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ABSTRACT Internet-of-Things (IoT) networks have recently emerged to provide massive connectivity
for many application scenarios and services. Additionally, developing spectrum-access strategies for a
large number of nodes with sporadic data traffic behaviors in IoT networks has attracted much attention
recently. However, developing such strategies becomes more challenging when ultra-reliable low-latency
(URLL) transmissions are required. As IoT networks entail spectrum-efficient transmission schemes,
non-orthogonal multiple-access (NOMA) has emerged as a key enabler for such networks. On the other
hand, grant-free random-access (RA) techniques are particularly promising for high spectral-efficiency and
massive connectivity, since they reduce signaling overhead, and packet latency. Therefore, in this paper,
uplink RA-NOMA IoT networks with clustered IoT devices is studied, where short packet and diversity
transmissions are adopted to meet the URLL requirements. To reduce the negative effect of diversity
transmission on packet latency, multiple replicas of packets are accommodated within different resource
blocks (RBs) in the same transmission time interval (TTI). The analytical expressions of network metrics,
namely, average packet latency, reliability, and GoodPut are derived. Furthermore, the effect of the number
of packet replicas, blocklength, and cluster size on the network metrics is evaluated. Finally, the analytical
derivations are utilized to find the optimal values for the number of packet replicas, blocklength, and power
control parameters, such that the network GoodPut is maximized, subject to URLL constraints.

INDEX TERMS Internet-of-Things, low-latency, NOMA, random-access, ultra-reliability.

I. INTRODUCTION
Fifth generation (5G) cellular networks have ignited
numerous research areas since its introduction. The funda-
mental difference between 5G and the previous generations
is that 5G is the driver for implementing two generic
types of communications, namely, ultra-reliable low-latency
communication (URLLC) and massive machine-type com-
munication (mMTC) [1]. The combination of these two com-
munication types along with the explosive and exponential
growth in the number of smart devices, applications, and
services is the advent of massive Internet-of-Things (mIoT)
networks. This is in addition to the extensive emerging
mission-critical applications and use cases, such as tactile
Internet (involving remote motion control, tele-surgery, etc.),
factory automation, Industrial IoT (IIoT), and those under the
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Industry 4.0 paradigm [2]–[5]. However, reliability, latency,
and massive connectivity are inherently conflicting features
in such networks, resulting in striking trade-offs between
network parameters and performance metrics [3], [6], [7],
which calls for intelligent transmission techniques and
strategies. To improve spectrum-efficiency, non-orthogonal
multiple-access (NOMA) has emerged as a viable solu-
tion [8], [9]. To achieve low-latency communications, short
packet transmissions in the finite blocklength regime (FBL)
have been proposed [10], [11]. On the other hand,
ultra-reliability is a feature that can be achieved via diversity
transmission techniques [12]–[14]. In mMTCs, characterized
by sporadic data traffic behaviors, it is inefficient to allocate
dedicated time-frequency resources, since the resources
are not constantly utilized. This motivates the use of
random-access (RA) techniques. However, the conventional
RA techniques (e.g. the current RA-LTE standard) are not
directly applicable to low-latency transmissions, which is
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due to the excessive grant acquisition delay and signaling
overhead [15]. Hence, applying and analyzing RA-NOMA
for IoT networks with URLL requirements is of paramount
importance.

A. RELATED WORKS
In general, NOMA transmission can be categorized as
grant-based (GB) and grant-free (GF) access schemes. Unlike
the conventional GB access schemes, GF access has been put
forth as a key medium access control technique to achieve
massive connectivity, reduce latency, and minimize signaling
overhead, which is crucial for URLL IoT networks [16], [17].
When considering uplink (UL) GF NOMA (via RA
techniques), it is noticed that power control—which has
significant effect on the NOMA performance—is particularly
challenging, since it is performed distributively, without
each node knowing the other transmitting nodes or their
locations. Signature-based NOMA is a viable option to
provide ubiquitous connectivity for the future networks
with massive number of nodes [16], [18]. Specifically,
using sequences—such as spreading, scrambling and/or
interleaving sequences—as device-specific signatures is one
way to enable non-orthogonal transmissions. Not only
that, but employing signature sequences along with power
control in RA-NOMA to increase the capacity (or overload
factor) has recently been addressed, as it helps reduce
implementation complexity at the base-station (BS), since
signature sequences are usually selected from a finite set. For
instance, in [19], a new type of NOMA, called multi-user
shared access (MUSA) has been proposed, where a set of
complex sequences with short length are chosen as spreading
sequences. This enables the BS to perform multi-user
detection based on successive interference cancellation (SIC),
while coping with high transmission load. Particularly, it has
been demonstrated that MUSA can yield significant user
overloading gain performance in comparison to orthogonal
systems, while reducing control overhead. Non-Orthogonal
coded access (NOCA) for contention-based (CB) transmis-
sion with parallel interference cancellation (PIC) at the BS
is investigated in [20], where Zadoff-Chu (ZC) sequences
have been used to spread the data bits over orthogonal
frequency-division multiplexing (OFDM) symbols. It has
been shown that the NOCA-PIC scheme is capable of
providing four times concurrent RA sessions compared to
OFDM with CB transmission. In [21], the authors propose
a random NOMA strategy, where each device attaches its
unique ID to its message, and encodes it using a Raptor
code, which is followed by transmission of its final message
codeword over a selected sub-band. Moreover, the BS
broadcasts pilot signals over all sub-bands, and each device
estimates its channel to the BS over the randomly selected
sub-band. By performing load estimation and SIC over
each sub-band, the BS can recover the messages of all
active devices. A framework for massive GF NOMA, where
devices have stringent latency requirements but no packet
re-transmissions, has been proposed in [22]. To be specific,

each device chooses a pilot sequence—as its signature—
from a pre-defined set. Conventionally, a collision is assumed
to occur when at least two devices choose the same pilot
sequence for data transmission. However, the authors propose
to treat a collision as interference to the remaining signals.
Then, by exploiting Poisson point processes and ordered
statistics, the authors approximated the outage probability,
and system throughput, and validated them via extensive
simulations.

There are a few studies that consider reliability and latency
in RA-NOMA. For example, in [23], hybrid automatic
repeat request (HARQ) with only one re-transmission is
exploited to improve the reliability and also reduce latency.
By using Markov models, the packet error rate (PER) and
throughput of each user has been derived and investigated.
A non-orthogonal HARQ (N-HARQ) scheme to support
UR communication in the FBL regime for delay-sensitive
applications is proposed in [24]. Unlike conventional HARQ,
in the proposed scheme, retransmission of a packet is
served together with the next arriving packet, which reduces
queueing delay. The PER and throughput have been analyzed,
and the superiority of the N-HARQ scheme has been
demonstrated over the baseline orthogonal HARQ. Dynamic
HARQ (D-HARQ) for guaranteed-delay applications is
proposed in [25], in which packets can be re-transmittedmore
than L times, given that the previous packet was delivered
with less than L re-transmissions. The authors showed that
under the same reliability constraint, D-HARQ achieves a
higher throughput than the conventional HARQ with a fixed
re-transmission.

B. MOTIVATION AND CONTRIBUTIONS
In realistic cellular networks with UL RA transmissions,
the BS needs to dynamically detect the active user equip-
ments (UEs), and decode their signals. Another problem in
NOMA-based transmissions is that the BS has to dynamically
derive the SIC order, and this may be challenging as the
network UEs may be randomly scattered in the network area,
and characterized with random channel conditions. To reduce
the decoding complexity at the BS, resolve the problem of
active UE detection, and facilitate dynamic SIC decoding,
this paper utilizes orthogonal preamble transmission in
power-domain NOMA. Particularly, this paper focuses on
performance analysis of distributed UL RA-NOMA IoT
networks with URLL requirements. Specifically, a UL
NOMA network with clustered IoT UEs is considered,
along with the time-reversal (TR) strategy [26], where the
IoT network UEs transmit orthogonal preambles as their
signatures. Adopting the TR strategy along with preamble
transmissions enables the IoT UEs to distributively adjust
their transmit powers, while allowing the BS to perform
active UE detection and dynamic SIC in each transmission
frame. To satisfy the stringent URLL requirements, short
packet and diversity transmissions are adopted. Moreover,
multiple replicas of each packet are transmitted within each
transmission time interval (TTI), yet over different resource
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blocks (RBs) to reduce packet latency. From a mathematical
point of view, the moment generating function (MGF) is
used to derive the joint probability density function (PDF)
of the UEs’ transmit power and intra-cluster interference
power, based on order statistics [27], [28]. This facilitates the
analytical derivation of network performance metrics, such
as average packet latency, reliability, and GoodPut. For the
average packet latency, both waiting time in a UE’s buffer
and transmission time are considered. For the reliability,
both inter-cluster interference and block decoding error (due
to channel impairment and intra-cluster interference)—due
to the adopted FBL regime—are considered. The network
GoodPut is then straightforwardly determined based on
the obtained reliability. Unlike many existing studies that
are based on the saturated data traffic model, this paper
considers sporadic data traffic behavior, and the IoT UEs are
randomly located.1 Additionally, the effect of the number
of packet replicas, blocklength, and cluster size on the
network metrics is investigated, and various reliability and
packet latency tradeoffs are explored and highlighted. Thus,
the main contributions of this paper can be summarized as
follows:
• Analyzed the performance of UL RA-NOMA IoT
networks with URLL requirements. Particularly, an UL
IoT network with clustered UEs exploiting RA-NOMA
transmissions is explored. Each UE within each cluster
is characterized with sporadic data traffic behavior, and
distributively controls its transmit power, while utilizing
the FBL regime and diversity transmission to satisfy the
URLL requirements.

• Exploited the TR strategy along with orthogonal pream-
ble transmission in order for the UEs to distributively
achieve their target received power at BS, while allowing
the BS to detect active UEs, and dynamically perform
SIC decoding in each transmission frame.

• Considered the UEs’ data traffic and their locations as
random processes to model a realistic scenario of mobile
UEs with stochastic data arrival patterns.

• Derived analytical expressions for critical IoT net-
work performance metrics (i.e. average packet latency,
reliability, and GoodPut). The analytical derivations
are numerically validated and the effect of number
of replicas, blocklength, and cluster size, and their
trade-offs on the network metrics are explored and
highlighted.

• Formulated the network GoodPut maximization prob-
lem, subject to constraints on the URLL requirements.
Specifically, the derived analytical expressions for the
network metrics are utilized to maximize the network
GoodPut by optimizing the number of packet replicas,
blocklength, cluster size, and power control parameters.

It should be noted that this work is different from
our previous NOMA-based URLLC works in [29], [30].

1This reflects a realistic network scenario, both in terms of network
performance metrics as well as network scalability.

In particular, this study analyzes the IoT networkmetrics with
arbitrary NOMA UE cluster sizes, while [29] analyzes the
network metrics in NOMA-based IoT networks with only
two energy-harvesting UEs in each NOMA cluster, which
makes the analytical derivations fundamentally different.
Furthermore, the network model in this work is different,
since multiple replicas of each packet are accommodated
within each TTI over different RBs to further reduce packet
latency. Contrarily, the conventional diversity transmission
through multiple successive frames has been adopted in [29],
[30], which makes the analysis different, while yielding
various trade-offs in the underlying network structure. Addi-
tionally, the UEs in this study exploits the TR strategy along
with preamble transmissions, which facilitates distributed
location-based power control, and helps the BS to detect
active UEs, and dynamically perform SIC decoding in each
frame. However, in [29], [30], the UEs are assumed to
have fixed/pre-defined transmit power, irrespective of their
locations.

The novelty of this work can be summarized as follows.
Firstly, this study is in the area of performance evaluation, and
steady-state analysis of RA UL NOMA-based transmissions,
as opposed to other existing works that focus on devising
algorithms and transmission schemes for resource allocation.
Secondly, to the best of our knowledge, almost all the studies
in the area of performance evaluation of NOMA-based
transmissions are based on assumption that all the UEs in
the network have saturated traffic, which implies that in each
transmission frame, all the UEs are active and have data
packets for transmission. Another common assumption is
that the number of active UEs in the whole network within
each cluster is fixed and known, and that the order of SIC
decoding is known to BS. Note that for an IoT network
with mobile users, the derived analytical expressions in the
literature do not reflect the proper behavior of a practical
network.2 The case is even worse when analyzing critical
mMTC and mIoT networks, which have been received much
attention recently [31]. For instance, [32]–[34] analyzed
the performance of RA-NOMA with a fixed number of
UEs, having saturated data traffic, and adopting a channel
inversion approach. Particularly, a network with a single
NOMA cluster—with known SIC order at the BS—has
been considered. To address the issue of dynamic SIC
decode ordering at the BS for UL NOMA, [35] derived
the outage probability for a network consisting of only a
single 3-user NOMA cluster, proving how complicated it
is to derive performance metrics for a NOMA cluster with
more than two users when dynamic SIC ordering considered.
The authors in [36] derived closed-form expressions for
the rate and outage probability in the FBL regime with
diversity transmission, yet for NOMAclusters with two users,
and a saturated data traffic model. Also, [37] analyzed the
steady-state packet loss and delay violation probability in

2In practical networks, UEs are characterized by sporadic data traffic
patterns, as opposed to saturated data packet arrivals.
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URLL NOMA-based communications with saturated traffic
model, and predefined SIC ordering. Furthermore, [38]
studied the outage probability and ergodic sum-rate in
NOMA 5G systems with nonlinear high-power amplifiers
and an arbitrary number of users in a NOMA cluster;
however, with saturated data traffic and fixed SIC ordering.
A joint user association and decoding order selection
scheme for distributed UL NOMA has been studied in [39],
where the outage probability has been derived for a 2-user
NOMA cluster with saturated data traffic. On the other
hand, the studied system model in this paper is based on
randomly located UEs, and adopts short packet with diversity
transmissions on different RBs over single TTI, which has
not been considered previously; and thus, leads to different
trade-offs to be investigated. Adopting the TR strategy along
with preamble transmissions is another unique part in the
studied transmission frame structure, which enables the IoT
UEs to distributively adjust their transmit powers, while
allowing the BS to perform active UE detection and dynamic
SIC in each transmission frame. On top of this, utilizing the
MGF to derive the joint PDF of the UEs’ transmit powers and
intra-cluster interference power based on order statistics for
an arbitrary number of clustered UEs in the network is also
considered novel. Specifically, the derivations in this work
are different from those existing in the literature [27], [28]
in that the joint PDF of an order statistic and partial sum
of the remaining least order statistics are computed, which
facilitates the mathematical analysis, and paves the way to
investigate the effect of cluster size and the number of clusters
on the network metrics.

The rest of this paper is organized as follows. Section II
describes system model. Analytical derivations for the
network metrics are presented in Section III, whereas
Section IV provides the numerical results. Section V presents
the network GoodPut maximization problem based on the
derived network metrics. Future research directions of this
work are outlined in Section VI. Finally, the conclusions are
drawn in Section VII.

II. SYSTEM MODEL
A. IoT NETWORK MODEL
Consider an IoT network consisting of a BS and N
transmitting UEs with URLL requirements. The UEs are
paired into M clusters, each of which consists of Nc =⌊ N
M

⌋
UEs transmitting their data packets to the BS in the

FBL regime via RA-NOMA. Additionally, there are Rb RBs
in each TTI, and each RB has bandwidth B. Each packet
is assumed to be transmitted within one RB. However,
to transmit one packet and its K −1 replicas within each TTI,
a typical UE randomly selects a resource unit (RU), which is
assumed to be a group ofK RBs. Hence, there are Ru =

⌊
Rb
K

⌋
RUs, which are utilized by the UEs within each cluster for
frame-based RA-NOMA transmissions [40]. Briefly, all the
UEs in a cluster select an RU, and transmit their packets (and
all their K − 1 replicas) within the K RBs in the selected

RU. In turn, the UEs within each cluster exploit diversity
transmission in each TTI to improve the reliability, without
incurring additional delay.
Remark 1: For each IoT UE, the data generating traffic

behavior follows a Poisson arrival process with rate λp.3

Let Ui,m denote IoT UE i ∈ {1, . . . ,Nc} in the
mth cluster, for m ∈ {1, . . . ,M}. Furthermore, Ui,m
transmits its data packets over the selected RU with
transmit power of Pi,m, such that Pi,m ≤ Pmax,
∀i ∈ {1, . . . ,Nc}, ∀m ∈ {1, . . . ,M}, where Pmax is the
maximum transmit power per IoT UE.

There are N communication links, which originate from
the N UEs to the BS, and experience independent but not
necessarily identically distributed (i.n.n.i.d.) Rayleigh block
fading. Moreover, all the links are assumed to be constant
during each transmission frame, which is due to the short
packet transmission. The channel coefficient between Ui,m
and the BS is denoted hi,m. Therefore, the corresponding
channel gain |hi,m|2 follows an exponential distribution with
mean d−νi,m , where di,m is the distance between IoT UE Ui,m
and the BS, whereas ν is the path-loss exponent. Furthermore,
the background noise in all links is assumed to be independent
and identically distributed (i.i.d.) zero-mean additive white
Gaussian noise with variance σ 2

= BN0, where N0 is the
noise spectral density. The distance of each UE at each cluster
to the BS is assumed to be uniformly distributed in the interval
[dmin, dmax]. Suppose that there areNa active UEs in a typical
cluster, where Na ≤ Nc. For notational convenience, let
d1,m < d2,m < · · · < dNa,m be the ordered distances of
the UEs in the mth cluster. Thus, |h1,m|2 > |h2,m|2 > · · · >
|hNa,m|

2, and hence P1,m ≥ P2,m ≥ · · · ≥ PNa,m [43], [44].
Table 1 presents the main symbols used in this paper as

well as their descriptions.

B. FRAME STRUCTURE AND CHANNEL ACCESS
The IoT UEs within each cluster transmit their data packets
in a frame-based structure over the same RB by exploiting
power-domain NOMA [8], [45]. It should be noted that
the different clusters access the RUs randomly.4 Depicted
in Fig. 1 is the frame structure of the IoT network.
Particularly, each frame consists of three phases, namely,
time-reversal (TR), preamble transmission, and data payload
transmission of durations Tr , Tp and Tt , respectively. Hence,
the whole frame duration is Tf = Tr + Tp + Tt .
In the first phase, the BS sends a reference waveform,

and the resulting waveforms are received and recorded
by the IoT UEs. In turn, the channel state information
can be estimated, and then exploited in the preamble and
data transmission phases. Specifically, by time-reversing
(and conjugating if complex-valued) the received waveform,
the IoT UEs can mitigate channel fading and path-loss, where

3This model has been extensively used in telecommunication networks
due to its simplicity [41], [42].

4In practice, this can be achieved by feeding the random number
generators with the same seed [46].
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TABLE 1. Notations.

FIGURE 1. Frame structure of IoT network.

the communication channel is assumed to be reciprocal and
stationary for at least one frame duration [26].5

In the second phase, all IoT UEs in a cluster transmit their
orthogonal preamble sequences with the same prescribed
power on all K RBs over the randomly selected RU r (for
r ∈ {1, . . . ,Ru}) to the BS.6 Transmitting preambles with
the same power enables the BS to detect the stronger/weaker
active UEs within each cluster, and hence determine the
SIC decoding order. Particularly, this allows both active UE
detection and dynamic SIC decoding.

In the third phase, each IoT UE transmits its data packet
(and its replicas) over the selected RU in the FBL regime.
However, in such a case, Shannon’s capacity is no longer
applicable, since the decoding block error is not negligible.
Hence, for a given blocklength of nb > 100 with nd data bits
per data packet, the instantaneous block error rate of decoding
the signal of Ui,m can be approximated as [51]

ϒ
(
γi,m, nb, nd

)
= Q

(√
nb

χ
(
γi,m

)(C(γi,m)− nd
nb

))
, (1)

5These assumptions have been validated in practice through real
experiments [47], [48].

6Orthogonal preamble transmissions are used in RA-LTE, and defined
in 3GPP RA [49], [50].

where C
(
γi,m

)
= log2(1 + γi,m) is the Shannon capacity,

while χ
(
γi,m

)
=

(
1− 1

1+γ 2i,m

) (
log2 e

)2 is the channel

dispersion. Also, γi,m is the received signal-to-interference-
plus-noise (SINR) of Ui,m’s signal at the BS.
Remark 2: The inter-cluster interference occurs when

UEs in at least two clusters simultaneously transmit their
data packets over the same RU. In turn, all data packets
transmitted by all the UEs over that RU collide, and thus
are lost.

As explained earlier, to mitigate channel impairments,
the TR strategy is adopted in the TR phase. By employing
power control along with TR strategy, each UE is able to
cancel the effect of channel fading and path-loss. To this aim,
a distributed power control strategy is utilized, in which each
UE adjusts its transmit power according to7

Pi,m
(
di,m

)
= dνi,mP0 ln

(
β
dmin

dηi,m

)
, (2)

where η > 1, P0, and β can be selected to control a UE’s
transmit power, and thus, yield distinct received powers at
the BS.8 Particularly, η determines the slope at which the
UE’s received power at the BS decreases with respect to the
UE’s distance. This in turn provides more distinct received
powers at the BS for the UEs with small distance difference,
ultimately reducing the decoding error probability at BS.
Additionally, P0 is chosen such that Pi,m(di,m) < Pmax.
Moreover, β is used to prevent Pi,m from being negative (i.e.
β dmin
dηi,m

> 1), and thus β >
dηmax
dmin

ensures that Pi,m > 0,

∀di,m ∈ [dmin, dmax]. Furthermore, dνi,m in (2) is obtained
via the TR strategy for path-loss cancellation. Consequently,
Ui,m’s received power at BS is written as

P̄i,m(di,m) = P0 ln

(
β
dmin

dηi,m

)
. (3)

Since the IoT UEs are randomly located in the net-
work area, the probability density function (PDF) of
the received power at the BS can be obtained as
per Lemma 1.
Lemma 1: The PDF of an IoT UE’s received power at the

BS, assuming uniformly located in [dmin, dmax], is given by

fP̄(p̄) = α1e
−α2p̄, (4)

where α1 =
η
√
βdmin

P0η(dmax−dmin)
and α2 = 1

P0η
.

Proof: See Appendix A.

III. DERIVATION OF PERFORMANCE METRICS
In this section, the IoT network metrics, namely average
packet latency, reliability and GoodPut are derived. However,
a few definitions must first be stated [29].

7Other transmit power functions can be used. In this work, (2) is adopted
for mathematical tractability and to gain some insights from the derived
analytical expressions of the network metrics.

8The aforementioned parameters can be incorporated into a network
optimization problem with URLL constraints for optimal transmit power,
and as will be shown in Section V.

105978 VOLUME 9, 2021



M. R. Amini, M. W. Baidas: Performance Analysis of GF RA NOMA

A. DEFINITIONS
Definition 1 (Average Packet Latency): The average pac-

ket latency L is defined as the mean delay of receiving a
typical data packet (and all its replicas) at the BS, which
includes both the data transmission delay, and the waiting
time in a UE’s buffer.
Definition 2 (Reliability): The reliability R is the proba-

bility that a data packet is delivered successfully to the BS,
without any inter-cluster collision or channel distortion error.
Definition 3 (GoodPut): The GoodPut G is defined as the

average error-free effective rate (i.e. non-redundant data bits
per time unit) at the BS.

B. AVERAGE PACKET LATENCY
To derive the average packet latency, queueing theory is
employed. However, it should first be noted that since short
packet transmission is adopted, the data transmission duration
equals Tt =

nb
B . Hence, by considering the number of

packets in Ui,m’s buffer as a state variable, the arrival and
departure of the data packets processes can be modeled as
a M/D/1 queueing system. Specifically, the packet arrival
rate is represented by λp, while the deterministic service time
duration equals Tf . In turn, Tf can be written as

Tf = Tr + Tp +
nb
B
. (5)

Therefore, the average number of packets in the buffer of a
typical IoT UE’s is D = ρ

1−ρ

(
1− ρ

2

)
[52], in which ρ =

λp(Tr + Tp +
nb
B ) is Ui,m’s link utilization (i.e. a measure

of buffer length stability).9 Thus, according to Little’s
formulae [52], the average packet latency is determined as

L =
(
Tr + Tp +

nb
B

) (
D + 1

)
. (6)

Furthermore, the probability that a typical IoT UE does not
transmit data in a frame (e.g. when it does not have any data
packet in its buffer) is obtained as

50 , 1− ρ

= 1− λp
(
Tr + Tp +

nb
B

)
. (7)

C. RELIABILITY
To determineUi,m’s reliabilityRi,m, one must obtain the PDF
of the SINR γi,m. According to the principle of UL NOMA,
γi,m is given by10

γi,m
(
P̄i,m, Q̄i+1,Na

)
=

P̄i,m
Q̄i+1,Na + σ 2

, (8)

9Intuitively, the finite latency requirement necessitates the stability
condition, which implies that ρ < 1.

10In this work, perfect SIC is assumed.

where Q̄i+1,Na ,
∑Na

j=i+1 P̄j,m is the inter-user interference
from UEs in the same cluster with decoding order less
than that of Ui,m. Since both P̄i,m and Q̄i+1,Na are random
variables, their joint PDF is the metric of interest, and is
determined as per Lemma 2.
Lemma 2: Let Zi,m be a vector containing random vari-

ables P̄i,m and Q̄i+1,Na (i.e. Zi,m ,
(
P̄i,m, Q̄i+1,Na

)
). Then,

the joint PDF of P̄i,m and Q̄i+1,Na for Ui,m (i.e. fZi,m (p̄i, q̄i))
is given by (9), as shown at the bottom of the page, where
F̄P̄(p̄i) is the complementary CDF of P̄, obtained as

F̄P̄(p̄i) , 1− FP̄(p̄i)

=
α1

α2

(
e−α2p̄i − e−α2p̄max

)
, (10)

while p̄min = P0 ln
(
β dmin
dηmax

)
and p̄max = P0 ln

(
β dmin
dηmin

)
.

Proof: See Appendix B.
Based on Lemma 2, the reliability Ri,m of a UE Ui,m is

obtained in Lemma 3.
Lemma 3: The reliability of a UE Ui,m determined as

Ri,m = 1−
(
1− Pr

(
ENIC

)
Pr
(
ENDEi,m

))K
, (11)

in which Pr
(
ENIC

)
and Pr

(
ENDEi,m

)
are the probabilities of no

inter-cluster collision (NIC), and no decoding error (NDE),
respectively. Specifically, Pr

(
ENIC

)
and Pr

(
ENDEi,m

)
are given

by

Pr
(
ENIC

)
=

M−1∑
l=0

ωl

(
M−1
l

)(
1−5Nc

0

)l(
5
Nc
0

)M−l−1
,

(12)

and

Pr
(
ENDEi,m

)
=

Nc∑
k=i

i∏
j=1

(1−ϒ̄i,j,k,m)
(
Nc
k

)
(1−50)

k 5
Nc−k
0 ,

(13)

respectively. Furthermore, ωl and ϒ̄i,j,k,m are given as

ωl =

1, l = 0,(
Ru−1
Ru

)l
, otherwise,

(14)

and

ϒ̄i,j,k,m=

∫ pmax

pmin

∫ (k−i)p̄i

(k−i)p̄min

ϒj,k,mfZi,m(p̄i, q̄i)dq̄idp̄i, (15)

where ϒj,k,m , ϒ
(
γj,m(P̄j,m, Q̄j+1,k ), nb, nd

)
.

Proof: See Appendix C.

fZi,m(p̄i, q̄i)

=
α
Na−i+1
1 Na!e(Na−i+1)p̄i+(1−α2)i−1e−α2q̄i

(Na − i)!(Na − i− 1)!(i− 1)!

(
F̄P̄(p̄i)

)i−1 Na−i∑
j=0

(−1)Na−i+j
(
Na−i
j

)[
q̄i−(Na−i−j)p̄i−jp̄min

]Na−i−1
(9)
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D. GoodPut
Recall that the successfully delivered non-redundant data bits
per time unit at the BS byUi,m is defined as the GoodPut Gi,m.
Specifically, in a frame of duration Tf , the number of effective
successfully delivered bits is ndRi,m, and thus Gi,m = ndRi,m

Tf
.

In turn, the network GoodPut is written as

GN =
M∑
m=1

Nc∑
i=1

Gi,m =
M∑
m=1

Nc∑
i=1

nd
Tf

Ri,m. (16)

IV. NUMERICAL RESULTS
In this section, the effect of the number of packet replicas
K , blocklength nb, and number of UEs in a cluster (i.e.
cluster size) on the network GoodPut, reliability, and
average packet latency is evaluted.11 The simulated network
parameters are set according to Table 212,13 unless stated
otherwise [54].

TABLE 2. Simulation Parameters.

Fig. 2 shows the effect of blocklength nb and number
of replicas K on the network GoodPut GN when Nc = 2.
It can be observed that GN increases sharply as nb increases
beyond 75, peaks at some values, and then gradually starts
to decrease. For low values of nb, GN is low, which is due
to the excessively high decoding error at the BS in FBL
regime. Moreover, increasing the blocklength increases the
number of successfully decoded data bits (or equivalently
lowers the decoding error), and improves GN . However,
excessively increasing nb lowers GN . This is because
the excessive increase in blocklength does not result in
further improvement in the decoding error; on the contrary,
it increases the frame duration, leading to a decrease in the
number of effective and non-redundant data bits transmitted
per time unit by each IoT UE. A similar trend is observed for
K . Clearly, increasing the number of packet replicas results in
higher successful data delivery rate, and GN peaks at K = 4.
However, for excessively high values ofK (e.g. whenK > 4),

11Note that the total number of UEs in the network is assumed constant.
Thus, changing the cluster size is equivalent to changing the number of
clusters. Intuitively, the greater the cluster size is, the smaller the number
of clusters.

12The preamble time Tp is adopted from RA-LTE as PRACH preamble
format #4 for UL-TX [53].

13In order to have integer numbers of UEs in each cluster, the number of
UEs in the network is set to N = 60. Furthermore, the curves have been
interpolated for the missing values of cluster size to obtain the smooth plot.

the GN starts to decrease. The reason for this phenomenon
is that the higher the number of replicas is, the lower the
number of RUs Ru available for each cluster, and hence,
the higher the inter-cluster interference and packet collisions.
Thus, GN decreases when transmitting higher number of
packet replicas.

FIGURE 2. Network GoodPut vs. number of replicas K and blocklength nb
- Nc = 2.

To explore the reliability metric, the reliability of the
near and far UEs in a typical cluster with Nc = 2 is
plotted as a function of the number of replicas K and
blocklength nb in Figs. 3a and 3b, respectively. One can
see from Figs. 3a and 3b that the higher the blocklength
is, the less the decoding error, and consequently, the higher
the reliability. Moreover, increasing the number of replicas
initially improves the reliability, since the packet success
delivery rate becomes high when multiple replicas of a
packet are sent. However, transmitting an excessively higher
number of replicas (K > 4) reduces the number of available
RUs for each cluster, which in turn increases inter-cluster
interference and collisions. Therefore, the reliability starts to
decrease. Note that due to the SIC decoding, and according
to the derivation of (11), the reliability of the far UE in
the cluster is lower or equal to the reliability of the other
UEs (near UE herein) in the same cluster. Hence, Fig. 3b
is the minimum reliability experienced by the UEs in the
cluster.

The reliability of the far UE in a typical cluster in terms of
K for different cluster sizes (i.e. Nc = 1, 2 and 3) is plotted
in Fig. 4. It should be noted that since the total number of
UEs in the network set to 60, each cluster size corresponds to
a specific number of clusters, which are labeled in Fig. 4 as
M = 20, 30, and 60. Now, it can be seen that for all values of
Nc, the reliability peaks at some values of K , and then starts
to decrease for the reasoning provided for Figs. 3a and 3b.
However, when Nc = 1, the reliability of the only UE in the
cluster is lower than the case in which Nc = 2 and Nc = 3.
Note thatNc = 1 is equivalent to the OMA scenario, in which
all the UEs contend for the limited RUs randomly. Hence,
the inter-cluster interference is higher than when Nc = 2
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FIGURE 3. UE Reliability vs. number of replicas K and blocklength nb -
Nc = 2, for: (a) Near UE, and (b) Far UE.

FIGURE 4. Far UE reliability vs. number of replicas K - nb = 120.

and Nc = 3, which in turn highlights the merits of NOMA
in IoT networks. Another observation is that for K < 6,
the reliability of the far UE when Nc = 2 is greater than two
other scenarios, and for K > 6, the reliability of the far UE
in Nc = 3 is higher than in the cases of Nc = 1 and Nc = 2.
To see this, note that increasing Nc has an adverse effect on
the reliability of the far UE. On one side, increasing Nc can
increase the reliability by decreasing the number of clusters

FIGURE 5. Network GoodPut vs. number of replicas K - nb = 120.

contending for the available RUs; ultimately, lowering the
inter-cluster interference. On the other side, the higher the
number of UEs in a cluster is, the lower the far UE reliability,
which is due to the block error resulting from decoding the
UEs at the previous stages of the SIC. This also reflects the
interplay between K and Nc, since each value of K affects
the inter-cluster interference of all clusters. Finally, such an
interplay manifests itself in K = 6, in which the reliability
for Nc = 2 and Nc = 3 intersect.
Fig. 5 depicts the network GoodPut as a function of K for

different cluster sizes Nc. Generally speaking, by increasing
the number of replicas, GN for all cluster sizes increases,
peaks at some values, and then decreases for the same reasons
given for Fig. 2. Furthermore, similar trends to Fig. 4 can
be seen for GN . Particularly, GN when Nc = 1 is the lowest
compared to other values ofNc. This is because whenNc = 1,
there are more clusters contending for the RUs than inNc = 2
and Nc = 3. Thus, the inter-cluster interference is so high
that the number of successfully transferred bits is much lower
than that for Nc = 2 and Nc = 3. Another observation
is that for K < 4, GN for Nc = 2 is greater than for
Nc = 3; while for K > 5, GN for Nc = 3 becomes higher
than for Nc = 2.
The reliability of the far UE as a function of blocklength

nb is shown in Fig. 6. As can be seen, for a fixed number
of K and Nc, the higher the blocklength is, the lower the FBL
decoding error, and hence, the higher the reliability. It can also
be observed that for a target reliability, the greater the cluster
size is, the greater the blocklength. For instance, R = 0.8
can be achieved with nb = 72, nb = 100, and nb = 116 for
Nc = 1, Nc = 2, and Nc = 3, respectively. This is because
the received SNR of far UE (third UE) at the BS in a network
with Nc = 3 is lower than the that of far UE (second UE)
in a network with Nc = 2.14 Thus, for a low decoding error,

14Note that the UEs distances to the BS are assumed to be uniformly
distributed. Thus, the average distance (or equivalently the received power)
for the far UE when Nc = 3 is greater (lower) than that of the far UE when
Nc = 2. This can be concluded from (3).
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FIGURE 6. Far UE reliability vs. blocklength nb - K = 2.

FIGURE 7. Network GoodPut vs. blocklength nb - K = 2.

a longer blocklength is needed. Another observation is that
when nb is sufficiently high (e.g. nb > 130), the reliability
for Nc = 3 is higher than the other two cases of Nc = 1
and Nc = 2. This is because when higher blocklength is
considered, the FBL decoding error is sufficiently small, and
hence, the inter-cluster interference plays the main role in the
reliability value, which is lower for Nc = 3 than for Nc = 1
and Nc = 2.

Fig. 7 presents the network GoodPut as a function of
the blocklength nb for different cluster sizes. Intuitively,
the higher the blocklength is, the higher the successfully
received bits and hence, the higher the GN . However,
excessively increasing the blocklength results in a longer
frame duration, which is counterproductive in terms of
network GoodPut (i.e. reduces GN ). Hence, nb critically
affects the network GoodPut.

Finally, the average packet latency L for a typical UE as
a function of nb for different values of λp is demonstrated
in Fig. 8. As can be seen, the higher the blocklength is,
the higher the average packet latency. This is due to the
fact that the frame duration increases by increasing nb.
Additionally, the rate at which the average packet latency
increases is higher when the packet arrival rate λp of the UEs

FIGURE 8. Average packet latency for different λp vs. blocklength nb.

FIGURE 9. ρ for different λp vs. blocklength nb - K = 2.

is high, resulting in higher latencies at the same blocklength
values. The reason is that for high values of λp, the average
packet waiting time in a UE’s buffer is high, which threatens
the network stability. To see this, Fig. 9 shows a UE’s link
utilization ρ, which is the measure of UE’s buffer stability
in terms of nb, and for different values of λp. As explained
earlier, the higher the values of nb and λp are, the higher the
link utilization. Note that the black line (i.e. for ρ = 1) is
the stability threshold line; below which is the stability area.
For example, the UE’s buffer is unstable for nb > 430 when
λp = 240, nb > 505 when λp = 220, nb > 607 when
λp = 200.

To summarize, the following trade-offs can be stated for
the network metrics. Both reliability and network GoodPut
experience a peak by varying the number of replicas K .
Furthermore, GN also experiences another peak by varying
the blocklength nb. Additionally, both reliability and GN are
significantly affected by cluster sizeNc (or number of clusters
M ), which should be carefully set by network operators.
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A direct trade-off is observed between reliability and
packet latency through nb, where increasing the blocklength
improves the reliability, but increases the packet latency.
An indirect trade-off between the two is seen via K , where
the number of replicas must be carefully set (neither too
low nor too high), such that the reliability requirement is
met with the lowest possible blocklength, which in turn
helps to achieve the average packet latency requirement.
Hence, by carefully selecting the network parameters, GN
can be maximized subject to packet latency and reliability
requirements.

V. NETWORK GoodPut MAXIMIZATION
The analytical derivations of the different network metrics
can be utilized to maximize the network GoodPut, subject
to constraints on the average packet latency and reliability.
Specifically, the network GoodPut maximization (NGP-
MAX) problem can be formulated as

NGP-MAX:

max
nb,K ,β,η,P0

GN (17a)

s.t. L≤ δLth, (17b)

Ri,m≥ δ
R
th, ∀i,m, (17c)

Pi,m≤ Pmax, ∀i,m, (17d)

β≥
dηmax

dmin
, (17e)

η≥ 1, (17f)

nb,K∈ {1, 2, . . .}. (17g)

In problem NGP-MAX, Constraint (17b) ensures that
the average packet latency does not exceed δLth, while
Constraint (17d) ensures that the reliability is at least δRth.
Moreover, Constraint (17d) enforces the maximum transmit
power per UE, whereas Constraint (17e) ensures that Pi,m >
0, as discussed below (2). The remaining constraints define
the range of values the decision variables take. Notably,
optimizing the values nb, K , β, η, and P0 can maximize
the network GoodPut, while satisfying the stringent URLL
requirements for IoT applications, as per 3GPP and ITU
specifications [55], [56].
Remark 3: Problem NGP-MAX is a nonlinear mixed

integer programming problem, which is non-convex and
computationally-intensive [57]. This is evident from the
nonlinear analytical expressions of L, Ri,m, and GN as
well as the integer-valued decision variables. Despite the
non-convexity of problem NGP-MAX, the incurred compu-
tational delay is irrelevant, which is due to the steady-state
analysis.

Now, problem NGP-MAX is solved via a genetic algo-
rithm (GA) for an IoT networkwithN = 60UEs, and clusters
of size Nc = 3. Table 3 shows the GA parameters.15 Fig. 10

15Problem NGP-MAX is solved via the Genetic Algorithm Toolbox in
MATLAB [58].

TABLE 3. Genetic Algorithm Parameters.

FIGURE 10. Convergence to optimal solution for network GoodPut.

illustrates how the GA converges to the optimal network
GoodPut value between different generations. Specifically,
Fig. 10 shows the best and the mean values of the network
GoodPut among 2000 individuals at each generation. The
optimal GN value is 5.13 Mbits/s, while the optimal values of
the decision variables are (nb,K , β, η,P0) = (155, 4, 3.1 ×
107, 3.43, 0.03) when δRth = 0.99999, δLth = 10 ms, and
Pmax = 0.3 W.

VI. FUTURE RESEARCH DIRECTIONS
One of the main advantages of performing steady-state anal-
yses is to gain insight into the behaviour and characteristics
of various network metrics in response to different values
of network parameters. Such analyses can be incorporated
into learning techniques and algorithms to fine-tune the
network configurations and transmission policies [59], which
is due to potential model mismatches and uncertainties in
practical communication networks. Since the number of
UEs, and their data traffic patterns have been considered
in deriving the network metrics, the results can be used as
labeled training data sets for off-line training of deep neural
networks (DNNs). Consequently, each UE in the network
can distributively control its transmission parameters (e.g.
transmit power), while integrating the results into admission
control policies adopted by the network control center [60].
Furthermore, since the UEs deployment is assumed to be
random, with the number of UEs and cell radius as network
variables, performing scalability analysis is of the essence.
Another possible extension of this work is to integrate the
proposed frame structure into a distributed queueing (DQ)
algorithm [61], and perform performance evaluations for
various IoT network metrics.
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VII. CONCLUSION
This paper has considered grant-free RA-NOMA in URLL
IoT networks with clustered UEs. Short packets with
transmission diversity over multiple resource blocks have
been adopted to realize URLL within each transmission time
interval. By exploiting the time-reversal strategy along with
preamble transmission, the IoT UEs within each cluster are
able to distributively adjust their transmit powers to achieve
the target received power at the base-station. Furthermore,
active UE detection at the BS is achieved through the received
preambles. Network metrics, namely average packet latency,
reliability, and GoodPut have been mathematically derived.
Furthermore, the effect of the number of packet replicas,
and blocklength on the IoT network metrics have been
explored numerically. More importantly, various tradeoffs
between the different network metrics and parameters have
been highlighted to shed light on the importance of carefully
selecting the number of packet replicas and blocklength.
Particularly, both reliability and network GoodPut experience
a peak by varying the number of packet replicas. Moreover,
network GoodPut also experiences another peak by varying
the blocklength. Additionally, both reliability and GoodPut
are significantly affected by cluster size (or number of
clusters), which should be carefully set by network operators.
Direct and indirect trade-offs are also observed between
reliability and packet latency through blocklength and
number of packet replicas, where the number of replicas must
be carefully set (neither too low nor too high), such that
the reliability requirement is met with the lowest possible
blocklength, which in turn helps to achieve the average packet
latency requirement. Finally, the derived expressions have
then been utilized to maximize the network GoodPut subject
to URLL as well as transmit power constraints.

APPENDIX A
PROOF OF LEMMA 1

Proof: To derive the PDF of the received power of an
IoT UE located at distance d from the BS, let P̄ , g(d) =
P0 ln

(
β dmin

dη

)
. Thus, according to probability theory [62],

fP̄(p̄) is obtained as

fP̄(p̄) = fd (g−1(p̄))

∣∣∣∣ ddp̄g−1(p̄)
∣∣∣∣ , (A.1)

where g−1(p̄) = η
√
βdmine

−
p̄

P0η and fd (d̄) = 1
dmax−dmin

.
In turn, fP̄(p̄) can be simplified as

fP̄(p̄) = α1e
−α2p̄, (A.2)

where α1 =
η
√
βdmin

P0η(dmax−dmin)
and α2 = 1

P0η
.

APPENDIX B
PROOF OF LEMMA 2

Proof: Let P̄j’s (for j = 1, . . . , k) refer to k i.i.d.
random variables,16 with common PDF fP̄(p) and cumulative

16For notational convenience, the subscriptm referring to the cluster index
is dropped.

distribution function (CDF) FP̄(p). Also, let P̄(j) represent
their order statistics, such that p̄max ≥ P̄(1) > P̄(2) >

. . . > P̄(k) ≥ p̄min, where p̄min = P0 ln
(
β dmin
dηmax

)
and

p̄max = P0 ln
(
β dmin
dηmin

)
are obtained from (3) for di = dmax

and di = dmin, respectively. Then, the (k− i+1)-dimensional
joint PDF of {P̄(j)}kj=i can be inferred as

fP̄(i),...,P̄(k) (p̄i, . . . , p̄k )

=

(
k

k − i+ 1

)
(k − i+ 1)!

k∏
j=i

fP̄j (p̄j)
(
1− FP̄(p̄i)

)i−1
=

k!
(i− 1)!

k∏
j=i

fP̄(p̄j)
(
1− FP̄(p̄i)

)i−1
, (B.1)

where FP̄(p̄i) =
∫ p̄i
p̄min

fP̄(p̄)dp̄ for p̄i ≤ p̄max. Note that

fP̄(i),...,P̄(k) (p̄i, . . . , p̄k ) = Pr
(⋂k

l=i p̄l − 1p̄ ≤ P̄(l ) ≤
p̄l+1p̄

)
for small1p̄, which is equal to choosing k−i+1 ran-

dom variables from the k variables (related to
( k
k−i+1

)
) with

(k − i + 1)! permutations. In turn, their values must
be in the range

[
p̄l −1p̄, p̄l +1p̄

]
(for l = i, . . . , k),

with probability
∏k

j=i fP̄j (p̄j); whereas all the remain-
ing i − 1 variables must be greater than them, with
probability

(
1− FP̄(p̄i)

)i−1.
Now, to derive the joint PDF of P̄(i) and Q̄(i+1),k =∑k
j=i+1 P̄(j), the MGF is exploited. Particularly, the second

order MGF of Zi,m =
(
P̄(i), Q̄(i+1),k

)
is defined as17

MZi,m (s1, s2) = E
[
e(s1P̄(i)+s2Q̄(i+1),k)

]
. (B.2)

By using (B.1), (B.2) can be expressed as given in (B.3), as
shown at the bottom of the next page.

Based on [63, Eq. (9) and (10)], (B.3) can be further
simplified as (B.4), as shown at the bottom of the next page,
in which C(p̄i, s2) =

∫ p̄i
p̄min

fP̄(p̄)e
s2p̄dp̄. By utilizing fP̄(p̄)

in (4), C(p̄i, s2) is obtained as

C(p̄i, s2) =
∫ p̄i

p̄min

α1e−α2p̄es2p̄dp̄

=
α1e(s2−α2)p̄i

s2 − α2

(
1− e(s2−α2)(p̄min−p̄i)

)
. (B.5)

Hence, by substituting (B.5), as shown at the bottom of the
next page into (B.4),MZi,m(s1, s2) can be derived as (B.6), as
shown at the bottom of the next page. Therefore, the joint PDF
ofZi,m can be derived by taking the inverse Laplace transform
as fZi,m(p̄i, q̄i) = L−1s1,s2

{
MZi,m(−s1,−s2)

}
, as given

in (B.7), as shown at the bottom of the next page. However,
directly applying the inverse Laplace transform with respect
to s2 is difficult. Alternatively, the binomial expansion is

17Such a technique has previously been applied to determine the joint
statistics of sums of ordered random variables in special cases [27], [28]. The
derivations here are different from the existing in the literature in that the joint
PDF of the ith order statistic and partial sum of the remaining (Na − i + 1)
least order statistics from the total Na order statistics is computed.
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employed as(
1− e−α2(p̄min−p̄i)e(p̄min−p̄i)s2

)k−i
=

k−i∑
j=0

(−1)j
(
k − i
j

)
e−jα2(p̄min−p̄i)ej(p̄min−p̄i)s2 . (B.8)

Finally, (B.9) (shown at the bottom of the page) gives the
joint PDF of fZi,m(p̄i, q̄i), in which F̄P̄(p̄i) , 1 − FP̄(p̄i) =
α1
α2

(
e−α2p̄i − e−α2p̄max

)
. The last equality

†
= in (B.9) comes

from the fact that h̄(p̄i) = L−1s1
{∫ p̄max

p̄min
e−s1p̄i h̄(p̄i)dp̄i

}
,

and (B.9) holds true for p̄min < p̄i < p̄max and (k − i)pmin <

q̄i < (k − i)p̄i.

APPENDIX C
PROOF OF LEMMA 3

Proof: Recall that reliability is defined as the probability
that a typical packet is successfully received at the BS.
and that transmission diversity is utilized to enhance the
reliability. Then, a packet is delivered successfully if at
least one packet among the K transmitted replica packets
is received successfully. In turn, let Es be the event that

MZi,m (s1, s2) = E
[
e

(
s1P̄(i)+s2

∑k
j=i+1 P̄(j)

)]
=

k!
(i− 1)!

∫ p̄max

p̄min

fP̄(p̄i)e
s1p̄idp̄i

∫ p̄i

p̄min

fP̄(p̄i+1)e
s2p̄i+1dp̄i+1 · · ·

∫ p̄k−1

p̄min

fP̄(p̄k )e
s2 pk

(
1− FP̄(p̄i)

)i−1 dp̄k (B.3)

MZi,m(s1, s2) =
k!

(i− 1)!

∫ p̄max

p̄min

fP̄(p̄i)e
s1p̄i

[
1

(k − i)!

(
C(p̄i, s2)

)k−i] (
1− FP̄(p̄i)

)i−1 dp̄i (B.4)

MZi,m(s1, s2) =
k!

(k − i)!(i− 1)!

∫ p̄max

p̄min

αk−i+11 e−α2p̄i
(
1− FP̄(p̄i)

)i−1 es1p̄i e(k−i)(s2−α2)p̄i
(
1− e(s2−α2)(p̄min−p̄i)

)Na−i
(s2 − α2)k−i

dp̄i (B.6)

fZi,m(p̄i, q̄i) = L−1s1,s2
{
MZi,m (−s1,−s2)

}
=

αk−i+11 k!

(k − i)!(i− 1)!

×L−1s1

{∫ p̄max

p̄min

e−α2p̄i
(
1−FP̄(p̄i)

)i−1 e−s1p̄ie−(k−i)α2p̄iL−1s2 {e(k−i)p̄is2
(
1−e(s2−α2)(p̄min−p̄i)

)Na−i
(−s2−α2)k−i

}
dp̄i

}
(B.7)

fZi,m (p̄i, q̄i)

=
αk−i+11 k!

(k − i)!(i− 1)!
L−1s1

{∫ p̄max

p̄min

e−α2p̄i
(
1− FP̄(p̄i)

)i−1
×e−s1p̄ie−(k−i)α2p̄i

k−i∑
j=0

(
k − i
j

)
e−jα2(p̄min−p̄i)L−1s2

{
e−((k−i−j)p̄i+jp̄min)s2

(−s2 − α2)k−i

}
dp̄i

}

=
αk−i+11 k!

(k − i)!(k − i− 1)!(i− 1)!
L−1s1

{∫ p̄max

p̄min

e−α2p̄i
(
1− FP̄(p̄i)

)i−1
×e−s1p̄ie−(k−i)α2p̄i

k−i∑
j=0

(−1)k−i+j
(
k − i
j

)[
q̄i − (k − i− j)p̄i − jp̄min

]k−i−1
e−α2(q̄i−(k−i)p̄i)dp̄i

}

=
αk−i+11 k!

(k − i)!(k − i− 1)!(i− 1)!
L−1s1

{∫ p̄max

p̄min

e−s1p̄i
[
e−α2p̄i

(
1− FP̄(p̄i)

)i−1
×e−(k−i)α2p̄i

k−i∑
j=0

(−1)k−i+j
(
k − i
j

)[
q̄i − (k − i− j)p̄i − jp̄min

]k−i−1
e−α2(q̄i−(k−i)p̄i)

]
dp̄i

}
†
=
αk−i+11 k!e(k−i+1)p̄i+(1−α2)i−1e−α2q̄i

(k − i)!(k − i− 1)!(i− 1)!

(
F̄P̄(p̄i)

)i−1 k−i∑
j=0

(−1)k−i+j
(
k − i
j

)[
q̄i − (k − i− j)p̄i − jp̄min

]k−i−1
(B.9)
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one packet replica is received successfully, and Ēs is its
complement. In turn, the reliability for an IoT UE Ui,m is
determined as

Ri,m = 1−
(
Pr
(
Ēs
))K

= 1− (1− Pr(Es))K . (C.1)

Now, a packet is delivered successfully if no inter-cluster
collision (NIC) and no decoding error (NDE) occur. To this
end, define ENIC as the event of NIC, and ENDEi,m as that of
NDE for theUi,m’s transmitted packet. Hence, Pr(Es) in (C.1)
can be written as

Pr(Es) = Pr
(
ENIC

)
Pr
(
ENDEi,m

)
. (C.2)

Now, let the number of IoT clusters with at least one UE
having at least one data packet in its buffer—except the
underlying cluster m—be denoted N̄m. Then, Pr

(
ENIC

)
can

be conditioned on N̄m as

Pr
(
ENIC

)
=

M−1∑
l=0

Pr
(
ENIC | N̄m= l

)
Pr
(
N̄m = l

)
. (C.3)

Since it is assumed that all the UEs follow the same data
arrival process, and there is no preemptive UE (i.e. all the UEs
have the same channel access priority), then Pr

(
N̄m = l

)
can

be written as

Pr
(
N̄m= l

)
=

(
M − 1
l

)(
1−5Nc

0

)l (
5
Nc
0

)M−l−1
, (C.4)

where 50 is defined in (7). On the other hand,
Pr
(
ENIC | N̄m = l

)
can be obtained as

ωl , Pr
(
ENIC | N̄m = l

)
=


1, l = 0,(
Ru − 1
Ru

)l
, otherwise.

(C.5)

Particularly, l = 0 is related to the case of no collision,
since no IoT cluster among the other clusters transmits any
data packets. On the other hand, there is no collision on the
selected RU if all l IoT UEs select their RUs among the
other (Ru − 1) RUs. In turn, by substituting (C.4) and (C.5)
into (C.3), Pr

(
ENIC

)
is determined as

Pr
(
ENIC

)
=

M−1∑
l=0

ωl

(
M−1
l

)(
1−5Nc

0

)l(
5
Nc
0

)M−l−1
. (C.6)

To obtain Pr
(
ENDEi,m

)
in (C.2), the decoding error probability

expression in (1) is used. However, the number of active UEs
Na in the cluster of interest must be conditioned on, and thus,
Pr
(
ENDEi,m

)
can be written as

Pr
(
ENDEi,m

)
=

Nc∑
k=i

Pr
(
ENDEi,m | Na=k

)
Pr (Na = k) , (C.7)

where Pr (Na = k) =
(Nc
k

)
(1−50)

k 5
Nc−k
0 . Also, recall

that Ui,m’s signal is successfully decoded if the BS suc-
cessfully decodes all the i − 1 previous UEs’ signals
as well as Ui,m’s signal via SIC. Hence, by defining
ϒj,k,m , ϒ

(
γj,m(P̄j,m, Q̄j+1,k ), nb, nd

)
based on (1) and (8),

Pr
(
ENDEi,m | Na = k

)
can be written as

Pr
(
ENDEi,m | Na = k

)
=

i∏
j=1

(1− ϒ̄i,j,k,m), (C.8)

in which ϒ̄i,j,k,m is obtained using

ϒ̄i,j,k,m=

∫ pmax

pmin

∫ (k−i)p̄i

(k−i)pmin

ϒj,k,mfZi,m(p̄i, q̄i)dq̄idp̄i. (C.9)

Therefore, Pr
(
ENDEi,m

)
can be written as

Pr
(
ENDEi,m

)
=

Nc∑
k=i

i∏
j=1

(
1−ϒ̄i,j,k,m

)(Nc
k

)
(1−50)

k 5
Nc−k
0 .

(C.10)

Finally, substituting (C.6) and (C.10) into (C.2) and then
into (C.1) gives the reliability expression in (11).
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