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ABSTRACT Drought is an extreme climate phenomenon that has a great impact on the economy, tourism,
agriculture, and water resources. Drought prediction can provide an early warning of the occurrence of
drought and reduce losses. In this article, the standard precipitation evapotranspiration index (SPEI) on four
time scales: SPEI-3, SPEI-6, SPEI-9, and SPEI-12 are used to measure and predict drought. Unlike the
general methods of directlymodeling the SPEI index, time-series imaging and feature-based transfer learning
are used to extract the features of the SPEI sequence and use the extracted features for prediction. First,
we use Gramian Angular Summation/Difference Field (GASF/GADF), Markov Transition Field (MTF), and
Recurrence Plot (RP) as the time series imaging techniques to encode SPEI sequences into images. Secondly,
we utilize imaging data sets and convolutional neural networks (CNNs) such as residual network (ResNet)
and VGG to train the feature extraction network. Finally, the following four regressors: Random Forest
(RF), Long and Short-Term Memory network (LSTM), Wavelet Neural Network (WNN), Support Vector
Regression (SVR) are used to model the extracted features and drought prediction. To verify the effectiveness
of the method proposed in this article, we use the SPEI of four time scales at eight stations in the Haihe
River Basin for prediction. Compared with the existing methods, the prediction results of different time
scales and stations are improved. For example, after feature extraction, LSTM can reach MAPE = 0.5400,
SMAPE = 0.4452, MAE = 0.2150, MSE = 0.0853 and R2 = 0.8960 in the SPEI-12 prediction of the
Beijing site, and other results show that the proposed method is not sensitive to the time scale of drought
prediction.

INDEX TERMS Drought prediction, deep learning, imaging, transfer learning.

I. INTRODUCTION
Drought refers to the periodical precipitation on land that is
lower than normal for many months or years [8]. Drought
can be divided intometeorology drought, agriculture drought,
hydrology, and socio-economic drought [22]. Drought causes
huge economic, political and cultural losses every year.
Therefore, it is crucial to predict drought and take corre-
sponding measures. Many models have been developed for
this purpose. An excellent drought prediction model is of
great significance to the planning and management of water
resources and minimizing the negative effects of drought.
In practice, droughts can also be classified based on time
scales and precipitation anomalies, such as the standardized
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precipitation index (SPI) [20] and standardized precipitation
evaporation index (SPEI) [20] based on different time scales
that are often used to measure drought levels: SPEI-1 to
SPEI-24 [12]. There are many types of research on drought
prediction, including drought evaluation indicators, models,
research areas, etc. There is no doubt that the drought pre-
diction model is the most important and basic. According to
the mechanism, the drought prediction model can be divided
into regression analysis, stochastic, machine learning-based,
hybrids, and dynamic models [4], [12], [13], [28], [30], [39].
Different models are suitable for different research areas, dif-
ferent precipitation conditions, and drought evaluation indi-
cators on time scales.

Essentially, the linear model is the most basic, sim-
plest, and most explanatory model. Logistic regression [21],
[28], [31] and log-linear regression [19] in linear model
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are widely used in drought prediction. [28] applied logistic
regression to predict SPI and SPEI in Europe and used the
pseudo-correlation coefficient and the area under the receiver
operating characteristic curve (AUROC) as evaluation indi-
cators. [21] applied a logistic regression model to analyze
the impact of SPI and Southern Oscillation Index (SOI)
in East China on seasonal drought in different regions and
different seasons. The main advantages of the regression
model are simple and direct and low computational cost,
but due to the linear assumption, its long-term prediction
performance is poor [12]. [24] proposed the use of machine
learning-based methods, including RF, SVR, and boosted
regression trees (BRT) for drought prediction in the United
States. The most important and popular stochastic models
are ARIMA [23], SARIMA [2] and their variants. This
type of model has several important parameters, namely
autoregressive order p, difference order d and moving aver-
age order q. Once the order of the model is confirmed,
the ARIMA and SARIMA models can be described as
ARIMA(p, d, q) and ARIMA(p, d, q)(P,D,Q)s respectively,
where (p, d, q) and (P,D,Q)s represent non-seasonal and
seasonal parts, respectively. [2], [23] used ARIMA and
SARIMA models for hydrological drought prediction in
Ethiopia and determined that (0, 1, 1)(0, 1, 1)12 was the best
model among the candidate models. [37] used multiple mod-
els for drought prediction, including WNN, ANN, etc., and
achieved good prediction performance at eight stations in
the Haihe River Basin. The prediction performance of most
of the models proposed above is strongly dependent on the
study area, observation sites, drought evaluation indicators,
and time scales, and most models directly predict the original
data and cannot extract important features from the data.

To fix problems of existing models, we propose a novel
feature extraction method based on time series imaging [14]
and feature-based transfer learning that can effectively extract
drought data features, and its prediction performance does not
depend on the study area. In addition, the method proposed in
the article can also be combined with any existing prediction
model for drought prediction. At present, deep neural net-
works have reached the state of the art in various tasks, such
as computer vision (CV) [15], natural language processing
(NLP) [7], [33], and recommendation systems (RS) [9]. One
of the main reasons for the success of deep learning (DL) is
that DL models can represent the raw data well. Naturally,
we use the images obtained by each imaging scheme as a
class for training CNNs, also called feature extraction net-
works, and use to extract features for drought prediction. The
CNNs architectures selected in the article are ResNet [15],
VGG [26], and their variants. Finally, we use the extracted
features for drought prediction. In this article, we use some
regressors that perform well in drought prediction, including
LSTM [16], RF [6], WNN [3] and SVR [27]. To evaluate
the performance of the proposed method, we use common
indicators for evaluating prediction performance, including
Mean Square Error (MSE), coefficient of determination (R2),
Mean Absolute Error (MAE), Mean Absolute Percentage

Error (MAPE) and Symmetric Mean Absolute Percentage
Error (SMAPE).

The structure of the article is as follows. In section II,
we introduce the study area, SPEI, and evaluation indica-
tors of the model. In section III, we introduce the drought
prediction methods proposed in the article, including model
ordering, time series imaging, and feature extraction based
on transfer learning. In section IV, we introduce in detail
several regressors used in the article, including LSTM, RF,
WNN, and SVR. In section V, we apply the proposed method
and model to SPEI prediction and discuss the experimental
results.

II. PRELIMINARIES
In this section, we will introduce in detail the study area,
the SPEI for evaluating drought, and the index for evaluating
model performance that will be used later in the article.

A. STUDY AREA
The Haihe River Basin borders the Bohai Sea in the east,
Taihang in the west, the Yellow River in the south, and the
Mongolian Plateau in the north. The total area of the basin
3.182 × 105km2, accounting for 3.3% of the China’s total
area. The Haihe River Basin includes 3 major river systems
and 10 backbone rivers. The total terrain of the whole basin
is high in the northwest and low in the southeast, roughly
divided into three types of landforms: plateau, mountain and
plain. The western part is the Loess Plateau and the Taihang
Mountains. The northern part is the Mongolian Plateau, and
the Yanshan Mountains, covering an area of 1.894×105km2,
accounting for 60%; the east and southeast are plains with an
area of 1.284× 105km2, accounting for 40% [38].

The basin belongs to the temperate East Asian monsoon
climate zone. The winter is controlled by the Siberian conti-
nental air mass, which is cold and less snowy; in the spring,
it is affected by the Mongolian continental air mass. The
temperature rises quickly and the evaporation is large, often
forming dry weather; the summer is affected by the marine
air mass, which is relatively humid, with more rainfall, and
drought occurs; autumn is the transitional season between
summer and winter, and the general year is high and cool,
with less rainfall.

In this paper, the SPEI with a time scale of 3, 6, 9,
and 12 months (SPEI-3, SPEI-6, SPEI-9, SPEI-12) is used
to measure drought level and drought prediction. The data
used comes from the China Meteorological Administration,
which records precipitation data in the Haihe River Basin
from 1960 to 2010. The article studied 8 sites in the north-
ern Haihe River Basin, namely Datong, Yuxian, Fengning,
Zhangjiakou, Huailai, Zunhua, Beijing, and Tangshan. The
basic description of these sites is shown in Table 1.

B. STANDARDPRECIPITATION EVAPORATIONINDEX (SPEI)
SPEI is used to describe the difference between weekly
or monthly precipitation and potential evapotranspiration
(PEP) [20]. The SPEI can reflect the climate water balance
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FIGURE 1. Study area and meteorological stations.

TABLE 1. Basic description of the research area.

on different time scales to a certain extent, and can also be
used to measure and monitor the degree of drought. Given
the precipitation Pi and PETi in the i-th month, the difference
between the two can be calculated by equation

Di = Pi − PETi.

Generally speaking, climate data such as daily rainfall and
streamflow obey the log-logistic distribution, and its proba-
bility density function (PDF) is

f (z) =
β

α

(
z− γ
α

)β−1 (
1+

(
z− γ β

α

))−2
, z ≥ γ , (1)

where α, β, and γ are the scale, shape and location parameters
respectively. Obviously, by replacing z in equation (1) with
Di, we can get ∞ > Di ≥ γ . The three parameters of the
log-logistic distribution are estimated using

α̂ =
(w0 − 2w1)β̂

0
(
1+ 1

β̂

)
0
(
1− 1

β̂

) , β̂ =
2w1 − w0

6w1 − w0 − 6w2
,

γ̂ = w0 − α̂0

(
1+

1

β̂

)
0

(
1−

1

β̂

)
,

where0(·) is gamma function andw0,w1,w2 are the probabil-
ity weighted moments. After estimating the three parameters,
we can get the cumulative distribution function (CDF) of the
log-logistic distribution

F(z) =

[
1+

(
α̂

z− γ̂

)β̂]−1
. (2)

TABLE 2. Correspondence between SPEI and drought level.

By using the Abramowitz and Stegun approximations to
equation (2), transforming it into a standard normal distribu-
tion, we can use the following formula to calculate SPEI

SPEI = W −
C0 + C1W + C2W 2

1+ d1W + d2W 2 + d3W 3 ,

where C0, C1, C2, d1, d2, d3 are all constants [1], and W is
defined as follows

W =

{√
−2 ln(P), if P ≤ 0.5,
√
−2 ln(P− 1), if P > 0.5,

where P = 1 − F(z). Table 2 [37]shows the drought levels
corresponding to different SPEI ranges.

C. EVALUATION INDEX
To compare the pros and cons of different forecasting meth-
ods, the following five indicators are selected to evaluate
the model, including MSE, MAE, MAPE, SMAPE, and R2.
If there is a set of data y1, y2, · · · , yt , its corresponding
predicted value is ŷ1, ŷ2, · · · , ŷt , then the corresponding
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FIGURE 2. Technical roadmap of drought prediction based on time series imaging and transfer learning.

expression of the above evaluation index is

MSE =
1
t

t∑
i=1

(̂yi − yi)2,

SMAPE =
1
t

t∑
i=1

|̂yi − yi|
(|yi| + |̂yi|)/2

× 100%,

MAPE =
1
t

t∑
i=1

∣∣∣∣ ŷi−yiyi

∣∣∣∣× 100%, MAE=
1
t

t∑
i=1

|̂yi−yi|.

III. PROPOSED APPROACH
In this part, the methods proposed in this article will be
introduced in detail, including the use of Autocorrelation
Function (ACF) and Partial Autocorrelation Function (PACF)
for model ordering, four imaging schemes for sequence data,
feature extraction method based on transfer learning and
drought prediction models. Let the precipitation data be a
series z = {z1, z2, · · · , zn, · · · }. First, according to the for-
mula of SPEI, we convert the precipitation data into four time
scales drought indicators SPEI-3, SPEI-6, SPEI-9, SPEI-12,
where SPEIi =

(
x i1, · · · , x

i
ni

)
, i = 3, 6, 9, 12. Secondly,

we use the ACF and PACF commonly used in time series to
determine the order of the sequence SPEIi. Let the order of
SPEIi sequences be pi, we can construct data sets

Di =

{(
xij, y

i
j

)}
, xij =

(
x ij , x

i
j+1, x ij+pi−1

)
∈ Rpi , (3)

where 1 ≤ j ≤ ni − pi, yj = x ij+pi . Next, we will use four
imaging technologies GADF, GASF, MTF and RP to encode

the data xij into an image, and we can get the corresponding
image data set. Figure 2 shows the technical roadmap of the
method proposed in the article.

A. ORDER DETERMINATION
Because the order of the model is applied to precipitation
data, the symbol z is used to represent precipitation series
data. Similarly, the four imaging schemes described later will
be applied to the SPEI sequence data, so the symbol x will be
used. Given a time series, the order of the model determines
how many past observations are used for prediction. In this
article, ACF and PACF are used to determine the order of
the model [11]. Let {zt }, t = 1, 2, · · · be a time series,
the autocovariance function (ACVF) of {zt } is defined as

γ (k) = Cov (zt+k , zt) , k = 0,±1, · · · . (4)

The ACF of {zt } is

ρ(k) = γ (k)/γ (0) = Corr (zt+k , zt) , k = 0,±1, · · · . (5)

From equation (4) and (5) we can see that both ACVF and
ACF are even functions

γ (k) = γ (−k), ρ(k) = ρ(−k).

Because ACF only describes the correlation between zt and
zt−k and ignores the intermediate variable zt−1, · · · , zt−k+1,
we use PACF to describe this dependence on the intermediate
variable. Let {zt } be a time series with Ezt = 0, the PACF is
defined as π (1) = Corr (z1, z2) = ρ(1) and

π (k) = Corr
(
R1|2,··· ,k , · · · ,Rk+1|2,··· ,k

)
for k ≥ 2,
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where Rj|2,··· ,k is the residual from the linear regression of zj
on (z2, · · · , zk), namely

R1|2,··· ,k = zj −
(
αj2z2 + · · · + αjkzk

)
,

and(
αj2, · · · , αjk

)
= argmin

β2,··· ,βk

E{zj − (β2z2 + · · · + βkzk)}2.

Given a time series observation {z1, · · · , zT }, we can use
the sample autocovariance function and sample autocorrela-
tion function to estimate ACVF and ACF, which is defined
as

γ̂ (k) =
1
T

T−k∑
t=1

(zt − z̄T )(zt+k − z̄T ), ρ̂(k) = γ̂ (k)/γ̂ (0),

where k = 0, 1, · · · ,T − 1 and z̄T = 1
T

∑T
t=1 zt .

B. IMAGING TIME SERIES
1) GRAMIAN ANGULAR FIELD
Given time series x = {x1, x2, · · · , xn} with length n, time
series data is scaled to between [−1, 1] in the following way

x̃i =
(xi −max(x))+ (xi −min(x))

max(x)−min(x)
,

or scale to between [0, 1] using the following formula

x̃i =
xi −min(x)

max(x)−min(x)
.

The shrinking time series data are converted into the form
of polar coordinates, and the specific transformation formula
is shown as follows [14]φ = arccos(̃xi),−1 ≤ x̃i ≤ 1,

r =
ti
N
, ti ∈ N,

where x̃i ∈ x̃ = {̃x1, · · · , x̃n} and N is a constant factor
to regularize the span of the polar coordinate system. The
transformation into polar coordinates not only preserves the
time series data changing with time and the related statistical
properties but also presents the time series data in the form of
graphs. The data of time series is converted to polar coordi-
nates, and time can be easily determined by using the relation
between angles. The definition of a GASF is as follows [14]

GASF =


cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

...
...

cos(φn + φ1) · · · cos(φn + φn)


= x̃> · x̃−

√
1− x̃2

>

·

√
1− x̃2.

Similarly, the definition of the GADF is shown below

GADF =


cos(φ1 − φ1) · · · cos(φ1 − φn)
cos(φ2 − φ1) · · · cos(φ2 − φn)

...
...

cos(φn − φ1) · · · cos(φn − φn)



=

√
1− x̃2

>

· x̃− x̃> ·
√
1− x̃2,

where 1 = [1, 1, · · · , 1] is a row vector of all ones.

2) MARKOV TRANSITION FIELD
After given time series x, the Q quantile of the family
sequence is determined. Each observation xi of the time series
is allocated to the corresponding quantile interval qj(j ∈
[1,Q]). Considering the first-order markovmodel along time,
we can obtain the weighted adjacency matrixW ofQ×Q and
W i,j is the frequency at which the point qj is followed by qi.
When we normalize the matrixW by

∑
jW ij = 1, we obtain

the Markov Transition matrix.
According to the definition of the Markov Transition

matrix, it can be known that it is insensitive to the distribution
of time series x and the moment ti, which will lead to too
much loss of information. In order to solve this problem,
we define the following Markov Transition Field [14]

M =


W ij|xi ∈ qi, x1 ∈ qj · · · W ij|x1 ∈ qi, xn ∈ qj
W ij|x2 ∈ qi, x1 ∈ qj · · · W ij|x2 ∈ qi, xn ∈ qj

...
. . .

...

W ij|xn ∈ qi, x1 ∈ qj · · · W ij|xn ∈ qi, xn ∈ qj

 .
By assigning the time series data to Q quantile interval,

we can obtain markov transition matrix W . In MTF, M ij is
the probability of qi→ qj.

3) RECURRENCE PLOT
Time series data have obvious periodicity and unequal peri-
odicity. Recursion of states in nonlinear systems or random
processes is a typical scenario for generating time series.
Recurrence plot [10] is am dimensional space data in the 2-D
tool. Its main idea is, at what point which tracks can return to
the previous state, its mathematical expression for

Ri,j = θ (ε −
∥∥xi − xj∥∥), xi, xj ∈ Rm, i, j = 1, 2, · · · ,K ,

where K is the number of considered states, ε is the threshold
distance. ‖·‖ is L2 norm and θ is the Heaviside function.
In thematrixR, there is single point texturemasonry, diagonal
texture masonry, vertical line texture, and horizontal line
texture. Moreover, the texture information has homogeneity,
periodicity, drift, and fracture. Figure 3 shows the image
obtained by encoding the time series.

C. FEATURE EXTRACTION
Based on ACF and PACF, we can determine the order pi of
the sequence SPEI−i and construct the training set Di ={(
xij, y

i
j

)}
, i = 3, 6, 9, 12 of the model, where xij =(

x ij , x
i
j+1, x

i
j+pi−1

)
∈ Rpi , yj = x ij+pi and 1 ≤ j ≤ ni − pi.

We can use the constructed data set Di and various models,
including SVR, RF for drought prediction, but the input of
these models is the raw data, and these models cannot extract
the features of the raw data well, especially on the data with
special structure like time series.
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FIGURE 3. Examples of four time series imaging methods.

In this article, we use CV technology to extract features
from Di, and use the extracted features for drought predic-
tion. The most important step is to build a feature extraction
network. The construction of the feature extraction network
and the feature extraction based on transfer learning will be
introduced respectively in III-C1 and III-C2.

1) CONSTRUCTION OF FEATURE EXTRACTION NETWORK
The construction of a feature extraction network based on CV
requires a labeled image data set. We consider the images
obtained by the same imaging technology as one class. If xij in
the data setDi is directly encoded into an image, since xij and
xij+1 have a large amount of overlap, then the encoded image
will also have a lot of redundancy, which is not conducive to
learn a suitable feature extraction network. Therefore, con-
sidering dividing the SPEI-i data with length Li, the images
obtained by each imaging scheme are of one class. Generally
speaking, the number of years of precipitation observation
is limited, and Li is generally not too small, so the number
of each type of image obtained by SPEI-i imaging will be
very limited. In order to learn a better feature extraction
network, the article considers combining the images obtained
by encoding the SPEI-i data of eight sites for training CNNs.
Algorithm 1 gives the image data set a construction process.
Based on the data Ai generated in Algorithm 1, we can

easily construct the following four image data sets

Ii =
{(

GASF
(
aitemi,m

)
, 1
)
,
(
GADF

(
aitemi,m

)
, 2
)
,(

MTF
(
aitemi,m

)
, 3
)
,
(
RP

(
aitemi,m

)
, 4
)}
,

where 1, 2, 3, 4 represents different class, i = 3, 6, 9, 12
represents different time scales. Based on image data sets
Ii, we can train the feature extraction network. The feature
extraction network selected in this article is ResNet-18,
ResNet-34, ResNet-50, ResNet-101, ResNet-152, VGG-11,
VGG-13, VGG-16, VGG-19 and the corresponding batch
normalization (BN) version [17].We should note that because
the eight sites are all located in the Haihe River Basin,
we assume that the data segmentation length of the SPEI of
the same time scale is the same for different sites.

2) FEATURE EXTRACTION BASED ON TRANSFER LEARNING
Generally speaking, assume that the sample space of a
machine learning task T is X × Y , where X and Y are

Algorithm 1 Image Data Set Construction Process
Require:

SPEI data set Ditem
i = {x itemi,k }, i = 3, 6, 9, 12, 1 ≤ k ≤

nitem,
item ∈ {BeiJing, Datong, Fengning, Huailai, Yuxian,
Zhangjiakou, Weixian, Tangshan};
Data segmentation length Li;
Four imaging methods for sequence data: GASF, GADF,
RP, MTF.

Ensure:
for item in {Datong, Weixian, · · · ,Tangshan}

for m = {1, 2, · · · , [ nitemL ]}

aitemi,m =

(
x item(m−1)×Li+1

, · · · , x itemm×Li+1

)
;

for coding in {GASF, GADF, RP, MTF}:
coding

(
aitemi,m

)
end

end
end
Output: Ai =

{
GASF

(
aitemi,m

)
,GADF

(
aitemi,m

)
,

MTF
(
aitemi,m

)
,RP

(
aitemi,m

)}

the input space and output space, respectively, and the joint
probability density function is p (x, y). A sample space and
its distribution can be called a domain:

R = (X ,Y, p (x, y)) .

Given two domains, if their input spaceX , output space Y ,
and probability distribution p (x, y) are not all the same, then
the two domains are considered different [25]. Transfer learn-
ing refers to the process of knowledge transfer in two different
domains, using the knowledge learned in the source domain
RS to help the learning task on the target domainRT . Trans-
fer learning is divided into two types according to different
transfer methods: inductive transfer learning and transductive
transfer learning. Inductive transfer learning generally has the
following two transfer methods [35]:

• Feature-based approach: The output of the pre-training
model or the output of the intermediate hidden layer
is directly added to the learning of the target task as a
feature.

• Fine-tuning method: reuse part of the main components
of the pre-trainingmodel on the target task, and fine-tune
its parameters.

In this paper, feature-based inductive transfer learning is
used for feature extraction, that is, the input of the predic-
tion model is imaged, and the pre-trained feature extrac-
tion network is used to extract the features of the imaging
data for prediction. We have also considered the impact
of different levels of features on the results of drought
prediction, and section V will give a detailed explana-
tion. Feature extraction based on transfer learning is shown
in Figure 4.

VOLUME 9, 2021 101459



W. Tian et al.: Drought Prediction Based on Feature-Based Transfer Learning and Time Series Imaging

FIGURE 4. SPEI feature extraction based on transfer learning.

IV. FORECAST MODELS
The image features extracted by the feature extraction net-
work will be used for drought prediction. In this article,
we have selected four common models for drought predic-
tion, including LSTM, RF, WNN, and SVR. Below, we will
give a brief introduction to these methods.

A. RANDOM FOREST
The essence of RF [6] is an ensemble learning algorithm. The
ensemble process used is bagging, and the base learner is a
decision tree (DT). For many applications, RF and boosting
have similar performance and are easy to train and tune.
In ensemble learning, the main idea of bagging is to average
many noisy and progressively unbiased models to reduce
the variance of the model. Because the tree can capture the
complex interaction terms in the variable, and its deviation
gradually decreases as the depth of the tree increases and the
tree model contains a lot of noise, the tree is an ideal base
classifier for the ensemble. Algorithm 2 gives the running
process of RF.

B. LONG SHORT-TERM MEMORY
LSTM [16] is a special RNN. LSTM neural network joins
input gate it , outputs ot , forget gate f t . The forget gate f t
determines how much the state cell ct−1 at time t affects the
state cell ct . The input gate it determines how much input is
retained at the time t − 1, and the output gate ot determines
how much the state unit at time t will enter into output and
then participate in the LSTM calculation at time t ,

forget gate:

f t = sigmoid
(
W f [ht−1, xt ]+ bf

)
,

Algorithm 2 Random Forest for Regression
Require:

Data set D = {(x1, y1), (x2, y2), · · · , (xn, yn)};
Number of decision trees B;

Ensure:
for b = 1 to B:
Get bootstrap sample D∗ from D;
Construct a random-forest tree Tb based on Db. Itera-

tively use the following steps for each
terminal node of the tree until the number of tree nodes

reaches the minimum Kmin;
(I) Randomly select m variables from p variables;
(II) Choose the best split point from m variables;
(III) Split m variables into two child nodes.

Output decision tree sequence {Tb}B1 .
end

Output: f̂ Brt (x) =
1
B

B∑
b=1

Tb(x)

input gate:

it = sigmoid(W i[ht−1, xt ]+ bf ),

memory unit:

ĉt = tanh(W c[ht−1, xt ]+ bc),

ct = f t ◦ ct−1 + it ◦ ĉt ,

output gate:

ot = sigmoid(Wo[ht−1, xt ]+ bo),
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the final output:

ht = ot ◦ tanh(ct ),

where sigmoid and tanh are two activation functions with the
form:

sigmoid(x) =
1

1+ e−x
, tanh(x) =

ex − e−x

ex + e−x
.

The above formulas are the forward calculation process
of LSTM. Training the LSTM neural network is to find the
weight matrices W f ,W i, W c and Wo, each offset bf , bi, bc,
bo, and other optimal parameters to make the training results
as close to the real results as possible. The advantage of
LSTM is that it can learn and remember longer sequences
and does not rely on pre-specified window lag observations
as input, so it can get excellent prediction results in time series
analysis.

C. WAVELET NEURAL NETWORKS
WNN [3] is a new type of neural network that combines
wavelet analysis (WA) with feedforward neural network
(FNN). Of course, wavelet analysis is currently also applied
to CNNs and graph neural networks (GNNs) [34]. In this
study, we used a multi-dimensional WNN, and the output is
a linear combination of wavelet elements. The output of the
WNN is represented by the following formula

ŷ = w[2]
m+1 +

m∑
j=1

w[2]
j 9j(x)+

p∑
i=1

w[0]
i xi,

where x =
{
x1, x2, · · · , xp

}
is the input vector and m is

the number of hidden layers. 9j(x) is a multi-dimensional
wavelet multiplied by p scalar wavelets, and its expression
is as follows

9j(x) =
p∏
i=1

ψ(zij),

and

zij =
xi − w

[1]
(ξ )ij

w[1]
(ζ )ij

.

The above formula is equivalent to a transformation of the
input xi. We call w[1]

(ξ )ij and w
[1]
(ζ )ij the translation and dilation

factors, respectively. The wavelet function we use in this
article is Mexican Hat

ψ(zij) = (1− z2ij) exp
{
−
1
2
z2ij

}
.

The parameters that need to be learned in the WNN
are w[0]

i ,w
[2]
j ,w

[1]
(ξ )ij,w

[1]
(ζ )ij ,w

[2]
m+1, i = 1, 2 · · · , p, j =

1, 2, · · · ,m. There are different algorithms for learning
wavelet neural networks. In this article, we use the back prop-
agation (BP) algorithm. In addition, the learning of WNN is
sensitive to the initial value of the parameters. Then we use

the following initializationmethod for translation and dilation
factors [36]

w[1]
(ξ )ij = 0.5(Mi + Ni), w

[1]
(ζ )ij = 0.2(Mi − Ni),

where Mi and Ni are the maximum and minimum values of
the column where the xi is located. Since the initialization
of the parameters w[0]

i and w[2]
j has little effect on the per-

formance of the model, they are randomly selected from the
uniform distribution from 0 to 1.

D. SUPPORT VECTOR REGRESSION
SVR [27] is an extension of support vector machines (SVM)
in regression problems. SVM was originally proposed to
solve classification problems. Similarly, SVR also has hard
margins, soft margins (by introducing slack variables), and
non-linearity (by using kernel techniques), and can transform
the original problem into a dual problem for solution. In this
article, we introduce and use the soft-margin SVR model.
By introducing slack variables ξi and ξ∗i , the soft margin SVR
is equivalent to the following optimization problem

minimize
1
2
‖w‖2 + C

n∑
i=1

(ξi + ξ∗i ),

Subject to


yi − w>x−b ≤ ν + ξi,
w>x+ b− yi ≤ ν + ξ∗i ,
ξi, ξ

∗
i ≥ 0,

the constant C > 0 determines the trade-off between the
flatness of f = w>x + b and the amount up to which
deviations larger than ν are tolerated. The above optimization
problem can be easily transformed into its dual problem and
solved.

V. RESULTS AND DISCUSSION
In this part, we will give the results based on the model RF,
LSTM, WNN, and SVR to predict the four time scales SPEI:
SPEI-3, SPEI-6, SPEI-9, and SPEI-12 for eight sites. In order
to determine the order pi, i = 3, 6, 9, 12 of the model,
we first draw the ACF and PACF of the SPEI of the eight
sites. Because of the limited space, we only show the images
of ACF and PACF of SPEI-12.

According to Figure 5, we can clearly observe that
the order of the SPEI-12 of the eight stations is around
10. SPEI-3, SPEI-6, and SPEI-9 also have similar results.
Because the deep learning models are not so sensitive to the
order, for the convenience of calculation, we set p3 = p6 =
p9 = p12 = 10.

A. FORECAST RESULTS BASED ON RAW DATA
In this part, we will give the fitting and prediction results of
the fourmodelsmentioned in the article on the data setsDitem

i ,
and evaluate the results based on the four model evaluation
indicators.

Ditem
i , i = 3, 6, 9, 12,

item ∈ {Beijing, Datong, · · · ,Tangshan} .
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FIGURE 5. ACF (left panel) and PACF (right panel) of the SPEI-12 sequence at eight stations.

Due to limited space, we only show the prediction results
on the test set. We should note that these models are not
overfitted or underfitted in the test sets, and the results
in the training set are similar. Table 3 to Table 6 show
the experimental results in units of SPEI of different time
scales.

From Table 3 to Table 6, we can get the following
conclusions

1) In SPEI predictions at different time scales and sites,
WNN and LSTM perform better than the other two
models.

2) When the time scale is relatively small, such as
SPEI-3 and SPEI-6, WNN performs better; while in
SPEI-9 and SPEI-12, LSTM performs better. The main
reason is that LSTM can capture long-term dependen-
cies, while the WNN selected in this article has only
one hidden layer, which can only capture short-term
dependencies. The reason why the other two models

perform worse than WNN and LSTM may be that they
did not consider the dependence of each feature.

3) As the time scale increases, the performance of each
model on SPEI gradually improves. For example, in the
prediction of SPEI-3, the R2 of each model does not
exceed 0.5, but in the prediction of SPEI-12, the R2 of
each model can be over 0.9. Other model evaluation
indicators, such as MAE, MAPE, SMAPE, and MSE,
have similar patterns.

4) The SPEI prediction performance of each model at
different time scales is quite different, which means
that the four models selected in this article are greatly
affected by the time scale of drought prediction.

We should note that SVR and RF are common in predic-
tive models and are also the most excellent models. WNN
and LSTM are also excellent models in sequence prediction.
At different time scales, the prediction performance of these
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TABLE 3. The prediction results of different models on SPEI-3.

TABLE 4. The prediction results of different models on SPEI-6.

models is very different, which means that before using these
models, we should first have a good representation of the
data. This also reflects that the current forecasting model
is sensitive to the time scale of SPEI. The following will
introduce the use of CNNs to extract features from data and
then use them for prediction.

B. FORECAST RESULTS BASED ON FEATURE EXTRACTION
In this part, the model prediction results based on
the feature extraction of CNNs are given. The feature
extraction networks trained in this article are VGG and

ResNet, includingVGG11, VGG11BN,VGG13, VGG13BN,
VGG16, VGG16BN, VGG19, VGG19BN, where ‘‘BN’’
represents batch normalization; and ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152. We believe that mod-
els with good classification performance on the imaging data
set Ii, i = 3, 6, 9, 12 indicate that the data set has better
feature extraction capabilities, so we choose those models
with better classification performance for feature extraction.
Figure 6 shows the training loss of each model and the clas-
sification performance on the imaging datasets. We should
note that when segmenting the SPEI index of each time scale,
we have a hyperparameter Li, i = 3, 6, 9, 12 that needs to
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TABLE 5. The prediction results of different models on SPEI-9.

TABLE 6. The prediction results of different models on SPEI-12.

be determined. For the convenience of calculation, we set
L3 = L6 = L9 = L12 = 20. It can be seen from Figure 6
that for the imaging data of SPEI-3 and SPEI-6, VGG11BN
should be selected as the feature extraction network, for the
imaging data of SPEI-9, ResNet50 should be selected and for
SPEI-12, ResNet18 should be selected.

In the following, we will show the prediction results based
on the features extracted by the feature extraction network
(FEN). Because we use CNNs as the FEN, before feature
extraction on xij in the data set Di, we first need to encode xij
into an image. The article mentions four time series imaging
schemes. Due to limited computing power, we use GASF to
encode xij before feature extraction. After feature extraction,

we can get the following data sets

DFENi,item
i =

{(
FENi

(
xi,itemj

)
, yi,itemj

)}
,

1 ≤ j ≤ ni − pi,item, x
i,item
j =

(
x i,itemj , · · · , x i,itemj+pi,item−1

)
∈

Rpi,item , where FENi, i = 3, 6, 9, 12 represents the FEN
corresponding to the SPEI index of different time scales,
FENi(xij) represents the feature after feature extraction of the
original data xij using the FENi. Table 7 to Table 10 show the

prediction performance of each model on data setDFENi,item
i .

From Table 7 to Table 10, we can get the following
conclusions
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FIGURE 6. These four figures respectively show the classification performance of CNNs based on SPEI-3, SPEI-6, SPEI-9, and
SPEI-12 imaging data. The horizontal axis 0 to 12 respectively represent VGG11, VGG11BN, VGG13, VGG13BN, VGG16, VGG16BN, VGG19,
VGG19BN, ResNet18, ResNet34, ResNet50, ResNet101, and ResNet152.

TABLE 7. The prediction results of different models on SPEI-3 with VGG11BN as FEN.

1) The performance ofWNN and LSTM is better than that
of RF and SVR in SPEI prediction at different time
scales and sites.

2) At small time scales, such as 3 and 6, WNN performs
better than LSTM, and at large time scales, such as

9 and 12, LSTM performs better. The main reason is
that LSTM can capture long-term information.

3) As the time scale becomes larger, the prediction
performance of each model on each site gradually
improves. For example, based on the SVR to predict
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TABLE 8. The prediction results of different models on SPEI-6 with VGG11BN as FEN.

TABLE 9. The prediction results of different models on SPEI-9 with ResNet50 as FEN.

at the Beijing site, the ranking of index R2 can be
obtained as 0.5123(SPEI-3) < 0.7363(SPEI-6) <

0.8418(SPEI-9) < 0.8956(SPEI-12).

By correspondingly comparing Table 3 to Table 6 with
Table 7 to Table 10, we can get the following conclusions

1) Based on feature extraction, the prediction perfor-
mance of each model on each time scale and site
has been improved, and the performance improvement
on SPEI3 and SPEI6 is the most obvious. For exam-
ple, when the prediction model is RF and the data is
SPEI-3 from Beijing site, the method based on feature

extraction network has improved in each model evalu-
ation index.

2) Compared with the prediction results of the original
data, after feature extraction, the performance of each
model on SPEI was balanced on each time scale. The
performance of the models is not so different across
sites and time scales. This means that feature-based
extraction can significantly improve underperforming
models.

3) In addition, feature extraction can reduce the model’s
sensitivity to time scales, that is, we have found a more
general method for drought prediction.
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TABLE 10. The prediction results of different models on SPEI-12 with ResNet18 as FEN.

VI. CONCLUSION
The FENs used in this article are ResNet and VGG and their
variants, but it is uncertain whether these two CNNs are the
optimal feature extraction networks. For different data sets,
we can adopt some other feature extraction networks, such
as LeNet [18], GoogleNet [29], etc. Secondly, we need to
pay attention to that because of the limited computing power,
we set the hyperparameter segmentation length L3 = L6 =
L9 = L12 = 20 for each site and time scale SPEI. This
may be unreasonable for personal data sets and should be
set reasonably. We should also note that we set pitemi = 10.
In fact, it is clear from the ACF and PACF images that the
order of the SPEI is not 10 for every time scale at every
site, which should also be selected based on individual data.
In addition, there are many other time series imaging tech-
nologies, such as Grey Scale Encoding [32], Spectrogram
[5], etc. These imaging technologies can be used to expand
the image data sets Ii, i = 3, 6, 9, 12 in order to learn
more generalized FENs. In general, this article only proposes
a general method of precipitation prediction, whether it is
data preprocessing, prediction model selection, or feature
extraction network selection, it can be freely combined and
innovated.
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