of beams, the more
dispersed is the radiated energy. Thus, with the smaller range,
the radiated energy is focused around the tilt angle. There are
variations presented in the [θtilt −7.5◦, θtilt +7.5◦] range, but
they are much smaller. Therefore, it can be concluded that
having a wider range of beams may not always be beneficial
due to the higher energy dispersion.

The use of multiple vertical beams did not improve the
indoor coverage, compared with a single vertical beam pat-
tern, despite evaluating distinct tilt values and vertical scan-
ning ranges. To further judge the coverage impact of multiple
vertical beams, a new scenario is introduced in Fig. 16.

The scenario is defined by a hotel (light gray), with a height
of 92 m, and a BS on a nearby building (80 m away), with
an antenna height of 26 m. The indoor coverage analysis is
performed as described in the previous scenario. However,
it considers only the indoor of the high-rise building, with the
following considerations: a tilt angle such that the radiation
diagram points to the middle of the building; a new radiation
pattern (pattern 15), with four vertical beams and two hori-
zontal beams. This pattern is adapted to high-rise buildings
and hotspot coverage and not to widespread coverage, as the
remaining radiation patterns.

The resulting indoor coverage for the reference building,
using pattern 1, was 58.7%; this percentage increases to
83.1% for pattern 9. As the area of interest has a height
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FIGURE 16. Real high-rise building in urban environment.

greater than the width, pattern 9, with two vertical beams and
a narrower horizontal HPBW, radiates more power directly to
the building. This effect is evenmore pronouncedwith pattern
15, improving the indoor coverage up to 97.8%.

Overall, in regular urban deployments and considering
UMa environments, radiation patterns with multiple vertical
beams should be limited to particular scenarios, where build-
ings are higher than the BSs. Moreover, 5G with beamform-
ing in the vertical plane can be a valid alternative to typical
indoor Distributed Antenna System (DAS), used for example
in high-rise buildings.

2) IRREGULAR URBAN
The irregular urban scenario, presented in section V-C2,
is characterized by a BS with an antenna height of 15 m and
an average buildings height of 7.8 m. Patterns 1 and 9 are
evaluated as in the regular urban scenario.

FIGURE 17. Irregular urban indoor coverage as a function of the applied
downtilt (pattern 1).

Fig. 17 depicts the indoor coverage results for pattern 1.
For this radiation pattern, the indoor coverage has similar
behavior to the observed in the regular urban scenario. How-
ever, high downtilt values are required for almost full indoor
coverage as the buildings have low heights.

Fig. 18, which depicts the indoor coverage results for pat-
tern 9, shows that the two scanning ranges provide ‘‘symmet-
ric’’ coverage. With a vertical range of [θtilt−15◦, θtilt+15◦],
and with small downtilt values, the indoor coverage is around
87%-90%. For higher downtilt values, the indoor coverage
tends to decrease.

FIGURE 18. Irregular urban indoor coverage as a function of the applied
downtilt (pattern 9).

With a vertical range of [θtilt − 7.5◦, θtilt + 7.5◦], indoor
coverage is lower than the previous configuration for small
downtilt values, as the upper beam is pointing to the sky.
When the downtilt is increased, the indoor coverage increases
and remains almost constant.

Overall, in irregular UMa scenarios, pattern 1 still provides
higher indoor coverage. So, radiation patterns with a single
vertical beam in UMa scenarios provide the highest indoor
coverage when the optimal tilt is used.

3) MIXED REGULAR/IRREGULAR URBAN
The mixed regular/irregular UMa scenario is used to assess
the 5G global coverage (outdoor and indoor) in a broader area
(cf. section V-C3), testing the 700MHz, 3.5 GHz, and 28GHz
frequencies. The scenario comprises an area of 5.5 km2,
where real locations of 20 BSs were used.
In the previous sections, pattern 1 produced higher indoor

coverage (when comparing to patterns having multiple ver-
tical beams). So, by considering pattern 1 for the coverage
analysis, the indoor coverage was maximized, and having
eight horizontal beams it also enhances the outdoor coverage.
The received signal was calculated for indoor and outdoor,
at ground level (1.5 m), using the 3GPP path loss model for
the three proposed frequencies.

In Fig. 19, the coverage prediction for the 700 MHz is
presented in a 3D scenario. The percentage of the covered
area was 85.7%, and the 50% percentile of the RSRP was
−91.67 dBm. As expected, at a lower frequency, high cover-
age is achieved.

In 5G networks, the 700 MHz band will support
widespread coverage and Internet of Things (IoT) services,
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FIGURE 19. Mixed regular/irregular urban coverage prediction at
700 MHz.

FIGURE 20. Mixed regular/irregular urban coverage prediction at 3.5 GHz.

as these have low capacity requirements. Services that require
higher capacity should be provided by using higher frequency
bands where more bandwidth is available.

For the carrier frequency of 3.5 GHz, the obtained results
are depicted in Fig. 20.

Compared to the previous simulation, there is a decay in the
RSRP due to the higher working frequency. The percentage of
the covered area is reduced to 76.6%, and the 50% percentile
of the RSRP was −110.0 dBm. However, the difference in
the covered area is less significant when compared to the
RSRP difference. At 3.5 GHz, the required SNR is lower,
limiting the frequency impact on the covered area. The lower
SNR, at 3.5 GHz, is due to a larger available bandwidth and
thus more physical resources, easing to achieve the target
throughput of 100 Mbps.

The spectrum between 3.4 GHz and 3.8 GHz is expected to
emerge as the primary frequency band for the first 5G deploy-
ments and services, offering a good balance between cover-
age and capacity. Additionally, early network deployments
co-located with existing BSs from legacy technologies, where
the existing infrastructure is shared, allow a cost-efficient
deployment.

The results of the final frequency, 28 GHz, are depicted
in Fig. 21. Again, as the frequency increases, the RSRP

FIGURE 21. Mixed regular/irregular urban coverage estimation at 28 GHz.

TABLE 7. Mixed regular/irregular urban scenario results.

decays to a RSRP of−131.12 dBm (50% percentile), and the
percentage of the covered area to 23.8%.

The comparison between the different frequencies is sum-
marized in Table 7.
The mmWave frequencies will play an important role in

5G to fulfill the International Mobile Telecommunications -
2020 (IMT-2020) vision, notably to support ultra-high-speed
mobile broadband. However, due to high propagation losses
at mmWaves, which are visible in Fig. 21, MNOs must invest
considerably in network densification, mainly in urban and
dense urban areas. The densification of mmWave BSs will
essentially occur at micro- and small-cell levels using urban
furniture such as lampposts, bus stops, and traffic signs.

VII. 5G DRIVE TEST CALIBRATION
Often, the path loss predictions from stochastic propagation
models and the path loss obtained by signal measurements
show significant differences. The stochastic path loss models
are based on extensive measurement campaigns. However,
these campaigns are dependent on the specific geographical
area (e.g., heavy clutter or other topological peculiarities),
frequency band, and weather conditions. For better network
coverage prediction, the path loss parameters should be cali-
brated for each geographical location.

In this section, the UMa 3GPP path loss model is calibrated
using real DTs measurements from 3.7 GHz and 26 GHz
frequencies. The calibration of the mmMAGIC required
UMi measurements that were unavailable, constituting future
work. Moreover, the scenario V-B1 is analyzed using the
UMa specification and the 3GPP calibrated path loss model.
Finally, regression ML algorithms are used to increase pre-
diction accuracy with data-driven path loss models.
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A. DRIVE TEST CAMPAIGNS
The 3GPP path loss model was calibrated with three distinct
DT campaigns: one using a carrier frequency of 3704.82MHz
and two with a carrier frequency of 26500.08 MHz, all in
UMa environments. The first DT campaign (at 3.7 GHz)
resulted from three sites (a total of four sectors) with BSs
antenna heights of 20 m. The second and third DT campaigns
concern one sector each, with a BS antenna height of 30 m
and 15 m, respectively. Even though the available DT mea-
surements do not correspond exactly to the same frequencies
used in Section VI, the difference is small enough to retain
the main conclusions.

The DT campaigns were performed in dedicated mode,
using a smartphonewith a Qualcomm chipset andXCAL [46]
as a DT tool to automatically record and decipher messages
from the air interface, including the 5G RSRP of the respec-
tive serving cells.

Firstly, information regarding terrain and buildings
(geospatial data) was obtained from public data sources and
used to assesswhether eachDTmeasurement (data point) was
in LoS or NLoS to the respective BS. The DT measurements,
recording the 5G RSRP, corresponding to the first DT cam-
paign, are presented in Fig. 22, while the second and third DT
campaigns are depicted in Fig. 23 and Fig. 24, respectively.

FIGURE 22. DT campaign with LoS/NLoS classification at 3.7 GHz (four
sectors with an antenna height of 20 m).

Since the real DTs measure the RSRPmeas(t), at time t ,
the correspondent path loss, MPL(t), was computed,
in dB, as:

MPL(t) = PRS + GBS + GUE − RSRPmeas(t) (29)

where PRS is the reference signal transmitted power in dBm,
GBS is the BS antenna gain in dBi, andGUE is the UE antenna

FIGURE 23. DT campaign with LoS/NLoS classification at 26 GHz (one
sector with an antenna height of 30 m).

FIGURE 24. DT campaign with LoS/NLoS classification at 26 GHz (one
sector with an antenna height of 15 m).

gain in dBi. The antenna gain of the BS (GBS) was computed
using the beamforming model proposed in section III, for
the considered antenna pattern (pattern 6) using (6), (7) and
(11), and with (φ, θ ) corresponding to the direction between
the BS and the point where the measurement was obtained.
Pattern 6 has a broad horizontal coverage as it contains eight
horizontal beams and one vertical beam, with a maximum
antenna gain of 25 dBi.

Path loss models describe the experienced average path
loss while the DTs field measurements are instantaneous,
including slow fading (shadowing) and fast fading (multi-
path). Thus, the measured path loss as a function of time, t
can be modeled as:

MPL(t) = PL(t)+ F(t) (30)

where PL(t) is the average path loss and F(t) denotes the fad-
ing term. Therefore, before making any comparisons between
the DT measurements and the path loss model predictions,
a sliding-windowmethodwas employed to filter the slow fad-
ing out [47]. The filtering process averages the measurements
over a spatial and temporal range of measurements, where the
mean signal (path loss) is considered constant.
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Let MPLi(t) be the ith measured path loss. Hence, the ith

mean path loss PLi(t) is given by:

PLi(t) =
1
|X |

max(X )∑
k=min(X )

MPLk (31)

where X is a measurement set:

X = {n : D(MPLi(t),MPLn(t)) ≤ L ∧

T (MPLi(t),MPLn(t)) ≤ 1t} (32)

where function D(MPLi(t),MPLn(t)) calculates the distance
and T (MPLi(t),MPLn(t)) the time difference between sam-
ples MPLi(t) and MPLn(t), respectively, L is the window
size and1t the time interval, corresponding to the maximum
distance and time interval, respectively, where the signal is
considered to be constant. The time interval is calculated
based on L and v, which is the average DT speed:1t = L/v.
According to [48], L must be between 20λ and 40λ, and a
value of 30λ is considered in this work.

In Fig. 25, the obtained data, after filtering, is presented.
For the 3.7 GHz frequency, 2892 DT measurements were
obtained, from which 239 correspond to LoS conditions. For
26 GHz, a total of 3414 measurements were collected with
1212 corresponding to LoS.

B. 3GPP MODEL CALIBRATION
In this section, the 3GPP UMa model was calibrated using
DTs measurements at 3.7 GHz and 26 GHz. Two calibrations
were performed: including all DT measurements (3.7 GHz
and 26 GHz) in a full-spectrum model and only considering
26 GHz measurements. By having both calibrations, it is
possible to evaluated how adding multiple frequencies into
a single calibrated model can limit its accuracy.

All DT measurements had a distance below the breakpoint
distance (1369 m for 3.7 GHz and 7020 m for 26 GHz), thus
the 3GPP LoS PL2 was not considered. Since the 3GPP UMa
model (LoS PL1 and NLoS) is an ABG type of model, linear
regression was chosen to calibrate it, given by:

PL = 10α log10(d3D)+ β + 10γ log10(fc) (33)

where α, β and γ are the model calibration parameters.
Linear regression attempts to model the linear relationship

between one or more independent variables (input features)
and a dependent variable (output feature). In this particular
case, the input features are the 3D distance, d3D, and the
frequency, fc, and the output feature is the path loss, PL. The
Sum of Squared Error (SSE), between the propagation model
predictions and the measured path loss, was used as the cost
function to calibrate the path loss model.

The linear regression process was applied to both calibra-
tions (multi and mono frequency) using (33). The calibration
accuracy was evaluated using the MAE, the RMSE and the
coefficient of determination, R2. The obtained results are
depicted in Table 8, where the LoS and NLoS measurements
were calibrated separately.

The non calibrated 3GPP UMamodel has aMAE, between
the measured path loss and the predicted, of 21.05 dB and
14.48 dB for LoS and NLoS, respectively. Comparing with
the calibrated full-spectrum model, the prediction MAE is
reduced to 5.45 dB and 7.51 dB, for LoS and NLoS, respec-
tively, while the 26 GHz calibrated model obtained MAEs,
respectively, of 5.00 dB and 7.16 dB. The error analysis
taking as reference the RMSE is similar, and the coeffi-
cient of determination attains values above 0.50 in the cali-
brated models. Considering the calibrated model parameters,
it can be noted that the distance coefficient, α, has a value
of 4.53 in LoS conditions. In LoS, it should be close to the free
space propagation coefficient of 2, however, in the calibrated
model, the excessive value of α is balanced with lower values
of β, which is only an optimization parameter. Additionally,
it has to be considered that the model calibration process,
using Ordinary Least Squares (OLS), is solely dependent
on the available drive test data (quantity and quality). From
the quantity point of view, the DT measurements contain
fewer LoS measurements than NLoS, which influence the
calibrated parameters of the LoSmodels (theNLoS calibrated
model parameters exhibit fewer deviations than the LoSmod-
els). Moreover, the path loss was obtained considering (29),
where the antenna model to estimate GBS can introduce error
on the retrieved path loss. However, the accuracy of the
original path loss model is low, and it is worthy to calibrate
the model even when the above considerations are verified.

The calibration increases the prediction accuracy signif-
icantly, and even calibrating with multiple frequencies the
obtained accuracy is similar to a single frequency calibrated
model. The multiple frequency calibration has the advan-
tage of having the frequency dependent parameter calibrated,
enabling the model to be used with other frequencies.

C. APPLYING THE 3GPP CALIBRATED MODEL
In the previous section, it was concluded that the calibrated
path loss model, allow for improving the prediction accu-
racy. Consequently, the use of such model improves the
realism of path loss dependent analysis. So, the analysis of
the UMa open area synthetic scenario from section V-B1
was performed using the 3GPP full-spectrum calibrated
model. Regarding the used antenna configurations, besides
the legacy antenna (Kathrein), only pattern 6 for the beam-
forming antenna was used, as it has only one vertical beam,
suited for a UMa scenario. The respective coverage analysis
result is presented in Table 9.
The result analysis reveals that the estimated throughput

with the non calibrated model is significantly higher com-
pared to the calibrated model. The frequency comparison
reveals a higher difference in the 26 GHz band. From the
average throughput analysis, differences between 2% and
163% (using the calibratedmodel as reference) are registered,
depending on the antenna and the frequency. For the per-
centages of covered areas, a general increase is noticed when
using the non calibrated model, going up to 25%, discarding
the cases of low covered areas.
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FIGURE 25. DT measurements with path loss as a function of the distance for frequencies 3.7 GHz and 26 GHz.

TABLE 8. Calibration of the 3GPP path loss model.

TABLE 9. User throughput and percentage of covered area in UMa open area scenario with calibrated models.

Overall, the non calibrated 3GPP model leads to overesti-
mating both coverage and user QoS metrics.

D. MACHINE LEARNING BASED MODELS
In this section, ML regression algorithms were used to
develop data-based path loss models, using the DT mea-
surements presented in section VII-A. Also, a comparison
with the calibrated 3GPP model is presented. Two mod-
els considering full-spectrum measurements (3.7 GHz and
26 GHz measurements) for LoS and NLoS, respectively,
and two models for 26 GHz measurements (LoS and NLoS)
were developed. The full-spectrum models estimate the path

loss based on the 3D distance, d3D, and frequency, fc,
while the 26 GHz models consider only the 3D distance as
input.

When using ML, it is common to divide the data
into a training set and a testing set. The training set,
(x1, y1), . . . , (xm, ym) ⊂ X×R, whereX denotes the space of
the input patterns (e.g., X = Rd ) and y the respective feature
output. The training set data is used to train the model, and the
test set data to access its accuracy. In this case, the whole data
was divided randomly between training (80%) and testing
(20%). Two ML algorithms were considered; the Support
Vector Regression (SVR) [49] and the RF [50].
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The SVR is a non-linear regression algorithm that intro-
duces nonlinear traits by preprocessing the training examples
xi by using a map, � : X → F, into some feature space F.
Formally, it is given by [51]:

f (x) =
m∑
i=1

(αi − α∗i )k(x, xi)+ b (34)

wherem is the number of training examples, αi and α∗i are the
Lagrange Multipliers, k(.) is a Kernel function (k(x, x ′) :=
〈�(x), �(x ′)〉) and xi is the ith training example. The Radial
Basis Function (RBF) was used as Kernel function [52]:

K (x, xi) = e−γ ‖x−xi‖
2

(35)

where γ ∈ R is an SVR hyperparameter. A detailed explana-
tion of the SVR formulation is presented in [51].

The SVR implementation from [53] was used where two
additional model hyperparameters, C ∈ R and ε, were
considered. WhileC is a regularization parameter, ε specifies
the distance from the actual value where no penalty is given
by the training loss function. The SVR hyperparameters were
optimized by performing k-fold cross-validation [53] (with
k = 10) in the training data.

The RF model consists on a collection of randomized base
regression trees formally given by [54]:

f (x) = E2 [r(x,2)] (36)

where 2 ∈ RT is a randomizing variable, r(, ) is the base
regression tree, and E2 aggregates the regression estimate
concerning the random parameter 2t . The variable 2t deter-
mines the construction of an individual regression tree, rt ,
by controlling how the tree grows and splits. Also, T indicates
the number of individual regression trees used for the RF esti-
mate. The training of the RF models considers the following
hyperparameters, according to the implementation provided
by [53]:
• T - the number of trees in the forest;
• Depthmax - the maximum depth of a tree;
• Leafmin - the minimum number of samples required to
be at a leaf node;

• Splitfmin - the minimum number of samples required to
split an internal node.

The RF hyperparameters were optimized considering
10-folds for the k-fold cross-validation.

Then, both algorithms were trained using the training set,
and the metrics, MAE, RMSE, and R2, were calculated on the
test set data, between the respective model prediction and the
measured path loss. Also, the comparison with the path loss
3GPP model and its calibrated model is based on the test set.

The hyperparameter tuning results, after the 10-fold cross-
validation, for each ML regression algorithm and each path
loss data model (i.e, full spectrum vs 26 GHz and LoS vs
NLoS) are presented in Table 10.
The overall results are presented in Table 11. The cali-

brated 3GPP model has the highest error in all comparisons
(LoS/NLoS, multi/single frequency). Both the SVR and the

TABLE 10. Hyperparameters for the ML regression algorithms.

TABLE 11. ML models’ results on the respective test sets.

RF algorithms always achieve lower prediction errors, and the
RF algorithm constantly outperform the SVR.

When comparing the path loss models between LoS and
NLoS, in NLoS, there is a general tendency to obtain lower
errors, possibly due to the higher amount of measurements.
When comparing the full spectrum model and the 26 GHz
model, as seen in the previous section, the tendency is to
have higher accuracy in the single frequency model. Overall,
the lowest errors are obtained for the NLoS 26 GHz model,
with a MAE of 3.70 dB, a RMSE of 4.98 dB, and a R2

of 0.83 by the RF algorithm.
To complement the analysis, the corresponding path loss

predictions of the NLoS 26 GHz model are represented
against the real measurements in Fig. 26. As pointed out,
the 3GPP model presents the highest error, generally predict-
ing below the measured path loss. The calibrated 3GPP is
well fitted with the measured path loss distribution. However,
the most revealing analysis corresponds to the non-linear
regression algorithms (SVR and RF). The respective lower
errors are obtained due to the introduced non-linear depen-
dence on the distance. The distance is known to have a
linear dependence with the path loss, so the measured path
loss incorporates other radio propagation effects. The envi-
ronment itself is non-homogeneous with distinct building
densities and heights, varying street widths, and other factors,
impacting the measured path loss. Thus, from a statistical
point of view, the ML algorithms incorporate part of the
propagation environment characteristics. The consequence is
that the ML-based models provide accurate predictions as
long as the non-linear data dependence on the distance is
maintained. It requires the same environment to be main-
tained or to be similar. The calibrated 3GPP model, which
forces a linear dependence between distance and path loss,
supported on a physical foundation, can be applied in more
scenarios, as long as the main characteristics of the original
propagation environment are kept.
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FIGURE 26. Path loss model comparison for NLoS 26 GHz measurements.

VIII. CONCLUSION
Path loss and antenna models play an essential role in mobile
network planning and coverage prediction, particularly in
early network deployment stages, as the current 5G. New path
loss models have been proposed, as the 3GPP TR 38.901 and
the mmMAGIC. The comparison between both evidenced
that these models’ path loss predictions are similar except
in NLoS conditions where the mmMAGIC predicts higher
path loss. Furthermore, the 5G coverage was assessed in
a new UMi Manhattan-like scenario, with an ISD around
100 m, which provides coverage even in an indoor environ-
ment at 28 GHz. However, average gigabit/s throughput is not
achieved with lower frequencies, as the 3.5 GHz.

The 5G enhances coverage by using beamforming anten-
nas. A new antenna model has been used to model beam-
forming and was evaluated in several scenarios. The use of
multiple vertical beams has been found beneficial in scenar-
ios where the BS height is lower than the average building
heights, or in specific hotspot areas, as in high-rise buildings.
For typical UMa deployments, antenna configurations with
one vertical beam are preferable as they provide good indoor
coverage and maximize the outdoor covered area. Neverthe-
less, the antenna tilt is paramount to beamforming antennas,
as distinct antenna radiation patterns require particular tilt
configurations, according to the surrounding environment
geometry.

The use of 5G DT measurement campaigns allowed an
evaluation of the UMa 3GPP TR 38.901 path loss model
accuracy. With DT measurements at 3.7 GHz and 26 GHz,
the MAE between the real measurements and the model pre-
dictions was 21.05 dB and 14.48 dB for LoS and NLoS con-
ditions. The model calibration reduced the MAE to 5.45 dB
and 7.51 dB for LoS and NLoS, respectively. Moreover,
the comparison between the non-calibrated and calibrated
3GPP model revealed that the uncalibrated model leads to

overestimating covered area up to 25%, and user throughput
up to 163% (in the considered UMa scenario). The use of ML
algorithms, to develop data-based path loss models, increased
path loss prediction accuracy. In this case, and considering a
subset of the total measurements, the RF algorithm surpasses
both the 3GPP calibrated model and the SVRwith the highest
accuracy, measured by aMAE of 3.70 dB in NLoS conditions
at a carrier frequency of 26 GHz.

Future work will concentrate on ML-based path loss mod-
els, as concerns of lack of generalization to other BSs or
other environments still need to be addressed. Addition-
ally, new DT measurements will allow the evaluation of
the mmMAGIC path loss model for UMi and small-cell
deployments.
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