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ABSTRACT Distributed energy resources with unbalanced phases increase the power imbalance in a grid,
and compensating for the imbalance requires accurate knowledge of the impedance of the transmission
and distribution lines. To achieve such compensation, many studies have evaluated the series impedance
of the lines. The previous studies can be classified into three categories: (a) studies that solved Carson’s
original equations (COEs), (b) those that approximated these equations by ignoring high-order terms, and
(c) those that provided a closed-form solution for the equations. Solving the COEs requires the expansion
of the improper integrals and infinite series. Therefore, the last approach is preferable for easier calculations
and a small error. Thus, the objective of this study is to present a more accurate and robust closed-form
solution. Toward this end, this study improves the single-logarithmic-approximation method by adding a
fourth compensation term. That is, this study proposes the correction term (2x/(x+

√
1+ x2) ≈ 1− e−2x −

(x3e−2x)/3 + (x5e−5x)/5). This study substitutes the correction term to the original derivatives and finds
their correct integrations to improve a single-logarithmic-approximation solution. The proposed solution
was verified through case studies, and it showed fewer errors than the previous solutions. Additionally,
the proposed solution can be also used to estimate the expected value of the self- and mutual impedance
of overhead lines via stochastic simulations (e.g., Monte Carlo simulations), which will be presented in
the second paper of this study.

INDEX TERMS Carson’s equations, closed-form solution, mutual impedance, self-impedance.

NOMENCLATURE
ABBREVIATIONS
COE = Carson’s original equation
CRT = common ratio term
CDER = complex depth of earth return
DLA = double-logarithmic closed-form approach
HOT = high-order term
IS = infinite series
SLA = single-logarithmic closed-form approach

I. INTRODUCTION
Electrical loads are usually connected to power sources
through transformers, transmission lines, distribution lines,
or other power system equipment (e.g., capacitor banks, Var
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compensators, voltage regulators, switches, circuit breakers,
and protection relays). As the energy supplied by distributed
energy sources increases, it can lead to an increase in the
electric power imbalance. To compensate for the imbalance,
we should accurately know the impedance of the lines.

Pollaczek and Carson derived the earth-return circuit
impedance (i.e., the self- and mutual impedances of overhead
lines parallel to the ground) [1], [2]. The self- and mutual
impedanceswere defined by an improper integral, and Carson
derived an infinite series (IS) expansion of the improper
integral, which is referred to as Carson’s original equations
(COEs). It was not feasible to calculate the IS sum, therefore,
many studies have obtained approximate solutions. For exam-
ple, numerical IS approximation solutions have been found
by using the Wedepohl-Wilcox IS formulation [3]. However,
the study did not take the frequency-dependent ground con-
dition into account, so closed-form approximation solutions
were presented in various ground conditions that include

103850 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-8986-5016
https://orcid.org/0000-0001-9517-9856


I. Kim: New Single-Logarithmic Approximation of Carson’s Ground-Return Impedances—1

displacement currents [4]. The frequency characteristics of
overhead transmission lines, dependent on the soil param-
eters, were also analyzed by adopting frequency-dependent
soil models [5]. Since the previous models did not present
a time-domain model, the time responses were assessed
by injecting an impulse voltage to one of the wires when
the terminal is opened [6]. Recently, an electromagnetic
reciprocity method approximates the ground impedance cor-
rection parameters [7] and a conductor subdivision method
calculates the ground impedance of buried cables [8]. These
previous studies have tried to find the earth-return impedance,
originally tackled by Pollaczek and Carson.

Meanwhile, the approximation approach, which presents a
closed-form solution or ignores the higher-order terms (HOTs)
of the IS, inherently includes errors. For example, the relative
errors between approximation and algorithmic models were
compared by contour images [9]. The third and more HOTs
of the IS are sufficiently small to be ignored, so the second
HOT of the IS (e.g., cos 2θ and sin 2θ terms) was defined
as the knee point. The effect of the ignored HOTs on the
accuracy was examined [10]. To reduce the error, the inverse
Laplace transform of the improper integral form derived by
Sunde provides an estimate of the transient ground resis-
tance matrix [11], [12]. These recent approximation solu-
tions show relatively good accuracy. For example, recently,
a numerical algorithm was proposed to obtain a solution
with nine significant digits for the COE [13]; the study also
compared the solution with solutions derived from themodels
presented in [14]–[17]. An analytical solution with seven
significant digits is also presented by using the exponential
approximation of the COE [18]. However, these previous
studies still show a difficulty in applying to stochastic Monte
Carlo simulations that estimate the expected value of the
self- and mutual impedances of overhead lines because the
stochastic simulation requires a very large total number of
calculations.

In the closed-form approach, the first-order Struve func-
tion and the second-kind first-order Bessel function rep-
resent solutions of the COE [19]. One method to find a
closed-form solution to the COE is to replace the earth
under overhead lines by the image conductors of the lines;
this is known as the image method [20]–[22]. In another
approach, the image conductors are assumed to have a com-
plex depth of earth return (CDER) and their impedance
is assumed to be influenced by the soil skin depth [16],
and the obtained solution has also been mathematically
proved to be a single-logarithmic closed-form approach
(SLA) solution [15]. In particular, the approximation 2x/(x+√
1+ x2) ≈ 1 − e−2x is used for obtaining the SLA solu-

tion [15]. One study, [14], added the correction term (2x/(x+√
1+ x2) ≈ 1 − e−2x − (x3e−2x)/3) to the CDER model to

reduce errors, and thereby improved the accuracy of the SLA
solution of [15].

The double-logarithmic closed-form approach (DLA) has
been proposed for obtaining more accurate solutions. For
example, the coefficients A = 0.1159, B = 0.8841,

α = 0.2258, and β = 1.1015 have been used for obtain-
ing the DLA solution [23]. The previous DLA of [23]
was improved by optimizing the coefficients [17]. Based
on a combination of Chebyshev expansions and rational
approximations, an algorithm for computing the Struve
and Bessel functions in the COEs has been presented for
MATLAB [24].

The previous studies have approximated the self- and
mutual impedances of transmission and distribution lines by
either ignoring HOTs or providing closed-form solutions.
However, none of the previous studies improved the SLA
modified in [14]. The present study derives an improved SLA
solution. For obtaining the solution, this study enhances the
previous SLA in [14] by adding a fourth compensation term.
That is, this study adds a fourth compensation term using
(2x/(x +

√
1+ x2) ≈ 1− e−2x − (x3e−2x)/3+ (x5e−5x)/5).

The proposed SLA is compared with previous approaches
(e.g., COE, CDER, double logarithmic, and Struve function
evaluation models) for a broad range of frequencies and
ground resistivities, to provide the robustness of the pro-
posed method. Through case studies of transmission and
distribution lines, it is shown that the proposed additional
compensation term reduces errors in the solution of the COEs,
at the cost of slightly increasing the calculation time com-
pared to that of the previous SLA in [14]. For example,
the proposed method increases the calculation speed (e.g.,
14.20%, 16.13%, or 16.69 %), compared to the previous
SLAmethod in the three case studies. However, the proposed
method improves the average accuracy of 11.49% for a distri-
bution line example, compared to that of the previous SLA.
As a result, the proposed method with fewer errors will be
applied to stochastic Monte Carlo simulations that evaluate
the expected value of the self- and mutual impedances of
overhead lines. The detailed methods and results of finding
the expected value will be presented in the second paper of
this study.

The rest of this paper is organized as follows.
Section 2 briefly introduces the general form of the COEs
and previously proposed SLAs and DLAs. In Section 3,
the proposed SLA solution is derived, and Section 4 presents
case studies that validate the accuracy of the proposed
SLA. Finally, Section 5 summarizes the conclusions of
this study.

II. CARSON’S GROUND RETURN CIRCUIT IMPEDANCE
A. CARSON’S ORIGINAL EQUATIONS
Fig. 1 shows two current-carrying conductors i and j and
their earth-return images (i′ and j′). Carson and Pollaczek
separately derived the improper integral for the ground return
impedance [1], [2] and Sunde reformulated it [22].

Z =
jωµ0

2π
ln
(
D2

D1

)
+
jωµ
π

∫
∞

0

(
e−Hλ

λ+
√
λ2 + jωµσ

)
cos(xλ)dλ, (1)
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FIGURE 1. Two conductors with their earth-return conductors [1].

where

ω = angular frequency (rad/s);
µ0 and µ = permeabilities of free space and the ground,

respectively;
σ = conductivity of the ground.

For the self-impedance, D1 = ri (radius of the conductor i),
D2 = 2hi (height of the conductor i), H = D2, and x = 0.
For the mutual impedance, D1 =

√
(hi − hj)2 + x2ij, D2 =√

(hi + hj)2 + x2ij, H = hi + hj, and x = xij.

B. EXISTING APPROXIMATION MODELS
COEs used for calculating self and mutual series impedances
require an improper integral. In closed-form approxima-
tion approaches, a long calculation time may be required
for calculating the IS (to solve the improper integral)
for a broad range of frequencies. For example, in [1]
and [25], the self-impedance (Zs) and mutual impedance (Zm)
for µ = µ0 were approximated as

Zs =
jωµ0

2π
ln

2hi
ri
+
jωµ
π

Js, (2)

Zm =
jωµ0

2π
ln

√
(hi + hj)2 + x2ij√
(hi − hj)2 + x2ij

+
jωµ
π

Jm, (3)

Js =
∫
∞

0

(
e−2hiλ

λ+
√
λ2 + jωµσ

)
dλ ≈

1
2
ln
(
p
hi
+ 1

)
,

(4)

Jm =
∫
∞

0

(
e−(hi+hj)λ

λ+
√
λ2 + jωµσ

)
cos(xijλ)dλ

≈
1
2
ln

√
(hi + hj + 2p)2 + x2ij√

(hi + hj)2 + x2ij
, (5)

where

p =

√
1

jωµσ
.

The self- and mutual impedance were then simplified by
adding 2p:

Zs ≈
jωµ0

2π
ln
(2hi + 2p)

ri
, (6)

Zm ≈
jωµ0

2π
ln

√
(hi + hj + 2p)2 + x2ij√

(hi − hj)2 + x2ij
. (7)

In Fig. 1, the addition of 2p, which is referred to as the
CDER term, corresponds to the replacement of the image
conductors i′ and j′ with i′′ and j′′, respectively. Indeed,
the CDER model is an example of an SLA. The SLA was
enhanced in [14] by using the approximation

2λ

λ+
√
λ2 + 1

≈ 1− e−2λ −
1
3
λ3e−2λ. (8)

A DLA was proposed in [23] and another DLA was
improved in [17]. The study in [17] expressed the improper
integral term by using the first-orderH1(u) of the Struve func-
tion and the second-kind first-order Bessel function Y1(u):∫

∞

0

(
2e−Hλ

λ+
√
λ2 + jωµσ

)
cos(xλ)dλ

=
π

2u1
[H1(u1)− Y1(u1)]−

1

u21

+
π

2u2
[H1(u2)− Y1(u2)]−

1

u22
, (9)

where u1 =
√
jωµσ (H − jx) and u2 =

√
jωµσ (H + jx). The

detailed definitions of H1(u) and Y1(u) are presented in [19].
An analytical solution of the COE was presented by com-

puting H1(z) and Y1(z) separately for a range of |z| ≤ z0 and
H1(z)− Y1(z) for |z| ≥ z0 [24].

III. PROPOSED COMPENSATED SINGLE LOGARITHMIC
APPROACH
The objective of this study was to improve the SLA presented
in [14]. Toward this end, for the example in Fig. 1 the follow-
ing variables were initially defined.

w = pλ, (10)

β = x/(hi + hj), (11)

q1 =
hi
p
, (12)

q2 = (hi + hj)/2p. (13)

The substitution of (10)-(13) into (4) and (5) yields

Js(q1) =
∫
L

(
e−2q1w

w+
√
w2 + 1

)
dw, (14)

Jm(q2) =
1
2

∫
L

(
e−2(1+jβ)q2w + e−2(1−jβ)q2w

w+
√
w2 + 1

)
dw. (15)

The derivatives of (14) and (15) with respect to q1 and q2
are

dJs(q1)
dq1

= −

∫
∞

0

(
2w

w+
√
w2 + 1

)
e−2q1wdw. (16)
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dJm(q2)
dq2

= −
1
2

∫
∞

0

(
2w

w+
√
w2 + 1

)
×

(
(1+ jβ)e−2(1+jβ)q2w

+ (1− jβ)e−2(1−jβ)q2w
)
dw. (17)

The proposed method approximates the first term in (16)
and (17) as

2w

w+
√
w2 + 1

≈ 1− e−2w −
1
3
w3e−2w +

1
5
w5e−5w.

(18)

Substituting (18) in (16) and (17) gives

dJs(q1)
dq1

≈ −

∫
∞

0

(
1− e−2w −

1
3
w3e−2w +

1
5
w5e−5w

)
× e−2q1wdw, (19)

dJm(q2)
dq2

≈ −
1
2

∫
∞

0

(
1− e−2w −

1
3
w3e−2w +

1
5
w5e−5w

)
×

(
(1+ jβ)e−2(1+jβ)q2w

+ (1− jβ)e−2(1−jβ)q2w
)
dw. (20)

The integration of (19) yields

Js(q1) ≈ −
1
2
ln (q1)+

1
2
ln (q1 + 1)

−
1
24
(q1 + 1)−3 +

12
5
(2q1 + 5)−5 , (21)

and the integration of (20) gives

Jm(q2) ≈ −
1
2
ln (q2)+

1
4
ln
(
q2 +

1
1+ jβ

)
+

1
4
ln
(
q2 −

1
−1+ jβ

)
+ J1 + J2, (22)

where, (23) as shown at the bottom of the page.
The derivation of J1 and J2 is one of the contributions of

this paper.

IV. CASE STUDIES
A. ACCURACY VALIDATION OF THE PROPOSED METHOD
This study compared the series impedance determined by the
proposed model with those determined in [14]–[16], [24],
[26]–[28]. As a reference, this study solved the COE con-
taining the nth HOT of the IS derived from the improper
integral [26]. The reference solution is denoted by Zref.
The CDER model from [15], [16] and the compensated
SLA model from [14] were implemented in MATLAB, and

TABLE 1. Practical ranges of parameters.

they are denoted by ZCDER and ZSLA, respectively. Further-
more, the simplified model of [27], [28] was implemented in
MATLAB, and it is denoted by Zsim. The recent analytical
calculation model of [24] was also implemented, and it is
denoted by ZTheo. To verify the proposed method, this study
calculated the impedance matrix for the practical ranges of
parameters, which are presented in TABLE 1.

1) SOLVING THE FULL COEs
To determine the reference self- andmutual impedance (Zref),
this study solved the full COEs for the simple two-conductor
system shown in Fig. 2. The system includes two 336,400
26/7 ACSR Linnet cables. Subsequently, the effect of the
highest-order term to be retained in the IS in the COEs on the
convergence of the solution (i.e., self- andmutual impedance)
was examined.

FIGURE 2. Simple two-conductor system.

The frequency and ground resistivity ranges were defined
as [fmin, fmax] = [0.1 Hz, 105 Hz] and [ρmin, ρmax] =
[1 � ·m, 10 k� ·m] on the basis of TABLE 1. The common
ratio term (CRT) (e.g., the [r] term in [1] or the [a] term
in [26]), which is proportional to the square root of the
frequency and inversely proportional to the square root of the
ground resistivity, is defined in the COEs. Since the HOTs
are multiplied by the power order of the CRT (e.g., the nth
term is multiplied by rn), the IS converges rapidly for a CRT
(i.e., r)≤ 2 [1]. For a CRT (i.e., r)> 5, the IS is approximated
by a finite series, or calculations are performed up to the
seventh HOT [26], [30]. For example, this study identified the
case that converged the slowest at the frequency and ground

J1 =
− (q2 + 1)

(
−3β2q22 + q

2
2 + 2q2 + 1

)
24
(
β2q22 + q

2
2 + 2q2 + 1

)3 ,

J2 =
12 (2q2 + 5)

(
80β4q42 − 160β2q42 − 800β2q32 − 1000β2q22 + 16q42 + 160q32 + 600q22 + 1000q2 + 625

)
5
(
4β2q22 + 4q22 + 20q2 + 25

)5 (23)

VOLUME 9, 2021 103853



I. Kim: New Single-Logarithmic Approximation of Carson’s Ground-Return Impedances—1

FIGURE 3. Incremental change in the self-impedance when the order of
the highest-order term was increased.

resistivity intervals considered. The CRT was 4.9945 at a
frequency of 19.745 kHz and a ground resistivity of 10� ·m.
Fig. 3 presents the incremental change in the self-impedance
in ohms per kilometer for the case r = 4.9945 when the
order of the highest-order term increased. When terms up to
the 24th order term of the IS were retained, the incremental
change in the self-impedance relative to the self-impedance
when terms up to the 23rd order were retained was almost
zero (e.g., at the sixth decimal place).

Fig. 4 shows the convergence curve of the self-impedance.
In Fig. 4 (a) and (b), the self-impedance converges to the solu-
tion (5.524254+j219.9318�/km) and themutual impedance
converges to 5.16361+ j41.5803�/km. The 25th and HOTs
are negligible, or zero up to the sixth decimal place. Thus, this
study calculated the nth HOT of the IS and used the criterion
that the incremental change is less than 10−6 as the reference
(Zref) to verify the accuracy of the proposed method.

2) FOUR-WIRE OVERHEAD LINE
For the verification of the accuracy of the proposed method,
the four-wire overhead distribution line in Fig. 5 was mod-
eled [28]. The system included phase conductors (336,400
26/7 ACSR Linnet) and a neutral conductor (4/0 6/1 ACSR).
Detailed data of these conductors are available in Appendix A
in [28].

At a frequency of 60 Hz and a ground resistivity of
100�·m, the 3× 3 impedancematrix (in ohms per kilometer)

FIGURE 4. Convergence of the self- and mutual impedance.

FIGURE 5. Four-wire overhead line [28].

of the reference model is Eq. (24), as shown at the bottom of
the next page.

The CDER model (as an example of an SLA) yields the
impedance matrix Eq. (25), as shown at the bottom of the
next page.

The average percent difference between the absolute value
of this 3× 3 impedance matrix and that of (24) is 0.50119%.
The SLAmodel improved by [14] gives the impedancematrix
Eq. (26), as shown at the bottom of the next page.

The average percent difference between the absolute value
of this impedance matrix and that of (24) is 0.00539%, which
is better than the accuracy of (25). The proposed model
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(Zproposed) yields the impedance matrix Eq. (27), as shown
at the bottom of the page.

The proposed method shows the lowest average percent
difference, 0.005%, from the absolute value of (24). Zsim and
ZTheo showed average percent differences of 0.14131% and
3.86687%, respectively.

The average percent difference for the 3 × 3 impedance
matrix when the frequencywas varied from 0.1Hz to 100 kHz
at a fixed ground resistivity of 100 � · m is plotted in
Fig. 6. For the real part, the proposed method showed the
smallest difference from the reference in the full frequency
range, except the range 15–40 Hz, and around 5 kHz, and
the simplified model (Zsim) showed the largest difference
from the reference at the frequency of 200 Hz or above. For
the imaginary part, the proposed method showed a larger
difference than the compensated SLA model (ZSLA) in the
ranges 40–1 kHz and 25–100 kHz, and the CDER model
(ZCDER) showed a larger difference than the proposedmethod
at the full frequency. For both the real and imaginary parts,
the analytical calculation model (ZTheo) showed a larger
difference than the proposed method in the full frequency
range, except at the frequency of 2 Hz and below. For the
absolute value of the 3 × 3 impedance matrix, the ZTheo,
ZCDER, and Zsim models showed a larger difference than the
Zproposed and ZSLA models, except at the frequency of 3 Hz
or below. By contrast, for the absolute value, the proposed
method showed a smaller difference than the compensated
SLA (ZSLA) model in the full frequency range, except in the
ranges 70–1 kHz and 25–100 kHz.

Fig. 7 shows the average percent differences between dif-
ferent models to the reference model when the ground resis-
tivity was varied from 1�·m to 10 k�·m at a fixed frequency
of 60 Hz.

For the real part, the proposed method showed the least
difference from the reference in the range 1–300 � · m.

FIGURE 6. Comparison of the average percent difference for real and
imaginary parts and absolute values (in the frequency range of 0.1 to 10
MHz).

In fact, the proposed method shows a smaller difference
than the compensated SLA model in all frequency ranges.
However, the simplified model exhibited a smaller differ-
ence than the proposed method at the ground resistivity of
300 � · m and above. For the imaginary part, the proposed
method showed the least difference from the reference in
the range 1–30 � · m. The compensated SLA model (ZSLA)
showed the least difference in the range from 30 � · m to
2.5 k� · m, while the simplified model exhibited the least
difference in the range 2.5–10 k� ·m. For the absolute value
of the 3× 3 impedance matrix, the proposed method showed
the least difference at ground resistivities of 100 � · m and
below.

Next, this study determined the effect of the HOTs in the
ground resistivity interval [ρmin, ρmax] = [1� ·m, 10 k� ·m]

Zref =

 0.28407+0.67051i 0.096677+0.31235i 0.095135+0.23982i
0̂.096677+0.31235i 0.28974+0.65192i 0.097962+0.26387i
0.095135+0.23982i 0.097962+0.26387i 0.28652+0.66243i

. (24)

ZCDER =

 0.28498+0.67214i 0.097597+0.31392i 0.09605+0.24143i
0.097597+0.31392i 0.29067+0.65343i 0.098885+0.26541i
0.09605+0.24143i 0.098885+0.26541i 0.28744+0.66401i

. (25)

ZSLA =

 0.28395+0.67052i 0.096553+0.31238i 0.095013+0.23984i
0.096553+0.31238i 0.28961+0.65196i 0.097836+0.2639i
0.095013+0.23984i 0.097836+0.2639i 0.28639+0.66246i

. (26)

Zproposed =

 0.28396+0.67056i 0.096571+0.31241i 0.095031+0.23988i
0.096571+0.31241i 0.28963+0.65199i 0.097854+0.26393i
0.095031+0.23988i 0.097854+0.26393i 0.28641+0.66249i

. (27)
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FIGURE 7. Comparison of the average percent difference for the real and
imaginary parts and for absolute values (in the resistivity range
1–10 k� · m.

FIGURE 8. Comparison of the average percent difference for the absolute
value.

and the frequency interval [fmin, fmax] = [0.1 Hz, 100 kHz].
Fig. 8 shows percent differences for the absolute value of
the 3 × 3 impedance matrix. The proposed and compensated
models Zproposed and ZSLA in Fig. 8 (a) and (b) show similar
percent differences from the reference at the ground resistiv-
ity and frequency intervals considered, because of the similar
approximations derived in (8) and (18). They also show a
smaller difference from the reference than the ZCDER and
ZTheo models, in Fig. 8 (c) and (d). However, the detailed
comparison between both the models indicates the proposed
method with fewer percent relative differences to the ZSLA
model, particularly in the dashed circle area.

The difference between the proposed and previous mod-
els is evident in TABLE 2, which summarizes the average
percent difference from the reference for the absolute values
of the 3 × 3 impedance matrix in the ground resistivity and

TABLE 2. Summary of the average percent difference from the absolute
value of the reference model.

frequency intervals considered. Clearly, in the table, the sim-
plified model shows the largest average difference in the
absolute value, which is because the model is usually used for
a low frequency. The compensated SLA model improves the
accuracy of the CDER model from 0.46305% to 0.03229%.
The proposed model shows the least average percent differ-
ence, and it improves the accuracy of the compensated SLA
model from 0.03229% to 0.02858% because of the fourth
added term in (18), which means the improvement in the
accuracy by as much as 11.49%.

Typical overhead transmission and distribution power lines
deliver electrical power across long distances at a low fre-
quency (e.g., 50 or 60 Hz). In addition to the low frequency,
the geometrical location of the phase conductors in Fig. 2 and
Fig. 5 is an example. Moreover, line sags and imbalances
in phase conductors affect the relative percent difference.
To the impact of line sages and imbalances in phase conduc-
tors on the accuracy improvement of the proposed method,
the stochastic method (e.g.,Monte Carlo simulation and finite
elementmethods) will be presented in the second paper of this
study.

3) EXAMPLE OF A TRANSMISSION LINE
The proposed model was applied to a 500 kV transmis-
sion line with a frequency of 50 Hz; the transmission line
is shown in Fig. 9 [31]. The system includes 12 Panther
(30/3+7/3 ACSR) bundled cables (with a conductor conduc-
tivity of 25785150 m/�, an earth resistivity of 100 � · m,
a GMR of 1.049 cm, and an internal radius of 0.453 cm). The
neutral wires were ignored. The detailed data are available
in [31].

The 3× 3 impedance matrix (in ohms per kilometer) of the
reference model (Zref) is Eq. (28), as shown at the bottom of
the page.

The 3 × 3 impedance matrix of the CDER model is
given by Eq. (29), as shown at the bottom of the page.
which is the same matrix presented in [31]. Equa-
tion (29) includes average percent differences of 1.05641%,
1.32038%, and 1.31185% relative to the real and imaginary
parts and absolute values of (28). The impedance matrix of
the analytical model is Eq. (30), as shown at the bottom of
the page.

The average percent differences relative to the real and
imaginary parts and absolute values of (28) are 0.00072%,
0.54104%, and 0.52882%, respectively. The impedance
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FIGURE 9. Example of a 500 kV transmission line [31].

matrix of the compensated SLA model is Eq. (31), as shown
at the bottom of the page.
with the average percent differences for the real and imag-
inary parts and absolute values relative to (28) being
0.08566%, 0.16987%, and 0.16213%, respectively. The
impedancematrix of the proposedmodel is Eq. (32), as shown
at the bottom of the page.

The proposed model is superior to the aforemen-
tioned models, with reducing average percent differences
of 0.09830%, 0.14123%, and 0.13398% for the real and
imaginary parts and absolute values, respectively.

This study varied the frequency from 0.1 Hz to 100 kHz
and the ground resistivity from 1� ·m to 10 k� ·m, as shown
in TABLE 1. TABLE 3 compares the average percent differ-
ences for the real and imaginary parts for the different models
relative to the reference model. Clearly, the compensated
SLA model improved the accuracy of the CDER model. The
simplifiedmodel showed the largest difference because of the

TABLE 3. Average percent differences for the real and imaginary parts.

simplification of the COE by the assumption that the model
is usually used for a low power system frequency. In fact,
the model results in a large error at high frequencies. For
the real part, the analytical model showed the least average
difference (0.25596% for ZTheo vs. 0.44575% for Zproposed).
By contrast, for the imaginary part, the proposed method
showed the least average difference (0.10814% for Zproposed
vs. 0.57796% for ZTheo). The proposed method improves the
accuracy of the compensated SLA model (ZSLA) by as much
as 4.9% (for a real part) and 16.8% (for an imaginary part).
Thus, the proposed method was closer than the other models,
including the analytical model, to the reference.

This study changed the horizontal position of a one-phase
group (e.g., phase c conductors) in Fig. 9. The frequency
was set as 50 Hz and the ground resistivity as 100 � · m.
Fig. 10 presents the absolute value of the mutual impedance
(i.e., Zac) when the horizontal distance of the phase c con-
ductors from the middle of the system was increased. At the
original horizontal distance of phase group c (e.g., 12.42 m
and 12.88 m), the mutual impedance (Zm,ac) was 0.046399+
0.22979i�/km, which is identical to that in (28). As the hor-
izontal distance (i.e., xac) increased, the D1 and D2 terms of
the first part in (1) or (7) gradually became equal. Therefore,
the magnitude of the mutual impedance in Fig. 10 decreased.
To clarify the difference between each model and the refer-
ence, the average percent differences of the 3× 3 impedance

Zref =

 0.080935+0.53547i 0.046443+0.2733i 0.046399+0.22979i
0.046443+0.2733i 0.080941+0.53546i 0.046443+0.2733i
0.046399+0.22979i 0.046443+0.2733i 0.080935+0.53547i

 (28)

ZCDER =

 0.081497+0.53958i 0.047011+0.27741i 0.046985+0.23388i
0.047011+0.27741i 0.081503+0.53957i 0.047011+0.27741i
0.046985+0.23388i 0.047011+0.27741i 0.081497+0.53958i

, (29)

ZTheo =

 0.080936+0.52684i 0.046443+0.27328i 0.046398+0.22978i
0.046443+0.27328i 0.080942+0.52683i 0.046443+0.27328i
0.046398+0.22978i 0.046443+0.27328i 0.080936+0.52684i

. (30)

ZSLA =

 0.080978+0.53495i 0.046488+0.27278i 0.04645+0.22925i
0.046488+0.27278i 0.080984+0.53493i 0.046488+0.27278i
0.04645+0.22925i 0.046488+0.27278i 0.080978+0.53495i

, (31)
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FIGURE 10. Mutual impedance (Zac ) when the horizontal distance of
conductor bundle group c from the middle of the system was increased.

FIGURE 11. Average percent difference when the horizontal distance of
phase c from the middle of the system increased.

matrix of each model relative to the reference model were
determined, and they are presented in Fig. 11. The CDER
model showed the highest difference at a high x/h ratio, which
is comparable to that in [14]. For horizontal distances less
than about 200m, the proposedmodel showed the least differ-
ence. For the distance range 200–550 m, the analytical model
showed the least difference. However, the proposed model
showed better accuracy than the compensated SLA model at
the full distance. Within the feasible range of the horizontal
distance presented in TABLE 1, the proposed model was the
most accurate.

The vertical distance of a one-phase bundle group (e.g.,
phase a conductors) was varied in this study. At the

FIGURE 12. Mutual impedance (Zac ) when the vertical distance of
conductor bundle group a from the ground increased.

original vertical distance of phase group c (e.g., 27.5 m and
27.96 m), the mutual impedance (Zm,ac) was 0.046399 +
0.22979i �/km. Fig. 12 presents the absolute value of the
mutual impedance (i.e., Zac). As the vertical distance of the
phase a group increased, the D1 and D2 terms of the first part
in (1) or (7) gradually became equal, resulting in a decrease in
themutual impedance, which is evident in Fig. 12. The CDER
model showed the least difference relative to the reference.
Both the Zproposed and ZSLA models showed almost identical
accuracies. The analytical model (ZTheo) showed the largest
difference.

Fig. 13 shows the average percent difference of the 3 × 3
impedance matrix of each model. Clearly, before the distance
of about 75 m, the proposed method showed the least differ-
ence. However, after about 75 m, the CDER model showed
the least difference. In the full range of the distance, the pro-
posed method showed better accuracy than the compensated
SLA model. The absolute value of the self-impedance (i.e.,
Zaa) was examined when the vertical distance of the one-
phase bundle group (e.g., the phase a conductors) was varied.
Fig. 14 presents the absolute value of the self-impedance.
At the original vertical distance of phase group a (e.g., 27.5 m
and 27.96 m), the self-impedance (Zaa) was 0.080935 +
0.53547i �/km, which is identical to that in (28). The ana-
lytical model (ZTheo) showed the largest difference for the
full distance range. To examine the accuracy of each model
relative to the reference, this study determined the average
percent differences for the real and imaginary parts of the
3 × 3 impedance matrix for each model, and they are shown
in Fig. 15. For the real part, the analytical model showed
the least difference. However, for the imaginary part, the

Zproposed =

 0.080985+0.53503i 0.046495+0.27287i 0.046457+0.22934i
0.046495+0.27287i 0.080991+0.53502i 0.046495+0.27287i
0.046457+0.22934i 0.046495+0.27287i 0.080985+0.53503i

. (32)
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FIGURE 13. Average percent difference for different vertical distances.

FIGURE 14. Change in self-impedance (Zcc ) with the vertical distance of
conductor bundle group a.

analytical model showed a higher difference than the pro-
posed model, and therefore, it showed the largest difference
in the absolute value of the self-impedance. For the imaginary
part, before a distance of about 75 m, both the Zproposed and
ZSLA models exhibited the least difference. By contrast, after
about 75 m, the CDER model was more accurate than the
proposed model. However, in the full range of the distance,
the proposed method showed better accuracy than the com-
pensated SLA model.

From Fig. 10 to Fig. 15, the Zproposed model slightly
improved the ZSLA model. It is because both the mod-
els include the similar approximations derived in (8) and
(18). To clarify the difference between both the models,
Fig. 16 presents the average of the percent relative differ-
ence of both the models when the vertical and horizontal
distances of the phase conductors in Fig. 9 change. In fact,
the proposed model decreases the average of the percent rel-
ative difference. The proposed fourth term in (18) contribute
the decrease in the relative difference. Thus, the proposed

FIGURE 15. Average percent differences for the real and imaginary parts.

method improves the previous model (e.g., ZSLA). However,
the difference between both the models for practical overhead
lines with line sags, imbalances in phase conductors, and
uncertainties of the frequency, ground resistivity, conductor
characteristics (e.g., geometric mean radius and dc resis-
tance), and transmission line structures (e.g., a single, double,
or more circuit structure, and geometric mean distance), may
be different from this case study. Therefore, the difference for
the practical overhead lines will be examined in the second
paper of this study.

B. CALCULATION SPEED COMPARISON
This study is to enhance the previous SLA in [14] by adding
the fourth compensation term, which may create a heavy
computational burden. Thus, this study measures calculation
times of each method at a laptop computer (HP ZBook,
Intel i7-7700HQ CPU @ 2.80GHz, 16.0 GB memory, and
MATLAB 2019b). TABLE 4 presents the average calcula-
tion time in msec of each method on the frequency varying
at [fmin, fmax] = [0.1 Hz, 100 kHz]. The total number of
the calculations is 200. The simplified model (Zsim) indi-
cates the fastest speed because the second and HOTs of
the IS are ignored for the self-impedance and the third and
HOTs are neglected for the mutual impedance. In TABLE 2,
the proposed method reduces the average percent differ-
ence to 0.02858% from 0.03229% (for ZSLA), which means
the improvement in the accuracy by as much as 11.49%.
However, in TABLE 4, the proposed method increases the
calculation time to 16.69% (for the two-conductor example
in Fig. 2), 16.13% (for the distribution line example in Fig. 5),
and 14.20% (for the transmission line example in Fig. 9)
compared to that for ZSLA. One of the applications of the
proposed method is to evaluate the expected value of the self-
and mutual impedances of overhead lines. Determining such
an expected value via stochastic simulations requires a very
large total number of calculations with fewer errors. After the
tradeoff between improving the accuracy (e.g., 11.49%) and
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FIGURE 16. Comparison of the proposed and ZSLA models.

TABLE 4. Average calculation time (millisecond).

worsening the speed (e.g., 14.20%, 16.13%, or 16.69 %) is
investigated, the proposed method that improves the accuracy
will be adapted to the stochastic simulations, which will be
presented in the second paper of this study.

V. CONCLUSION
A solution of the improper integral in COEs is required for
estimating the series self- and mutual impedances of trans-
mission and distribution lines. Therefore, many studies have
approximated the improper integral (e.g., by using an SLA
or a DLA model). However, the accuracy of the approxima-
tions can be improved. Thus, this study improves a previ-
ously proposed compensated SLA model by adding a fourth

compensation term. In the three case studies, the average
percent differences of the previous models relative to the ref-
erence model were larger than those of the proposed model.
In particular, the proposedmodel showed better accuracy than
the compensated SLAmodel. For a distribution line example,
simplified, analytical, CDER, and compensated SLA models
show the average percent difference of 2.47008%, 3.95257%,
0.46305%, and 0.03229%. But the proposed method reduces
the average percent difference to 0.029%, which means the
improvement in the accuracy by as much as 11.49%. That is,
this study presents a closed-form solution with smaller errors.
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