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ABSTRACT Electrocardiogram (ECG) is an authoritative source to diagnose and counter critical cardiovas-
cular syndromes such as arrhythmia and myocardial infarction (MI). Current machine learning techniques
either depend on manually extracted features or large and complex deep learning networks which merely
utilize the 1D ECG signal directly. Since intelligent multimodal fusion can perform at the state-of-the-art
level with an efficient deep network, therefore, in this paper, we propose two computationally efficient
multimodal fusion frameworks for ECG heart beat classification called Multimodal Image Fusion (MIF)
and Multimodal Feature Fusion (MFF). At the input of these frameworks, we convert the raw ECG data into
three different images using Gramian Angular Field (GAF), Recurrence Plot (RP) and Markov Transition
Field (MTF). InMIF, we first perform image fusion by combining three imaging modalities to create a single
image modality which serves as input to the Convolutional Neural Network (CNN). In MFF, we extracted
features from penultimate layer of CNNs and fused them to get unique and interdependent information
necessary for better performance of classifier. These informational features are finally used to train a Support
Vector Machine (SVM) classifier for ECG heart-beat classification. We demonstrate the superiority of
the proposed fusion models by performing experiments on PhysioNet’s MIT-BIH dataset for five distinct
conditions of arrhythmias which are consistent with the AAMI EC57 protocols and on PTB diagnostics
dataset for Myocardial Infarction (MI) classification. We achieved classification accuracy of 99.7% and
99.2% on arrhythmia and MI classification, respectively. Source code at https://github.com/zaamad/ECG-
Heartbeat-Classification-Using-Multimodal-Fusion

INDEX TERMS Convolutional neural network, deep learning, ECG, image fusion, multimodal fusion.

I. INTRODUCTION
Electrocardiogram is a reliable, effective and non-invasive
diagnostic tool and is the best representation of electrophys-
iological pattern of depolarization and repolarization of the
heart muscles during each heartbeat. Heart beat classifica-
tion based on ECG provides conclusive information to the
cardiologists about chronic cardiovascular diseases [1]. An
intelligent system for diagnosing cardiovascular diseases is
highly desirable because they are the leading source of death
around the globe [2].

Arrhythmia is a heart rhythmic problem which occurs
when electrical pulses that coordinate hearbeats cause heart to

The associate editor coordinating the review of this manuscript and

approving it for publication was Claudio Cusano .

beat irregularly, i.e., either too slow or too fast. Arrhythmias
can be caused by coronary artery disease, high blood pres-
sure, changes in the heart muscle (cardiomyopathy), valve
disorders etc.

Myocardial Infarction, also known as heart attack,
is caused due to the blockage of blood supply to the coronary
arteries and in general to the myocardium. This blockage
stops the supply of oxygen-rich blood to the heart muscle
which can be life-threatening for the patient [3].

ECG beat-by-beat examination is vital for early diagnosis
of cardiovascular conditions. However, differences of record-
ing environment, variations of disease patterns among the
subjects during testing, complex, non-stationary and noisy
nature of ECG signal [4] make heartbeat classification a
challenging and laborious exercise for cardiologists [5]. Thus,
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computer based novel practices are useful for automatic and
autonomous detection of abnormalities in heartbeat ECG
classification.

Conventional methods for heartbeat classification using
ECG signal rely mostly on hand-crafted or manually
extracted features using signal processing techniques such
as digital filter-based methods [6], mixture of experts meth-
ods [7], threshold-based methods [8], Principal Component
Analysis (PCA) [9], Fourier Transform [10] and wavelet
transform [11]. Some of the classifiers used with these
extracted features are Support Vector Machines (SVM) [12],
Hidden Markov Models (HMM) [13] and Neural Net-
works [14]. The first disadvantage with these conventional
methods is the separation of feature extraction part and pat-
tern classification part. Furthermore, these methods need
expert knowledge about the input data and selected fea-
tures [15].Moreover, extracting features using subject experts
is a time consuming process and features may not invariant to
noise, scaling and translations and thus can fail to generalize
well on unseen data.

Exemplary performance of deep neural networks (DNNs)
on ECG [16] and especially the performance of CNN using
ID convolution [17] and 2D convolution [18] has recently
attracted attention ofmany researchers. Deep learningmodels
are capable of automatically learning invariant and hierarchi-
cal features directly from the data and employ end-to-end
learning mechanism that takes data as input and class pre-
diction as output. Recent deep learning models use 1D ECG
signal or 2D representation of ECG by transforming ECG
signal to images or some matrix form. For 1D ECG classifi-
cation, commonly used deep learning models are deep belief
networks, restricted Boltzmann machines, auto encoders,
CNN [19] and recurrent neural network (RNN) [20]. For 2D
ECG classification, CNNs are used and the input ECG data is
transformed to images or some other 2D representation. It is
experimentally proved in [21] that 2D representation of ECG
provides more accurate heartbeat classification compared to
1D. In our previous work [22], univariate ECG signal is trans-
formed to images by segmenting ECG signal between suc-
cessive R-R intervals and then stacking these R-R intervals
row wise to form images. Finally, multidomain multimodal
fusion is performed to improve the stress assessment. Exper-
imental results proved that multidomain multimodal fusion
achieved highest performance as compared to single ECG
modality.

Existing deep learning methods deprived of providing
robust fusion framework and rely mostly on concatena-
tion [23] and decision level fusion [24].

In this manuscript, we deal with the shortcomings of
existing deep learning models for ECG heartbeat classi-
fication by proposing two fusion frameworks that have
the capacity of extracting and fusing complementary and
discriminative features while reducing dimensionality as
well.

The proposed work has following significant
contributions:

1) Two multimodal fusion frameworks for ECG heartbeat
classification called Multimodal Image Fusion (MIF)
and Multimodal Feature Fusion (MFF), are proposed.
At the input of these frameworks, we convert the
heartbeats of raw ECG data into three types of
two-dimensional (2D) images using Gramian Angular
Field (GAF), Recurrence Plot (RP) and Markov Tran-
sition Field (MTF). Proposed fusion frameworks are
computationally efficient as they keep the size of the
combined features similar to the size of individual input
modality features.

2) We transform heartbeats of ECG signal to images
using Gramian Angular Field (GAF), Recurrence
Plot (RP) and Markov Transition Field (MTF) to con-
serve the spatial domain correlated information among
the data samples. These transformations result in an
improvement in classification performance in con-
trast to the existing approaches of transforming ECG
to images using spectrograms or methods involving
time-frequency analysis (Short time Fourier transform
or wavelet transform).

II. RELATED WORK
Deep Learning models especially CNN has been used over
the years for ECG heartbeat classification for the detection
of cardiovascular diseases such as arrhythmia and MI. These
models include both 1D and 2D CNNs.

A. ONE-DIMENSIONAL CNN APPROACHES
Various models based on 1D CNN has been proposed in the
literature for ECG classification. In [25], an active learn-
ing model based on ID CNN is presented for arrhythmia
detection using ECG signal. Model performance is improved
by using breaking-ties (BT) and modified BT algorithms.
Authors in [26] proposed a model for adaptive real time
implementation of a patient-specific ECG heartbeat classifi-
cation based on 1D CNN using end-to-end learning. In [27],
a novel algorithm making use of an 11-layer deep CNN is
proposed for automatic detection of MI using ECG beats
with and without noise. A transfer learning method based
on CNN is proposed in [28] where the information learned
from arrhythmia classification task is employed as a reference
for the training of classifiers. A computationally intelligent
method for patient screening and arrhythmia detection using
CNN is proposed in [29]. The proposed method is capable
of diagnosing arrhythmia conditions without expert domain
knowledge and feature selection mechanism. In [30], wavelet
transform based on Fourier-Bessel series expansion is pro-
posed for the localization of ECG. The Fourier-Bessel spec-
trum of the ECG beats is separated into adjacent parts using
the fixed order ranges and then multiscale CNN is employed
for MI classification of different categories. Multi-Channel
Lightweight Convolutional Neural Network (MCL-CNN)
which uses squeeze convolution, the depth-wise convolution,
and the point-wise convolution is proposed in [31] for MI
classification. Two end-to-end deep learningmodels based on
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CNN are proposed in [32]. These models are called two stage
hierarchical model. Furthermore, generative adversarial net-
works (GANs) is used for data augmentation and to reduce the
class imbalance. In [33], authors proposed a neural network
model for precise classification of heartbeats by following the
AAMI inter-patient standards. This model works in two steps.
In the first step the signals are preprocessed and then features
are extracted from the signals. In the second step, the clas-
sification is performed by a two-layer classifier in which
each layer consists of two independent fully-connected neural
networks. The experiments show that the proposed model
precisely detects arrhythmia conditions. In [34], authors pro-
posed a complex deep learning model consists of CNN and
LSTM. This model classifies six types of ECG signals by
processing ten seconds ECG slices of MIT-BIH arrhythmia
dataset. Experimental results proved that the proposed model
could be used by cardiologists to detect arrhythmia. In [35],
authors presented CNN based model for proper diagnoses of
congestive heart failure using ECG. The testing and training
of the proposed model was carried out on publicly available
ECG datasets. Performance of the proposed model shows the
authenticity of model for congestive heart failure detection.

B. TWO-DIMENSIONAL CNN APPROACHES
The knock out performance of CNN on 2D data such
as images convinced the researchers to convert raw ECG
data to images for improved results. In [21], short-time
Fourier transform is used to convert ECG signal into
time-frequency spectrograms that were used as input to
CNN for arrhythmia classification. Experimental results
show that 2D-CNN achieved higher classification accu-
racy than 1D-CNN. In [36], ECG signal is converted into
spectro-temporal images that were sent as an input tomultiple
dense convolutional neural network to capture both beat-
to-beat and single-beat information for analysis. Authors
in [37] transformed heartbeat time intervals of ECG sig-
nals to images using wavelet transform. These images are
used to train a six layer CNN for heartbeat classification.
In [38], Generative neural network is used to convert the
raw 1D ECG signal data into a 2D image. These images are
input to DenseNet which produces highly accurate classifi-
cation, with high sensitivity and specificity using 4 classes
of heart beat detection. To distinguish abnormal ECG sam-
ples from normal, authors in [39] used pretrained CNNs
such as AlexNet, VGG-16 and ResNet-18 on spectrograms
obtained from ECG. Using a transfer learning approach,
the highest accuracy of 83.82% is achieved by AlexNet.
In [40], multi-lead ECG are treated as 2D matrices for input
to a novel model called multilead-CNN (ML-CNN) which
employs sub two-dimensional (2D) convolutional layers and
lead asymmetric pooling (LAP) layers. In [41], authors gener-
ated dual beat couplingmatrix from the sections of heartbeats.
This dual beat coupling matrix was then as 2D input to a
CNN classifier. Gray-level co-occurrence matrix (GLCM),
obtained from ECG data is employed for features vector
description due to its exceptional statistical feature extraction

ability in [42]. In [43], ECG signals were segmented into
heartbeats and each of the heartbeats were transformed to 2D
grayscale images which were input to CNN. In [44], two sec-
ond segments of ECG signal are transformed to recurrence
plot images to classify arrhythmia in two steps using deep
learning model. In the first step the noise and ventricular
fibrillation (VF) categories were recognized and in the second
step, the atrial fibrillation (AF), normal, premature AF, and
premature VF labels were classified. Experimental results
show the promising performance of the proposed method.

C. FUSION BASED APPROACHES
Fusing different modalities mitigates the weaknesses of
individual modalities both in 1D and 2D forms by integrat-
ing complementary information from the modalities to per-
form the analysis and classification tasks accurately. In [45],
a Multi-scale Fusion convolutional neural network (MS-
CNN) is proposed for heartbeat classification using ECG
signal. The Multi-scale Fusion convolutional neural network
is a two stream network consisting of 13 layers. The fea-
tures obtained from the last convolutional layer are con-
catenated before classification. Another Deep Multi-scale
Fusion CNN (DMSFNet) is proposed in [46] for arrhythmia
detection. Proposed model consists of backbone network and
two different scale-specific networks. Features obtained from
two scale specific networks are fused using a spatial atten-
tion module. Patient-specific heartbeat classification network
based on a customized CNN is proposed in [47]. CNN con-
tains an important module called multi-receptive field spa-
tial feature extraction (MRF-SFE). The MRF-SFE module is
designed for extractingmultispatial deep features of the heart-
beats using five parallel convolution layers with different
receptive fields. These features are concatenated before being
sent to the third convolutional layer for further processing.
Two stage serial fusion classifier system based on SVM’s
rejection option is proposed in [48]. SVM’s distance outputs
are related with confidence measure and then ambiguous
samples are rejected with first level SVM classifier. The
rejected samples are then forwarded to a second stage Logis-
tic Regression classifier and then late fusion is performed
for arrhythmia classification. Authors in [49] presented a
unique feature fusion method called parallel graphical feature
fusion where all the focus is given to geometric features
of data. Original signal was first split into subspaces, then
multidimensional features are extracted from these subspaces
and then mapped to the points in high-dimensional space.
Multi-stage feature fusion framework based on CNN and
attention module was proposed in [50] for multiclass arrhyth-
mia detection. Classification is performed by extracting fea-
tures from different layers of CNN. Combination of CNN
and the attention module shows the improved discrimination
power of the proposed model for ECG classification.

The shortcoming in the existing fusion methods is that
they depend mostly on concatenation fusion. Concatenation
leads towards the problem computational complexity, curse
of dimensionality and hence the degradation in classification
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FIGURE 1. Complete overview of the proposed multimodal image fusion (MIF) framework. We fused GAF, RP and MTF image to form a
triple-channel (GAF-RP-MTF) compound image containing both static and dynamic features of input images.

FIGURE 2. Complete overview of the proposed multimodal feature fusion (MFF) framework. The MFF extracted features from fc-7 layer of
AlexNet. These features are then integrated through gated fusion network (GFN) and are finally sent to the classifier.

accuracy [51]. In this paper, we address the imperfections
of the existing literature and propose two fusion frameworks
called Multimodal Image Fusion (MIF) and Multimodal Fea-
ture Fusion (MFF) which extract and fuse the features while
reducing dimensionality as well. The proposed fusion frame-
works are described in section III.

III. MATERIALS AND METHODS
This section explains the proposed fusion frameworks called
Multimodal Image Fusion (MIF) and Multimodal Feature
Fusion (MFF). The common element in both of the proposed
fusion framework is ECG signal to image transformation as
shown in Figures 1 and 2. Therefore in this section, first we
will explain ECG signal to image transformation and then
MIF, MFF and the two important elements of MFF, gated
fusion network shown in Fig. 3 and architecture of CNN
shown in Fig. 4, will be explained.

A. ECG SIGNAL TO IMAGE TRANSFORMATION
For each fusion framework, we transform the input
heart-beats into three types of images called GAF, RP and
MTF images.

1) FORMATION OF IMAGES BY GRAMIAN ANGULAR FIELD
(GAF)
Converting heart-beats of ECG into Gramian Angular
Field (GAF) images maps the ECG in an angular coordinate
system instead of typical rectangular coordinate system.

Consider that E is an ECG signal of n samples such
that E = {s1, s2, s3, . . . , sk , sl, . . . , sn}. We normalized E
between 0 and 1 to getE . Nowwemap the normalized ECG in
angular coordinate system by transforming the value into the
angular cosine and the time stamps into the radius. Following
equation is used to explain this encoding.

β = arccos(sk0)

R =
tk
C

}
(1)

In the above equation, sk0 is normalized kth sample of
the ECG, tk is the time stamp for sk0 and C is a constant
to adjust the spread of the angular coordinate system. This
encoding provides two benefits. It is bijective and it conserves
the spatial domain affiliations through the R [52]. Since the
image location with respect to the ECG heart beat samples is
consistent along the principal diagonal, therefore, the original
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FIGURE 3. Structure of the proposed gated fusion network. Input feature f1, f2 and f3 from modalities are convolved with
high boost kernel and then gated values w1, w2 and w3 are generated using sigmoid function. Finally, these gated values
are multiplied element-wise with input features to perform fusion.

FIGURE 4. Architecture of CNN for signal image of size 64 × 64.

heart beat samples of ECG can be restored from angular
coordinates [53].

The angular viewpoint of the encoded image can be
exploited by taking into account the sum/difference between
each sample to indicate the correlation among various time
stamps. The summation method, used in this article is
explained by the following set of equations.

Grammian field = cos(βk + βl) (2)

Grammian field = E
T
.E −

√
I − E

2
T

.

√
I − E

2
(3)

I is the unit row vector in equation 3
GAF Images of five different categories for MIT-BIH

dataset are shown in Fig 5.

2) FORMATION OF IMAGES BY RECURRENCE PLOT (RP)
ECG is a non-stationary signal, therefore to visualize the
recurrent behavior and to observe the recurrence pattern of
ECG signal [54], we encode ECG heartbeats into RP images.
An RP image obtained from a heartbeat of ECG represents
spacing between time points [55].

For ECG signal E defined in section III-A1, the recurrence
plot is given by

R-plot = α(λ− ||s(k)− s(l)||) (4)

where λ is threshold and α is the heaviside function.
RP Images of five different categories for MIT-BIH dataset

are shown in Fig 5.

3) ECG TO MARKOV TRANSITION FIELD (MTF) IMAGE
CONVERSION
For ECG heartbeats to MTF image encoding, we used the
same approach explained in [56]. Let E is the ECG sig-
nal defined in section III-A1, then the foremost step is to
define its B bins based on quantiles and assign every sk
to the related bins bj(jε[1,B]). Second step is the construc-
tion of B × B weighted adjacency matrix W by comput-
ing transformations within quantile bins like a first-order
Markov chain on the time axis. Weighted adjacency matrix
in the normalized form is called Markov transition matrix
and is non-relative to the spatial domain characteristics,
resulting in information loss. For handling the loss of
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FIGURE 5. GAF, RP and MTF images of MIT-BIH dataset according to the five different heartbeats defined in Table 2.

information, Markov transition matrix is transformed to
Markov transition field matrix (MTF) by stretching the tran-
sition likelihoods corresponding to the spatial domain loca-
tions. The MTF matrix is denoted by M and is shown
below

M =


wlk|s1εbl ,s1εbk . . . wlk|s1εbl ,snεbk
wlk|s2εbl ,s1εbk . . . wlk|s2εbl ,snεbk

...
. . .

...

wlk|snεbl ,s1εbk . . . wlk|snεbl ,snεbk

 (5)

where wlk is the frequency of transition of a point between
two quantiles. Since the formation of transformed matrix
depends upon the chances of moving element, the MTF can-
not be restored to original ECG signal.

Bins are the quantiles where the probability distribu-
tion is same. Any number of bins can be selected for
ECG to MTF images. We decided to take 10 bins as
the data is normalized between 0 and 1. These bins are
defined during the formation of Weighted adjacency matrix
which is the first step for creating MTF matrix shown in
equation 5.

MTF Images of five different categories for MIT-BIH
dataset are shown in Fig 5.
For ECG to image transformation using GAT, RP and

MTF methods, we are using the full length of heartbeats to
transform 1D information to 2D. Therefore, ECG signal of
any length can be transformed to images and then can be
resized using interpolation.

We can see from Fig. 5, that for each kind of image (GAF,
RP and MTF), the gray scale images are more interpretable.
These images show different patterns for each of the five
categories of MIT-BIH dataset. The x-y values of the 2D
images are just pixel values of the GAF, RP, and MTF
images.

B. MULTIMODAL IMAGE FUSION FRAMEWORK
Multimodal Image Fusion (MIF) framework is shown
in Fig. 1. At the input, we transform the heartbeats of
raw ECG signal into three types of images as described in
section III-A and shown in Fig. 5. The motivation of choosing
GAF, MTF and RP is that they are three different statistical
methods of transforming ECG to images. During transforma-
tion they preserve the temporal information and hence they
are lossless transformations. We combine these three gray
scale images to form a triple channel image (GAF-RP-MTF).
A triple channel image is a colored image in which GAF,
RP and MTF images are considered as three orthogonal
channels like three different colors in RGB image space.
However, this three-channel image is not conventional way
of converting a gray scale image to RGB, rather in this
paper all three gray scale images are formed from raw ECG
data with different statistical methods. Thus, a three-channel
image in the presented work carries statistical dynamics of
the ECG and therefore, is more informative. Furthermore,
three-channel image can be easily utilized with off-the-shelf
CNNs like AlexNet.

We use AlexNet, (CNN based model) [57] for feature
extraction and classification tasks and thus employ end-
to-end deep learning where feature extraction and classifi-
cation parts are embedded in a single network as shown
in Fig. 1.

C. MULTIMODAL FEATURE FUSION FRAMEWORK
At the input of MFF, we transform ECG heartbeats into
images as shown in Fig. 2. AlexNets are employed to learn
features from input imaging modality. We extract these
learned features from (fc-7) of each AlexNet and are then
fused by an efficient Gated Fusion Network (GFN), backbone
of the proposed MFF, which fuses the features effectively
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by taking care of their dimensionalities as well. These fused
features are input of the SVM classifier as shown in Fig. 2.

1) GATED FUSION NETWORK
The architecture of our proposed gated fusion network (GFN)
is shown in Fig. 3. We have adapted this network from our
previous work in [58]. The input to the GFN are the features
extracted from the second last fully connected layer (fc-7) of
each AlexNet as shown in Fig. 2.
Let f1, f2 and f3 be the features from each imaging modal-

ity respectively. These feature are then convolved with high
boost kernel K as shown in Fig. 3.
We used high boost filter for convolution with features

since this filter precisely recognize important information
of feature and accredits boosted value to every element of
features according to its importance [59]. High boost filter is
the difference between scaled version and low-pass version
of the input image as shown below in equation 6.

fhb(m, n) = cf (m, n)− flp(m, n) (6)

where cf (m, n) and flp(m, n) are respectively the scaled ver-
sion and low pass version of image f (m, n)
In general, high boost filter is given by

K =

−1 −1 −1
−1 c+ 8 −1
−1 −1 −1

 (7)

where c is the amplification factor that assigns the weights to
the feature during convolution.

The best filter performance is obtained for c = 1. Other
values of c produces less amplification.

Thus, following high boost kernel is selected empirically
that highlights the important characteristics.

K =

−1 −1 −1
−1 9 −1
−1 −1 −1

 (8)

High boost filter highlights the high frequency components
while conserving the low frequency components.

After convolution of features with the high boost filter,
sigmoid function is used for generating proper gated weights
w1, w2 and w3 respectively as shown in Fig. 3. Finally,
we obtained point-wise product of the weights w1, w2 and w3
and the features f1, f2 and f3 respectively, to perform feature
fusion and to generate fused features. The working of GFN
can be understood by the following equations.

w1 = σ (f1 ~ K ) (9)

w2 = σ (f2 ~ K ) (10)

w3 = σ (f3 ~ K ) (11)

Ff (j) = w1 � f1(j)+ w2 � f2(j)+ w3 � f3(j) (12)

where,
σ (x) , 1

1+e−x : Sigmoid Function.
a~ b: Convolution

a� b: Point Wise Multiplication
Fi(k): kth feature of ith modality
Ff (k): kth Fused feature

2) CNN ARCHITECTURE
Architecture of CNN used in proposed MFF is shown
in Fig. 4. It consists of three convolutional layers, two pooling
layers, and a fully connected layer. The first convolutional
layer has 16 kernels of size 5 × 5, followed by pooling layer
of size 2 × 2 and stride 2. Second and third convolutional
layers have 32 kernels of size 5× 5 followed by 2× 2 pooling
layer with stride 2.

D. CLASSIFICATION TASK AND CLASSIFIER
The classification task of the proposed methods is ECG heart
beat classification for arrhythmia and MI detection.

The classification metrics used for classification are accu-
racy, precision and recall as shown in Tables 5, 6, 7 and 8.
The accuracies, precisions and recalls are calculated using
following equations.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

where,
TP = True positive
TN = True negative
FP = False positive
FN = False negative
We used Softmax classifier in proposed MIF and Support

Vector Machines (SVM) classifier in proposed MFF for clas-
sification task.

Softmax classifier is a multiclass classifier or regressor
used in the fields of machine learning. Score function for
softmax classifier computes the class specific probabilities
whose sum is 1.

The mathematical representation of score function for soft-
max classifier is shown below.

f (y) =
eyj∑
k e

yk
(16)

where y is the input vector and the score function maps the
exponent domain to the probabilities.

In simplest form, the score function for SVM is the map-
ping of the input vector to the scores and is a simple matrix
operation as shown in Equation 17.

f = Wx + b (17)

where x is the input vector, W is the weight determined by
input vector and the number of classes and b is the bias vector.

E. TRAINING AND OPTIMIZATION
We resize images to 227 × 227 to perform experiments
with AlexNet. We also perform experiments with smaller but
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TABLE 1. Training parameters for AlexNet and CNN.

computationally efficient CNN, whose architecture is shown
in Fig. 4, to show that proposed frameworks can achieve
comparable performance even with the smaller CNN. The
comparison in terms of computational cost between both
CNN models is provided in Table 11. We fine tune Alexnet
by reducing the size of second last fully connected layer ’fc7’
from 4096 to 512 and the size of last fully connected layer
’fc8’ from 1000 to size equal to the number of classes in our
datasets. The size of ‘‘fc7’’ layer of AlexNet is 4096 which is
according to size of classification layer which is 1000. For our
MIT-BIH dataset and PTB dataset, we need the size of classi-
fication layer equal to 5 and 2 respectively due to number of
classes in these datasets. Thus to make ‘fc7’ compatible with
classification layer, we reduce its size to 512. The training
parameters for AlexNet and CCN are shown in Table 1.
For optimization of the deep networks, we used Stochas-

tic Gradient Descent with Momentum (SGDM) algorithm.
SGDM is a method which helps accelerate gradients vectors
in the right directions, thus leading to faster converging. It is
one of the most popular optimization algorithms and many
state-of-the-art models are trained using it.

IV. EXPERIMENTAL RESULTS
A. ECG DATABASES
Experiments are performed with PhysioNet MIT-BIH
Arrhythmia dataset [60], [61] for heartbeat classification and
PTB Diagnostic ECG dataset [62] for MI classification using
both proposed fusion frameworks. For experiments, ECG
lead-II re-sampled data at sampling frequency of 125Hz is
used as the input.

We used the standardized form of both datasets provided
in [63]. These datasets are already denoised and the training
and testing parts are provided in the form of standard ECG
heartbeats. Furthermore, five classes of arrhythmia and MI
localization has already been done and provided in terms
of standard ECG heart-beats. Our study focused on ECG to
image transformation and to the design of proposed multi-
modal fusion frameworks. The main focus is increasing the
overall performance of classification of heartbeats. We did
not attempt at modeling or solving for a specific type of noise.

We conduct our experiments on Matlab R2020a on a desk-
top computer with NVIDIA GTX-1070 GPU.

The experimental results are discussed in detail in
section V.

1) PhysioNet MIT-BIH ARRHYTHMIA DATASET
Forty seven subjects were involved during the collection
of ECG signals for the dataset. The data was collected at

TABLE 2. Mapping between annotations and AAMI EC57 [64] categories.

TABLE 3. Information about number of heartbeats before and after
SMOTE for training component of MIT-BIH dataset.

TABLE 4. Training and testing samples of datasets.

the sampling rate of 360Hz and each beat is annotated by
at least two experts. Using these annotations, five different
beat categories are created in accordance with Association
for the Advancement of Medical Instrumentation (AAMI)
EC57 standard [64] as shown in Table 2.

For training on CNN, we need large number of samples.
We use the same testing and training segments provided
in [63] to train on CNNs. Since there is a class-imbalanced in
the training part of the dataset as apparent from the numbers,
we applied SMOTE [65] to upsample the minority classes
(classes other than N) and finally settled on the numbers
shown in the right column of Table 3.
SMOTE is a data augmented technique which is used to

reduce overfitting during training and is helpful to reduce the
biasness of classifier.

We perform experiments using both proposed fusion
frameworks on MIT-BIH dataset with the training and testing
samples shown in Table 4 and with the training parame-
ters shown in Tables 1. The experimental results are shown
in Tables 5 and 6.

2) PTB DIAGNOSTIC ECG DATASET
Two hundred and ninety (290) subjects took part during col-
lection of ECG records for PTB Diagnostics dataset. 148 of
them are diagnosed as MI, 52 healthy control, and the rest are
diagnosed with 7 different diseases. Frequency of 100Hz is
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TABLE 5. Experimental results of MIT-BIH dataset using AlexNet.

TABLE 6. Experimental results of MIT-BIH dataset using simpler CNN of
Fig. 4.

TABLE 7. Experimental results of PTB dataset using AlexNet.

TABLE 8. Experimental results of PTB dataset using simpler CNN of Fig. 4.

used for each ECG record from 12 leads. However, for our
experiments, we used lead II ECG recordings and worked
with healthy control and MI categories.

We perform experiments using both proposed fusion
frameworks on PTB dataset with training and testing sam-
ples shown in Table 4 and with training parameters shown
in Tables 1. Training and testing parts of the dataset are
provided in [63] to train CNN models. The experimental
results are shown in Tables 7 and 8

V. DISCUSSION
We present the comparative results of the proposed frame-
works with the state-of-the art methods in Tables 9 and 10.
As we can see, our proposed frameworks considerably out-
perform the existing methods in terms of accuracy, precision,
and recall.

To justify the importance of the proposed fusion frame-
works, we assess the performance of different components of
the proposed framework with both datasets by concatenation
and average fusion methods. We performed average fusion
by accrediting the unity value to all the weights, i.e., w1 = 1,
w2= 1 andw3= 1 in the gated fusion network. Since we have
three modalities, therefore, by taking simple average, we get

TABLE 9. Comparison of heart beat classification results of MITBIH
dataset with previous methods.

TABLE 10. Comparison of MI classification results of PTB dataset with
previous methods.

TABLE 11. Comparison of computational cost of AlexNet and CNN of
Fig. 4 using MFF framework on MIT-BIH dataset.

the equal value of 0.333 for each weight. We also experiment
with 0.333 and get the same results. Sinceweights are equal in
average fusion, therefore, to make things simpler, we assign
a unity value to every weight. It is possible that better weight
can be acquired through trainable weight coefficients. This
is something we plan to investigate in future. Tables 5, 6, 7
and 8 reports the results of assessing different fusion methods
along with proposed fusion frameworks.

The performance of concatenation fusion is poor as com-
pared to other methods as shown by experimental results.
Concatenation fusion creates high dimensional feature vector
that leads to the additional computational cost and deteriora-
tion of information during classification [72].

We also provide the comparison of both proposed fusion
frameworks in terms of inference speed as shown in Table 12.
Inference speed is the time consumed by classifier to recog-
nize one test sample. It is expressed in microseconds (µs).
It is observed that MFF yields high accuracy, precision and
recall for both datasets as compared to MIF, however, MIF is
computationally efficient in terms of inference speed.

Since we experiment with two different CNNs, we pro-
vide comparison between both CNNs in terms of computa-
tional cost as shown in Table 11. Since there is a tradeoff
between accuracy and computational cost, we observe from
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TABLE 12. Comparison of inference speed of both proposed fusion
frameworks using AlexNet.

Tables 5, 6 and 11 that CNN, shown in Fig. 4, is less accurate
than AlexNet but is computationally efficient.

We prefer SVM classifier over softmax classifier since
we have experimentally proved in our previous work [73]
that SVM performs better than softmax, which is typically
built into any CNN framework. Softmax classifier reduces the
cross entropy function while SVM employs a margin based
function. The more rigorous nature of classification is the
reason of better performance of SVM over softmax.

The comparison provided in Tables 9 and 10 is on the
basis of datasets and the performancemetrics. There are slight
changes in the conditions for testing in few of the compar-
isons, However, it is appropriate to compare the results.

The limitation of the proposed Multimodal Image
Fusion (MIF) Framework is that it requires exactly three
different statistical gray scale images for creating a
triple channel compound image. Since Multimodal Feature
Fusion (MFF) Framework is using three separate AlexNet
for training on GAF, RP and MTF images, it requires more
time for training and inference.

VI. CONCLUSION
We proposed two computationally efficient multimodal
fusion frameworks for ECG heart beat classification called
Multimodal Image Fusion (MIF) and Multimodal Feature
Fusion (MFF). At the input of these frameworks, we convert
ECG signal into three types of images usingGramianAngular
Field (GAF), Recurrence Plot (RP) and Markov Transition
Field (MTF). In MIF, we first perform image fusion by
combining three input images to create a three channel single
image which used as input to the CNN. In MFF, highly infor-
mative cues are pulled out from penultimate layer of CNN
and they are fused and used as input for the SVM classifier.
We demonstrate the superiority of the proposed fusion frame-
works by performing experiments on PhysionNet’s MIT-BIH
for five different arrhythmias and on PTB diagnostics dataset
for MI classification. Experimental results prove that we
beat the previous state-of-the-art in terms of classification
accuracy, precision and recall. The important finding of this
study is that the multimodal fusion of modalities increases the
performance of the machine learning task as compare to use
the modalities individually.
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