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ABSTRACT The dependent and independent variables in traditional linear regression models are con-
tinuous numerical variables. When the dependent variable or independent variable is a discrete variable,
the traditional linear regression model can no longer be used to analyze. To solve this problem, this article
introduces the non-homogeneous Markov chain model. It introduces the mathematical definition of the
non-homogeneous Markov chain model. And then this article uses Bayesian estimation method to derive
posterior distribution of model parameters. Through the MCMC algorithm, we simulate an experiment,
posterior means value of the parameters is estimated, and the estimation effect is found to be better. Finally,
we analyze the impact of learning state transition about college students on the non-homogeneous Markov
chain model. Influencing factors include whether to receive a scholarship and whether to serve as a class
leader. In this paper, non-homogeneous Markov chain model is used to analyze and detect the impact of
discrete variables on dependent variables. This is the major innovation in this article.

INDEX TERMS Non-homogeneous Markov chain model, Bayesian estimation, MCMC algorithm, state

transition.

I. INTRODUCTION

The correlation and influence relationship between variables
is important research content of statistics. The linear regres-
sion model is the most traditional and classic statistical such
as, the regression equation, parameter estimation, applica-
tion range and other contents of the linear regression model
introduced in detail in the literature [1]. However, the linear
regression model requires that both the independent vari-
able and the dependent variable are continuous numerical
variables. Therefore, when the independent variable or the
dependent variable is a discrete classified variable, it is
impossible to establish a linear regression model to analyze
the influence of the independent variable on the dependent
variable. Many statistical models have been improved and
developed to meet the needs of practical problems. For exam-
ple, when the independent variable is a continuous numer-
ical variable and the dependent variable is a discrete cat-
egorical variable 0 and 1, the logistic regression model is
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derived [2]. However, when the independent variables are
discrete categorical variables or the independent variables
and dependent variables are discrete categorical variables,
most of them are analyzed by simple and rough descrip-
tive statistical methods such as statistical charts and tables.
At present, the better method for qualitative variable analysis
is the contingency table test [3]. However, contingency table
analysis can only test whether qualitative variables are related
to each other, and cannot further explore who influences who
and how. For example, if the university students are class
cadres or not, and whether the award-winning grants affect
their learning status, we cannot directly model and analyze
them by using the above-mentioned methods. Under this
background, this paper introduces and improves the hidden
Markov model to analyze the interaction between discrete
classification variables.

The hidden Markov model is a new statistical model. The
model cannot directly observe the state sequence in practi-
cal application, that is, the state sequence of the model is
hidden in the observation sequence, so it is called ‘“‘hidden”
Markov model [4]. In the nineties of last century, hidden
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Markov models had achieved great success in the field of
speech recognition. With the development of science and
technology, hidden Markov models have a good application
in the frontier fields of artificial intelligence, machine learn-
ing and so on. Therefore, it has received extensive attention
and research. Song et al introduced latent variables into hid-
den Markov model and analyzed the model with Bayesian
method [5]. And they studied the semiparametric hidden
Markov model with latent variables by Bayesian method [6].
Xia et al. analyzed the hidden Markov factor analysis model
with the semi parametric Bayesian method [7]. Liu et al
introduced linear regression model to hidden Markov model
and used the maximum likelihood estimation method for
inference analysis [8]. Wang et al proposed the hidden
Markov structural equation model and estimated the corre-
sponding parameters with Bayesian method [9]. On the basis
of these studies, this paper improves the state transition mode
of Markov chain and proposes a non-homogeneous Markov
chain model, which is used to analyze the influencing factors
of discrete classification variables.

The rest of this article is organized as follows: firstly,
this paper introduces the mathematical definition of the
non-homogeneous Markov chain model; secondly, it intro-
duces the Bayesian inference method of the model; thirdly,
it verifies the reliability of the estimation method through
simulation experiments; finally, it uses this method to analyze
the influencing factors of College Students’ learning state
transition.

Il. NON-HOMOGENEOUS MARKOV CHAIN MODEL
Homogeneous Markov chain is a Markov process which indi-
cates that time and state sequence is discrete. The transition
process of homogeneous Markov state sequence satisfies the
following conditions.

PZi; =51Zi1,Zi2y ... Zig—1 = u)
P(Ziy =5|Zi 11 = u) = ays (1

where, Z; ; is the state of the ith observation object at the ¢-th
time, a, is the transition probability from state u at occasion
t—1 to state S at occasion ¢ In this transition mode, the current
state is only related to the state of the previous moment, that
is, it satisfies the homogeneous hypothesis. We call this state
transition mode homogeneous Markov state transition [10].

However, in many state sequences, the state of the current
observation time is not only related to the state of the previous
time, but also related to some characteristics of the current
time. We call this state transition non-homogeneous Markov
state transition in the literature [11], this non-homogeneous
Markov state transition as shown in formula 2.

P(Ziy = s|Zi1, Zips -+ s Zig—1 = 1)
= P(Zis =5|Zi1—1 =u) =Pirus
i=1,2,...,.N, t=2,3,...,T,
wu=1,2,....8, s=1,2...,8 Q)

VOLUME 9, 2021

where, Z; ; is the state of the ith observation object at the S —th
time, Z;; = 1,2,...,S, S is the total number of states in the
model. P;; , s is the transition probability from state Z; ;_;
at occasion ¢ — 1 to state Z;; = s at occasion ¢ for the i th
individual.

To model the transition probabilities, we assume that the
hidden states {1,2,...,S} are ordered. Instead of model-
ing P; ;s directly, we consider a continuation-ratio logistic
model for n;; s = P(Ziy = s|Ziy > s,Zi;—1 = u) with
s <8 —1[11]. So, we assume that.

P(Ziy =s|Zi—1 = u)
P(Ziy > s|Zi—1 = u)

log(ni,r,u,s) = log

Pit,u,s
= log
Ditu,s+1 +... +pi,t,u,S
= ;‘M,S+u/bi,h
i=1,2,...,.N, t=2,3,...,T,
u=1,2,....8, s=1,2...,8. 3)

where, ¢, ¢ are the state transition parameters of the model b; ,
is the covariate vector that that may influence the transition
probabilities, e is an m-dimensional coefficient vector b; ;.
Such parameterization only is intended to facilitate the inter-
pretation of transition to a state. Based on (3), we can obtain
the followings.

exp({u,s + “/bi,t)
[T {1+ expl(Cu,k +a'biy)}

Pit,u,S = —
i:% {1 + exp(é‘u,k + Ol/bi,t)}

s=1,2,....,5—1 @

Ditus =

We assume that the initial time of the state sequence, that
is, the probability of each initial state is: (py, p2, ..., ps) = p-
Then the whole state sequence can be determined by the ini-
tial probability p and the continuation-ratio logistic transfer
model [6].

Ill. BAYESIAN INFERENCES
A. INFERENCE PRINCIPLE
The Bayesian inference problem of non-homogeneous
Markov chain model is P(p, ¢, «|Z). Where, p, £, a are the
parameters to be estimated in the model. The posterior distri-
bution of the Bayesian inference contains high-dimensional
integral, so the calculation is very complex, and the specific
form of the marginal posterior distribution of each parameter
cannot be obtained directly. In this paper, we use MCMC
algorithm to simulate the posterior distribution, and the pos-
terior means of the parameters is used as the Bayesian estima-
tion value of model parameters [12]. The specific execution
process of MCMC algorithm is as follows.

(1) Update initial probability p;

(2) Update the transition parameter ¢;

(3) Update the transfer coefficient vector .

Each update step is based on the Gibbs sampling and MH
algorithm [13]. We require setting prior distribution for each
parameter and deriving posterior distribution.
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B. PRIOR DISTRIBUTION OF PARAMETERS

In Bayesian theory, unknown parameters are regarded as
random variables [14]. Before Bayesian inference, it is nec-
essary to set prior distribution for each unknown parameter.
Then, posterior distribution of parameters is obtained by
using prior distribution and sample information. Based on
existing research experience [15], we assume that the prior
distribution for each parameter is as follows.

®1,p2,...,ps) ~ Dirichlet(a,a, ...,a)
2
ws ~ (Gn 52 8)
~ N(a®
@«~N@’ ) )
where, a, {,9 o 82 0 , Yo is a super parameter in prior distri-

bution. Z is the state in the model, and it is a known quantity.

C. POSTERIOR DISTRIBUTION OF PARAMETERS
Firstly, we give the likelihood function of the model, multiply
the likelihood function by prior distribution of each parame-
ter, and then derive full conditional posterior distribution of
each parameter The likelihood function is.

[{th 1(u)Z;_,(s)}

le_l_[u 11_[v— 1_[1 11_[ =2 Pitus

S

s
G

where, I {Z;—1()Z;(s)} is a characteristic function, n is
the number of samples on Z; | = 5 [16].
(1) Full conditional distribution of (p1, p2, e, Ps) =

s
PpIZ. ¢, a)oc]_[p? e = ]—[p”"‘ :
s=1 s=1
So, the full conditional distribution of p is.
Pp|Z, ¢, o) = (p1.p2,....PS)

= p ~ Dirichlet(a + ny,a+na, ...,a+ ng) (6)

(2) Full conditional distribution of ¢, s.

1 (Cus — £2)*
P(Gus ) exp{— S~ L)
2718? 28;
ST H{Zi- 1 (w)Zi,,(K))
it—1U)L;,
X exp {lognnnpi‘tym L }
k=si=1t=2

(Cu,s - ;3;)2
X €exp —T

S N T
xexp{z

D 1 Zi 1w Zi s ()}

k=s i=1 t=2

X log(pi,t,u s)}

S N T
= exp {ZZ Zl {Zii-1)Zi (k) }

k=s i=1 t=2
(é-u,s - CMO,S)Z }

X log(pi,t,u,s) - 252
¢
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So, full conditional distribution of ¢, ¢

S

N T
P(g4,5.) oc exp {Z DO H{Zii 1 Zig (k)

k=s i=1 t=2
({u,s - ;2;)2
x log(pi t,us) — T? @)

(3) Full conditional distribution of .

Pla].)
1

Jer s,
oo o)
AT 1\Z; Z: /(s

u=1s=1i=11=2

o exp {—%(a —af Z: (oc — Ot())}

(08

s S N T
X exp {Z SN 1{Zi )z (5)) log<p,~,z,u,s>}
u=1 s=1 i=1 t=2
S § N T
_ > XY Y HZi1wZi(s))
= €XP ) u=1s=1i=11=2
log(Pi,su,s) — 2(“ — o Y (OL - (xo)
So, full conditional distribution of c.
S N T
Z Y Y I Zii1wZi ()}
u=1s=1i=11=2
P(a |.) o< exp 108(Pi 1) — %(oc — ®)
o (e —af)

D. MCMC PROCESS
(1) Extract a vector from Dirichlet(a+ny, a+ny, ...,
and update the initial probability vector p;

(2) Update the transition parameter £, ; by MH algorithm
according to P(gy s |.);

(3) Update the transfer coefficient vector « by MH
algorithm according to P(« |.);

a+ns)»

IV. EMPIRICAL SIMULATION
In order to test the Bayesian estimation method of the model
parameters, it is necessary to set the real values of the parame-
ters in the model in advance. Then, according to posterior dis-
tribution derived from Bayesian inference method, MCMC
algorithm is used to simulate the parameters. Posterior mean
value is taken as Bayesian estimation value of the parameter,
and then compared with real value to observe the estimation
effect, so as to measure the reliability of the Bayesian infer-
ence method.

We consider an HMM with the hidden state number
S = 2. Where b;; = (bis.1,bi;2), in which b;;; and
bi ;2 are independently generated from Bernoulli(0.5) [17];
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FIGURE 1. Renderings of «; estimated for different initial values.
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FIGURE 2. Renderings of «, estimated for different initial values.

p = (uLp) = 0505 .01 = L1 = —0.1,
a = (x,a2) = (—0.5,0.5). The value of super param-
eter in prior is as follows: a = 1, gﬁs = 0, 8? = 1.0,
a’=0,0,>,=1

In the simulation, the number of sample observation
objects is n = 50, and the number of observation times is
t = 10. In MCMC algorithm, the total number of iterations
is 10,000 times. For the parameters to be estimated, three
groups of greatly different initial values are taken to explore
the influence of different initial values on the convergence
of the Markov chain. The experimental results are shown
in Figure 1, Figure 2, Figure 3 and Figure 4.

Fig. 1 and Fig. 2 show Markov chains with transfer coef-
ficients a1 and «; at three different initial values. Fig. 3 and
Fig. 4 respectively show the Markov chains of transfer param-
eters ¢1,1 and &1 under three different initial values. As can
be seen from the above figures, under three groups of different
initial values, the Markov chain of each parameter to be
estimated all converges in a relatively short time. Therefore,
different initial values have no effect on the convergence
of the Markov chain [18]. In view of this, in MCMC algo-
rithm, the total number of iterations is 10,000 times, and it is
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FIGURE 3. Renderings of ¢; ; estimated for different initial values.
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FIGURE 4. Renderings of ¢, ; estimated for different initial values.

TABLE 1. Parameter estimate results.

parameter Bias Rmse

D -0.033 0.075
1

)2 0.033 0.075
2

: 0.002 0.201
1,1

éf 0.029 0.169
2,1

a -0.017 0.173
1

-0.005 0.173
aZ

reasonable to take the posterior mean of the last 5,000 times as
Bayesian estimate value after removing the first 5,000 times.
In this paper, a total of 100 simulations are carried out,
and the parameter estimate results in 100 experiments are
calculated. The results are shown in Table 1.
In the simulation, the real values of each parameter are
set in advance, and the state set is generated by simulation.
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Then the parameters in the model are deduced by Bayesian
estimation method, and the estimated results are compared
with real values set in advance. The experimental results
show that the Bias between the posterior mean and the real
value of all parameters is within the acceptable range, which
indicates that the inference method in this paper can estimate
the parameters of the model correctly. The Rmse of the
parameters shows that the estimation result of the inference
method is stable.

V. STUDY ON THE TRANSFER OF COLLEGE STUDENTS’
LEARNING STATE

In the study of College Students’ learning state transition,
the influencing factors are discrete categorical variables,
which cannot be directly introduced into regression equation
as continuous numerical variables and analyzed by linear
regression model. In order to solve this problem, we use the
non-homogeneous Markov chain model, regards whether to
be a class leader or not and whether to receive scholarships as
the covariates in the transfer model, to study their influence
on the transfer of College Students’ learning state.

A. DATA SELECTION

The influencing factor of College Students’ learning state is
an important research issue in pedagogy, and many scholars
have conducted relevant research. For example, Xing Wenya
used factor analysis model and logistic model to analyze and
study the influencing factors of College Students’ learning
state [19]. Based on the curriculum reform; Lu Fang and
others analyzed and evaluated the learning status of college
students in the context of big data [20].

This paper selects 49 students from class 20171111 of
Qujing Normal University for six semesters’ academic per-
formance, whether they are awarded grants and whether they
are class leaders. There are two kinds of learning states: qual-
ified and unqualified. If the score of all courses in a semester
is above 63, it is regarded as ‘“‘qualified’’; if the score of one
or more courses is below 65, it is regarded as “unqualified”;
the “qualified” is recorded as state 1, and the “unqualified”
is recorded as state 2. Finally, the state sequence matrix
of 49 x 6 is obtained. At the same time, two co variables
are selected: whether to win the scholarship or not and
whether to serve as the class cadres. The scholarship for a
semester is recorded as: 1, the non-award-winning scholar-
ship is recorded as: 0, the number of classes cadres in a
semester is:1 and that of the non-class cadres is: 0. The final
observation data is a three-dimensional array of variables.

B. RESULTS ANALYSIS
The results of the example are shown in Table 2 and Table 3.
The results of the parameters in Table 2 are brought
into equation (6) to obtain the transition probability values
in Table 3. Furthermore, the state transition probability matrix
is obtained when two covariates are O or 1.
Transfer probability of learning status of students who have
not won the scholarships or grants and did not serve as a class
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TABLE 2. Bayesian estimation results of each parameter of the example.

parameter Estimate SD
e 1.442 0.257
1,1
e 0271 0.235
2,1
1.992 0.534
al
a 20218 0.447

2

TABLE 3. Transition probability.

probability result probability result
Pf, t, 1,1(0, 0) 0.809 PJ t, 1,2(0,0) 0.191
‘Pj, t,2,1(0,0) 0.433 }3 t, 2,2(0,0) 0.567
‘Pj, t, 1,100, 1) 0.773 Pz t,1,2(0, 1) 0.227
Pf, t,2,1(0,1) 0.380 PJ t,2,2(0,1) 0.620
‘Pj, t, 1,11, 0) 0.969 }3 t, 1,2(1,0) 0.031
Pf, t,2,1(1,0) 0.848 lDf, t,2,2(1,0) 0.152
Pf, t,1,1(1, 1) 0.961 PJ t,1,2(1, 1) 0.039
‘Pj, t,2,1(1,1) 0.818 }3 t,2,2(1,1) 0.182
leader.
P [ Pir1,10,0 Pir1,20,0
(Foo) = P; P
i,t,2,1(0,0) i,t,2,2(0,0)
_(0.809 0.191
0.433  0.567

Transition probability of learning status of class leaders
who have not won scholarships or grants.

Pir110,0)  Pir1,201)
Py = ( 1@ 41,200,
(Fou) (Pi,t,2,1(0,1) P; 1.2.2(0,0)

_ (0773 0.227

— 10380 0.620
Transfer probability of learning status of students who won
the scholarships or grants and did not serve as a class leader.

Pir1,101,00  Pir1,201,0

T 4121,

(F10) (Pi,t,2,1(1,0) P;12.2(1,0)
{0969 0.031
~10.848 0.152

Transition probability of learning status of class leaders
who won scholarships or grants:

Pir11a,1  Pir120a,1)
Py = (ot o+ L2,
F10) (Pi,t,2,1(l,l) Pi:12.2(1,1)

_ (0961 0.039
— 10818 0.132
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where, p; ¢.u,s(m,n) denotes the probability of the ith observa-
tion object changing from state u at time # — 1 to state s at time
t when the covariates are m and n respectively, m = 0, 1,
n = 01,i = 12,....N, ¢t = 23,...,T,
u = 1,2,...,8,s = 1,2...,S. Table 3 shows that,
when students are not awarded scholarships or grants and
do not serve as class leaders, the probabilities of students’
learning status from qualified in the previous semester to
qualified and unqualified in the next semester are 0.809 and
0.191 respectively; The probabilities of students’ learning
status from the unqualified in the previous semester to the
qualified and unqualified in the next semester are 0.433 and
0.567 respectively; When the students were not awarded the
scholarship and served as class leaders, the probabilities of
the students’ learning status from qualified in the previous
semester to qualified and unqualified in the next semester
are 0.773 and 0.227 respectively; the probabilities of the
students’ learning status from unqualified in the previous
semester to qualified and unqualified in the next semester
are 0.380 and 0.620 respectively; When the students won
the scholarship and did not serve as class leaders, the proba-
bilities of the students’ learning status from qualified in the
previous semester to qualified and unqualified in the next
semester are 0.969 and 0.031, respectively; the probabilities
of the students’ learning status from unqualified in the previ-
ous semester to qualified and unqualified in the next semester
are 0.848 and 0.152, respectively; When students are awarded
the scholarship and serve as class cadres, the probability of
students’ learning status from the previous semester to the
qualified and unqualified two states in the next semester is
0.961 and 0.031 respectively; the probability of students’
learning status from the former semester to the latter semester
is 0.818 and 0.182 respectively.

The results show that the probability of state transfer of
whether the students are class cadres does not change signif-
icantly when they do not receive the scholarship. Similarly,
the probability of state transfer of whether the students are
class cadres does not change significantly when they are
awarded the grant. It shows that whether to be a class leader or
not has no significant effect on the transfer of students’ learn-
ing state. When students are not class leaders, the probability
of state transition from state 1 to state 1 increase significantly,
and the probability of state transition from state 2 to state
1 decrease significantly. Similarly, when students are class
leaders, the probability of state transition from state 1 to state
1 increases significantly, and the probability of state transition
from state 2 to state 1 increases significantly The probability
of state 1 is also significantly reduced, which indicates that
whether or not the award-winning grant has a significant
impact on the transfer of College Students’ learning state.

In order to further explain the influence of covariates on
state transition, this paper makes a Bayesian significance test
on the covariate coefficient vector, and we made a significant
test on the transfer coefficient «.

1.992

P2 373 > Zooos = 1.96
0.534 > Zoo2s = 19
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It shows that whether or not the scholarship has a signifi-
cant impact on the transfer of students’ learning status.
Test transfer coefficient cs.

—0.218
0.447

It shows that whether to be a class leader or not has no
significant effect on the transfer of students’ learning state.

Through the comprehensive analysis, it is found that
whether the scholarship has significant impact on the transfer
of students’ learning status. The findings of the study are
positive and can be adjusted in determination of scholarships
in order to increase students’ motivation to learn.

=0.49 < Zy s = 1.96

VI. CONCLUSION

The linear regression model is the most classic statistical
model to analyze the relationship between variables. How-
ever, the traditional linear regression model requires that the
independent variables and dependent variables are continu-
ous numerical variables. When the independent variables are
classified discrete variables or the independent variables
and dependent variables are classified discrete variables,
the traditional linear regression model is no longer applica-
ble. In this paper, a non-homogeneous Markov chain model
was introduced to solve this problem. We introduced the
non-homogeneous Markov chain model and its Bayesian
inference method. Through the simulation, it is found that
Bias and Rmse of the model parameter estimation are rel-
atively small, which indicates that the parameter estimation
results are correct and reliable. Finally, this paper analyzes the
influence of whether college students are awarded grants and
whether they are class leaders on the learning state transition
by using the non-homogeneous Markov chain model, and
draws the conclusion that whether they are awarded grants
has a significant impact on the learning state of college stu-
dents, which has a more positive practical significance.

The most important contribution of this paper is to analyze
the influence of discrete categorical variables on dependent
variables by using non-homogeneous Markov chain model,
which cannot be described by traditional linear regression
models. It provides a new method to study the influence of
discrete categorical variables on dependent variables in the
future.
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