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ABSTRACT Themultiscale noise in the 3D point cloud data of rock surfaces which collected by 3D scanners
has a significant influence on the exploration of rock surface morphology. To this end, this paper proposes
a multiscale noise removal overall filtering algorithm. The specific processing procedure of the algorithm
is as follows. First, a weighted principal component analysis is performed on point cloud data, i.e., the
neighboring point distance is used as a weight in the principal component analysis, the covariance feature
matrix of the weighted point is estimated, and the eigenvector corresponding to the lowest eigenvalue is
used as the normal vector of the point cloud data. Second, in the weighted principal component analysis,
estimating three eigenvalues corresponding to the Eigen matrix of the point cloud data, the ratio of the
eigenvalue corresponding to the normal vector to the sum of three eigenvalues is used as the surface change
factor. For the sample point, if the surface change factor of one sample point is less than the average value of
the surface change factor of all sample points in the neighborhood, the sample point belongs to a flat area;
otherwise, it belongs to a mutation area. Finally, in order to achieve multiscale noise removal, statistical
filtering algorithm is used to remove large scale noise in flat area, additionally bilateral filtering algorithm is
adopted to remove small scale noise in mutation area. In the experiments, the improved principal component
analysis is combined with the overall filtering algorithm to accurately estimate the eigenvalues of the point
cloud data points. After that, the eigenvalues of the sample points are used to distinguish between flat area
and mutation area, so as to consider large scale noise and small scale noise. From the experimental results,
it can be seen that overall filtering algorithm can consider both large scale and small scale noise and can
remove noise from the point cloud data of rock samples. Visual judgment, normal distribution and fractal
distribution tests are employed on filtered rock sample point cloud data to verify the reliability of the filtering
results.

INDEX TERMS 3D scanner, point cloud data, multiscale noise, statistical filtering, bilateral filtering.

I. INTRODUCTION
The 3D optical scanning method can be used to obtain the 3D
point cloud data of the surface of an object. Then a complete,
high precision 3D model is reconstructed based on the point
cloud data [1]–[3]. However, because of the systematic error
in 3D optical scanning instruments, the specular reflection
on the surface of the observed object, and the accidental
error in the measurement process [4], [5], the acquired 3D
point cloud data contain noise and outliers, and consequently
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the reconstructed 3D model will be inaccurate. Therefore,
it is necessary to denoise to accurately obtain the surface
morphology of target samples [6], [7], and reconstruct a
complete and high precision 3D model [8]. Given the
uncertainty in the noise distribution state of acquired point
cloud data of rock samples, it is essential to apply a robust
algorithm to deal with the noise points.

Significant advancements have been made in developing
a point cloud denoising algorithm. The extensive research
conducted in this field can be broadly summarized into single
algorithm denoising and multiple algorithms denoising.
A single denoising algorithm removes noise from a noise

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 110723

https://orcid.org/0000-0003-0387-5817
https://orcid.org/0000-0002-0768-3954


Y. Ren et al.: Overall Filtering Algorithm for Multiscale Noise Removal From Point Cloud Data

source. A combination of multiple algorithms can remove
noise points from different sources that are called multiscale
noise. In the case of single algorithm, Wan et al. [9] achieved
a good denoising of point cloud data based on the slope
filtering algorithm, considering the number of filters and
window size required for the filtering. Bian and Tong [10]
classified the feature points of point cloud data and included
a denoising method that relied on two feature weighting
functions, which preserves the feature information of the
point cloud data; however, this approach is unsuitable for
processing multiscale noise. Yang et al. [11] proposed a two-
way cloth simulation filtering algorithm that can consider
terrain characteristics, sequentially calculate the regional
terrain complexity and adaptive distance threshold, and
perform partition filtering, which improves the efficiency
of the filtering calculation; however, this method has poor
adaptability to different noises. Lu et al. [12] estimated
the initial mesh of a point cloud model, then completed
feature detection through identification and connection, and
finally updated the vertex position iteratively based on the
constructed feature edge to complete the denoising process.
Zeng and Li [13] used the Lagrangian interpolation method
to fit a local surface and complete the filtering; however, this
filtering algorithm cannot achieve an ideal filtering effect for
unevenly distributed point cloud data. Rosman et al. [14] used
the Laplace–Beltrami operator to generate a smooth surface
to deal with high-frequency noise. However, it reduces
the accuracy of object representation. Yang and Xiao [15]
proposed a systematic smoothing algorithm to achieve point
cloud denoising and better maintain the surface charac-
teristics. In addition, statistical filtering is widely used in
noise processing by analyzing the statistical characteristics
of the data [16], mainly by calculating small neighborhood
statistics, such as its mean, median, maximum, andminimum,
to eliminate noise. Bilateral filtering was first proposed
by Tomasi and Manduchi [17] for image noise processing.
Shachar et al. [18] found bilateral filtering to be suitable for
grid denoising and extended this algorithm to point cloud
denoising. Although a single denoising method can realize
denoising to a certain extent, it is difficult to accurately extract
the morphological features of an object surface because of
the poor denoising effect, inaccurate results, incomplete edge
information, and many loopholes when applied to the surface
of complex and discontinuous objects.

In view of the shortcomings of the above algorithms,
some scholars have proposed multiscale noise processing
algorithms. In this approach, point cloud data are divided
into different regions, where different denoising algorithms
are applied. Yuan et al. [19] divided point cloud noise into
large-scale and small-scale noises, used statistical and radius
filtering to process large scale noise, then estimated the
point cloud data curvature, and used an improved bilateral
filter to remove small scale noise. This method preventes
over-smoothing and distortion while denoising. However,
the accuracy is reduced in the noise processing of sparse
point clouds. Based on the different curvature characteristics

of a point cloud model, Gu et al. [20] proposed algorithms
that used different filtering strategies for different curvature
feature regions. Wu et al. [21] applied the conventional
median filtering and bilateral filtering algorithms to different
feature regions and applied the filtering algorithm based on
the average curvature feature classification, thus effectively
removing noise and maintaining the geometric features of
the sharp regions. However, the noise processing connec-
tion issues under different scales requires further study.
Li et al. [22] removed large-scale noise through statistical
and radius filtering, and then smoothed small-scale noise
through fast bilateral filtering. Their algorithm can effectively
maintain the geometric characteristics of the scanned object;
however, the relevant statistical and radius parameters need to
be resolved. To a certain extent, these methods alleviate the
drawbacks associated with the use of only one type of noise
processing algorithm; however, the error in classifying the
noise data affects the accuracy of noise processing. In other
words, effective point cloud data are mistaken for noise data,
yielding undesired results.

In the above two types of methods used for processing
point cloud noise data, a single algorithm cannot achieve
the corresponding accuracy requirements for the processing
of noise points of different scales. Isolated noise, clustered
noise in low-density area, and dense noise close to the
object itself cannot be separated. Therefore, multiscale noise
processing algorithms need to be used for filter noise of
different scales, and the effectiveness of the convergence of
applicable processing algorithms should be improved.

In this study, based on the 3D point cloud data of
rock surfaces which obtained using a 3D optical scanner,
the overall filtering algorithm is proposed to remove noise
from the point cloud data. This algorithm fully considers
the multiscale problem of the point cloud and divides the
point cloud region into two areas based on the noise scale.
The corresponding filter algorithms are used for denoising,
thus effectively combining different scale noise processing
algorithms to complete the denoising of sample point cloud
data.

II. DATA
A. SAMPLE COLLECTION
To study the performance of the noise removal algorithm
for 3D interferometric-scanned rock surface point cloud data,
14 samples of three types of rocks, namely exposed granite,
marble, and sandstone, are collected from the Central Plains
in China. The exposed surface of the rock is the weathered
natural surface, which is the surface to be observed, as shown
in Figure 1:

B. DATA ACQUISITION
Obtaining the 3D spatial information of a target object
through 3D measurement technology can help restore the
3D characteristics of the measured target completely. For
the experiment, we use the VTOP600T 3D optical scanner
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FIGURE 1. Fourteen pieces of natural rocks.

produced byWeiShen Technology Company, which is mainly
composed of raster projection equipment and a CCD camera,
and the scanning method is non-contact structured blue light
photography. The instrument has the advantages of good anti-
interference, high automation performance, and high work
efficiency [23]. The 3D scanner reconstructs the 3D model
through phase grating projection. The grating transmitter
projects the simulated sinusoidal fringes onto the surface
of the measured target. The grating fringes are deformed
under the influence of the height of the measured target
surface. Two cameras placed at different projection angles are
used for a simultaneous shooting. The grating is modulated
by the height of the measured target, making the regular
fringes to bend to different degrees. The phase information
is obtained by demodulating the curved grating fringes,
and finally, the height information of the measured target
object is inverted on the basis of the phase distribution [24].
Figure 2 shows the working principle.

FIGURE 2. Working principle diagram of 3D scanner.

Based on the working principle of the 3D scanner,
to improve the observation accuracy, the measured target
can be observed from multiple angles, and the surface point
cloud data measured from multiple angles can be matched
and converted into the same coordinate system.

The 3D point cloud model of the rock surface is obtained
by raster interferometry. The scanning sample range is
approximately 10 cm × 10 cm × 10 cm, and the point cloud
position accuracy is 5µm. Figure 3 shows the 3D point cloud
data.

As shown in Figure 3, the 3D scanner scans 14 natural
rocks to obtain the point cloud model of the surface
morphology. During the scanning process, the scanning
points on the rock surface produce specular reflection of light,
and the scanning of non-target objects produce noise points

which is different from the effective points. Therefore, noise
points include two parts: (1) the placement of the natural rock
plane producing large scale noise points far from the main
point cloud; (2) small scale noise points on the rock surface
close to the effective point cloud. To improve the accuracy of
the rock surface morphology, the noise should be removed.
In this paper, these two scale noise are called multiscale noise
and different denoising algorithms are used to deal with the
noise.

III. METHODS
Many types of noise processing algorithms exist for point
cloud data. However, it is difficult to adapt them to the
removal of multiscale noise using a single denoising algo-
rithm. Designing a new multiscale noise filtering algorithm
for noise processing has become an urgent requirement.
In this study, an improved principal component analysis
(PCA) algorithm is used to estimate the normal vector and
eigenvalues of point cloud data, a surface change factor
composed of the eigenvalues is employed to distinguish the
scale area of the point cloud noise, and a corresponding filter
algorithm is applied to deal with the noise points located
in different areas. Thus constituting a systematic overall
filtering algorithm can perform multiscale denoising.

A. IMPROVED PRINCIPAL COMPONENT ANALYSIS
METHOD FOR POINT CLOUD NORMAL VECTOR
ESTIMATION
The process of point cloud data acquisition is constantly
accompanied by missing point cloud data, uneven sampling
of point cloud data, and missing point cloud sharp features.
Therefore, the distribution characteristics of the point cloud
normal vectors are themost important geometric properties of
the point cloud data. Accurately estimating the cloud normal
vector can help retain the detailed features of the point cloud
model and provide basic data for reconstructing the real
3D surface. Most point cloud noise is directly processed by
existing filtering algorithms, and the denoising effect is not
good for missing point cloud data and incomplete expression
information. In this paper, the neighborhood point weight
value is added to the PCA, so that the improved PCA can
accurately estimate the normal vector and eigenvalues of the
point cloud, so that the subsequent filtering can achieve good
results.

The PCA first introduces an orthogonal transformation,
which converts the component-related random point cloud
vector into a new random point cloud feature vector with
uncorrelated components. The mutual influence between the
neighboring points in the point cloud data can be eliminated,
thus yielding a more accurate result in the subsequent normal
vector estimation [25]. The normal vector estimation of point
cloud data involves estimating the principal component that
retains most of the point cloud information as a feature
vector [26]. The specific estimation method is to estimate a
plane in its neighborhood for each point, at the same time
the point and normal vector are required to determine the
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FIGURE 3. Raw point cloud data of 14 pieces of natural rock.

plane. In the direction of the normal vector, the projection
distribution of all the neighborhood points of the estimated
plane is the most concentrated, and the projection variance
is the lowest. At this time, the eigenvalue corresponding
to the principal component is also the lowest, i.e., the

eigenvector corresponding to the eigenvalue is the normal
vector of the point cloud. This method uses the neighborhood
point distance as weight information in the original PCA
algorithm. If the neighborhood point is far from the sample
point, the weight is low, i.e., the contribution rate of the
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neighborhood point to the sample point is low. If the
neighborhood point is close to the sample point, the weights
are high, i.e., the contribution rate of the neighboring points
to the sample points is high. Since the position information
of each point in the neighborhood of the point cloud is
considered, an accurate estimation of the normal vector of the
point cloud for the data points on the segmented plane and the
curved surface has a good effect.

The specific mathematical expression of the improved
PCA is given below. Assuming there is a sample point p with
di representing the distance between the sample point and the
neighboring point, the weight formula can be expressed in
Equation (1):

wi =


1 di = 0

1

di2
∑k

i=1 di2
di 6= 0 (1)

Theweighted average of the coordinate values in the neigh-
borhood points can be calculated using Equation (2), where pi
indicates the coordinate information of the neighboring point,
and the weighted covariance matrix can be calculated using
Equation (3):

pw =

k∑
i=1

wipi

k∑
i=1

wi

(2)

CW =
1
k

k∑
i=1

√
wi(pi − pw)(pi − pw)T (3)

After the weighted matrix is estimated, the characteristic
polynomials of the matrix are listed and three eigenvalues of
the sample point are calculated to accurately distinguish the
noise points of different scales. When the eigenvalue of the
sample point is the lowest, the corresponding eigenvector is
used as the normal vector and applied to bilateral filtering to
smoothen the noise point cloud.

B. USE OF EIGENVALUE CORRESPONDING TO THE
NORMAL VECTOR TO DISTINGUISH
DIFFERENT-SCALE NOISE
To filter the noise information in the point cloud model and
retain the detailed features of the point cloud data, based
on the location and density of the noise in the point cloud
model, it is necessary to divide the point cloud into two
regions in terms of the distance from the noise: one is a
flat area where the noise points are scattered and far away
from the target point cloud, and the other is a mutation area
of the surface where the points and the target point cloud
are closely connected [27]. In this study, different areas are
distinguished on the basis of the different surface change
factors of the point cloud, and the three eigenvalues of the
sample point are calculated using the improved PCA. Among
them, the eigenvalue corresponding to the normal vector is
the lowest eigenvalue, and the ratio σ (p) of the eigenvalue

to the sum of the three eigenvalues is used as the surface
change factor, and finally, the average σ (p) of all the sample
points in the neighborhood is calculated. Different scale noise
can be distinguished on the basis of the relationship between
the surface change factor of the sample point and the mean
surface change factor. If the sample point σ (p) is less than
σ (p), the point belongs to a flat area, and the noise point in
the flat area is the large scale noise; on the contrary, if the
sample point σ (p) is greater than σ (p), the point belongs to a
mutation region, and the noise point in the mutation region is
the small scale noise.

The surface change factor of the sample point is expressed
in Equation (4).

σ (p) =
λ0

λ0 + λ1 + λ2
(4)

where λ0 is the eigenvalue corresponding to the normal
vector of the sample point, λ1 and λ2 are the remaining two
eigenvalues of the sample point.

The average surface change factor of all the sample points
in the k-neighborhood is expressed in Equation (5).

σ (p) =
1
k

∑k

i=1
σ (pi) (5)

The surface change factor σ (p) describes whether the local
k-neighborhood of the sampling point forms an approximate
smooth plane patch. In the smooth area with a low curvature,
the surface change factor is relatively low, whereas in the area
with a high curvature and sharp features, the surface change
factor is higher. This information can be used to determine
the area where the point cloud data are located. If the sample
point p surface change factor σ (p) is less than the average
surface change factor σ (p) in the neighborhood, the sample
point belongs to a flat area; on the contrary, if the sample
point p surface change factor σ (p) is greater than the average
surface change factor σ (p) in the neighborhood, the sample
point belongs to a mutation area. Since the noise data include
points mixed in the effective point cloud and discreted around
the effective point cloud, the area where the sample point is
located can be clarified, and the noise data in the different
areas can be processed on the basis of the applicable range of
the different denoising algorithms.

C. DIFFERENT SCALE NOISE REMOVAL
Most of the existing denoising algorithms can only remove
one kind of point cloud noise. A single algorithm cannot
effectively remove the noise points of different scales
generated in the process of point cloud data acquisition.
Different denoising algorithms are used on the basis of the
area where the noise points are located, which can effectively
remove the noise points and restore the real spatial geometric
characteristics of the point cloud data. Using the relationship
between the surface change factors of the sample points and
the average surface change factor, we find that the sample
points are located in the flat area and the sudden change area.
In the flat area, the statistical filtering algorithm is adopted
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to process large scale noise points, and the bilateral filtering
algorithm is used to process small scale noise points in the
mutation area.

1) STATISTICAL FILTERING
The signal and noise in the point cloud data are randomly
distributed, and their characteristics can often only be
described in a statistical sense. The distance between each
point in the point cloud model and the neighboring point
obeys a certain statistical distribution law [28]. For sample
point p, the large scale noise in the flat area, where the
surface change factor is less than the average surface change
factor, is removed by statistical filtering. Each point in the
point cloud, based on the k-nearest neighbor search in the
KD-tree, selects the appropriate neighborhood and calculates
the average distance di from the center point to all the
neighboring points. The Gaussian distribution is used to
determine the distribution status of the data points, and the
k-neighborhood average distance of all the sample points
is weight- averaged to obtain the mean µ, and finally,
the average distance di and themeanµ of all the sample points
are used to obtain the standard deviation σ . In the statistical
filtering algorithm, the threshold parameter λ of the multiple
of the standard deviation is set, and the given global distance
formula is expressed in Equation (6).

d ′i = u± λσ (6)

By performing a statistical analysis in the flat area and
synthesizing the global distance as the judgment criteria,
we can define points whose average distance is outside the
standard range as outlier noise points and remove them from
the data. After processing the large scale noise, the small scale
noise points in the point model should be processed. In this
study, bilateral filtering was used to denoise the small scale
noise.

2) BILATERAL FILTERING
First, bilateral filtering was applied to image noise pro-
cessing, by comprehensively considering the two weighting
mechanisms of the distance measurement and the gray-scale
similarity measurement between the surrounding pixels and
the center pixel, thus ensuring the reliability of the bilateral
filtering results [29]. In this study, bilateral filtering of the
3D point cloud data is used to remove small scale noise
in the sudden change area of the rock surface. Moreover,
the improved PCA algorithm is applied to the bilateral
filtering algorithm to analyze the eigenvector corresponding
to the minimum eigenvalue of the sample point. Then the
eigenvector is used as the normal vector of the point cloud
to smoothen the point cloud containing noise. The bilateral
filtering of point cloud data can be generally divided into five
steps: establishing the k-neighborhood, estimating the normal
vector estimation, defining the viewing plane, introducing the
bilateral filtering algorithm, and correcting the point cloud
noise coordinate value. Among them, the position p′i of the

sample point after denoising and moving is expressed in
Equation (7):

p′i = pi + a ∗ n (7)

where pi is the original position of the point cloud, α is the
bilateral filter factor, which determines the distance adjusted
by the neighboring points along the normal direction; n is the
normal vector at the measuring point pi, which is accurately
estimated with the eigenvector corresponding to the lowest
eigenvalue, contributing to bilateral filtering for better results,
and α can be expressed as in Equation (8):

α =

∑k
i=1 ω1(‖p− pi‖)ω2(〈p− pi, n〉) 〈p− pi, n〉∑k

i=1 ω1(‖p− pi‖)ω2(〈p− pi, n〉)
(8)

where k is the number of sampling points in the k-
neighborhood, and pi is the projection of the neighborhood
point in the viewing plane, ω1 and ω2 are the Gaussian filter
functions on the tangent plane of the local neighborhood of
the sampling point and on the normal height, which jointly
determine the bilateral filter factor. The specific form is:

ω1 (x) = e
−
(x−k)2+(y−l)2

2δ21 (9)

ω2 (x) = e
−
‖f (x,y)−f (k,l)‖2

2δ22 (10)

where δ1 and δ2 are respectively theGaussian filter coefficient
on the tangent plane in the local neighborhood of the
sampling point and the Gaussian filter coefficient on the
normal height. (x, y) are the coordinates of the sampling
point, and (k, l) are the coordinates in the neighborhood of
the sampling point.

Two filtering algorithms are combined to achieve double
handling of large scale and small scale noise. Figure 4 below
is a workflow of applying the overall filtering algorithm to
remove the entire point cloud noise.

In summary, with regard to the denoising process proposed
in this paper, the neighborhood point distance weight
information of the point cloud data is used for PCA
processing, thus accurately estimating the point cloud normal
vector and eigenvalue, and the eigenvalue is used to form the
surface change factor σ (p) to calculate the surface change
factors average value σ (p) of all the sample points. Based
on the relationship between the surface change factor and the
average surface change factor, the scale area of all the point
cloud data is determined, and the point cloud is divided into a
flat area and a mutation area. If the sample point σ (p) is less
than σ (p), the point belongs to a flat area; conversely, when
the sample point σ (p) is more than σ (p), the point belongs
to a mutation area. Statistical filtering is applied to remove
the large scale noise in the flat area of the point cloud data;
moreover, the bilateral filtering algorithm is used to smoothen
the small scale noise in the mutation area. For the flat and
mutation areas in the point cloud, an algorithm combining
of statistical filtering and bilateral filtering is selected for
denoising, and finally, a multiscale noise overall filtering
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TABLE 1. Point cloud distribution table of high frequency part.

FIGURE 4. Workflow of denoising.

algorithm is established, which can remove multiscale noise
and effectively obtain the true surface morphology of rocks.

IV. RESULTS AND DISCUSSION
A. EXPERIMENTAL RESULTS
In this study, the multiscale noise removal overall filtering
algorithm is used to denoise 14 natural rock point cloud
models and obtain a reasonable denoising result. The
14 natural rocks have different surface morphologies, so it
is necessary to fully consider the influence of parameter
sensitivity. In view of the similarity between the collected
natural rock samples and the uniformity of the observation
conditions, the same parameter setting method is used for
the 14 rock samples. The tentative test method is adopted for
sample 1, and the denoising result is used as the test standard

to obtain the optimal denoising parameters. For statistical
filtering, through tentative testing, when the neighborhood
parameter k is set too small, the calculation efficiency is
high; but the noise points cannot be completely filtered.
When the parameter k is set too high, the calculation
efficiency is low, whereas the real model points are filtered
as noise points. Similarly, if the standard deviation multiple
threshold parameter λ is set too low, the real model points
are filtered as noise points. If the parameter λ is set too
high, the noise points cannot be completely filtered. Taking
model points conforming to normal and fractal distributions
as the verification standard, it is concluded that when the
parameter k is 20 and λ is 5, the denoising result of the rock
sample 1 is the best, seeing Section B for the verification
scheme and results. Similarly, the three parameters in bilateral
filtering are tentatively tested, and the number of neighboring
points, the spatial-domain weight filter coefficient, and the
frequency-domain weight filter coefficient are 20, 5, and 10,
respectively, in which case the denoising result is the best.
The above-mentioned parameters setting method were used
to complete the denoising of the 14 natural rocks, and real
point cloud models are obtained.

By removing the point cloud noise using the overall
filtering algorithm, a preliminary visual judgment of the point
cloud image of the 14 natural rocks after denoising shows
that the iron ore noise removal effect is better. The large scale
noise has been completely removed, and the small scale noise
is removed later, making the point cloud model more in line
with the surface morphology of natural rocks. For the point
cloudmodel, it is feasible to use the overall filtering algorithm
depending on the different surface change factors.

B. RESULTS VERIFICATION
Multiscale noise overall filtering algorithm for denoising
has a good visual effect. By checking whether the filtered
point cloud conforms to the normal and fractal distributions,
the five parameter settings of the overall filtering algorithm
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FIGURE 5. Point cloud diagram of 14 pieces of natural rock after denoising.

for the point cloud model of this experiment could be
determined. Since the sample point cloud can be decomposed
into low frequency information representing mutation and
high-frequency information representing roughness, the point
cloud conforming to the normal and fractal distributions can

only be tested for indicating the roughness, which is high
frequency information. The high-frequency information can
be extracted using wavelet decomposition [30] to process
natural rock point cloud data. Subsequently, the parameters of
the overall filtering algorithm can be determined by judging
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FIGURE 6. Fractal criterion of high-frequency information of 14 pieces of iron ore samples.
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whether the high-frequency information conforms to the
normal and fractal distributions. The 3D point cloud data
of 4 cm × 4 cm on the natural rock surface before and after
denoising was subjected to wavelet decomposition. Table 1
lists the normal distribution of the point cloud on the surface
of the 14 natural rock samples.

Based on the normal distribution theory [31], the prob-
ability of the statistics at <1.00σ , <1.96σ , and <2.58σ
are 68.26%, 95.45%, and 99.73%, respectively, which is
completely consistent with the normal distribution. From
Table 1, we find that the probability ranges of the roughness,
which is at <1.00σ , <1.96σ , and <2.58σ , are respectively
75.27%–85.34%, 92.31%–95.72%, and 95.91%–97.52%,
which do not satisfy the normal distribution. After denoising
the point cloud data using the overall filtering algorithm,
the high-frequency information obtained by wavelet decom-
position is close to the normal distribution. To further
determine the distribution position of the discrete point cloud,
the fractal distribution method is used to verify the acquired
high-frequency information [32], as shown in Figure.

In Fig. 6, the abscissa is the natural logarithm of the
series length interval within the sampling length, i.e., log
length scale (mm), and the ordinate is the natural logarithm
of the root-mean-square height, i.e., log Rqe (mm). The
high-frequency information obtained by wavelet decom-
position also conforms to the law of fractal distribution,
which helps determine the parameters of the overall filtering
algorithm and also verifies the reliability and effectiveness of
the denoising algorithm.

C. DISCUSSION
For the overall filtering algorithm to remove noise in the
14 natural rock point cloud models, in addition to the
algorithm itself, a part of the theory needs to be further
tested. The evaluation of whether the five filtering parameters
are worthy of optimal selection and the effectiveness of the
denoising result test method are key factors influencing the
point cloud denoising effect.

(1) Rationality of using the normal vector corresponding
eigenvalue to distinguish different scale noise. The
average surface change factor σ (p) of all the sample
points in the k-neighborhood is used to distinguish flat
and mutation areas. The filtering effect is achieved by
visual judgment of the filtered point cloud, the normal
and fractal distributions of the point cloud roughness;
however, the rationality of this method requires further
research, and the universality requires further testing.

(2) Evaluation mechanism for filter parameter optimiza-
tion. The overall filtering algorithm designed in this
study has five main filtering parameters, namely the
number of statistical filtering neighborhood points k ,
the standard deviation multiple threshold λ and the
number of bilateral filtering neighborhood points k ,
the Gaussian filter coefficients in the tangent plane
of the local neighborhood of the bilateral filtering
sampling points, the point cloud normal Gaussian

filter coefficient. The setting of these parameter values
directly affects the filtering effect. The setting of the
optimal values of the five filter parameters is deter-
mined by the distribution characteristics of the sample
point cloud. There is no theoretical or analytical
relationship between the filter parameters and the point
cloud distribution characteristics. This study adopts
the method of tentative testing, sets multiple combined
values for the five filtering parameters, and determines
the optimal combined values through visual inspection
of the filtering results and inspection of the normal
and fractal distributions of the roughness. Whether it is
visual inspection or the conformity of the normal and
fractal distributions, it is artificially judged by visual
observation, which brings errors to the selection of the
optimal combination of the five filter parameters.

(3) Effectiveness of the denoising results test method.
After the sample point cloud model is filtered by
overall filtering, the point cloud is visually judged for
the filtering effect, and the visual judgment is further
utilized to verify whether it conforms to the normal
and fractal distributions. It is necessary to further
study the reliability of the point cloud visual judgment
filtering effect and the visual judgment regarding
whether the point cloud conforms to the normal
and fractal distributions to form a new judgment
theory. In addition, the use of the normal and fractal
distributions in judging the point cloud denoising
effect requires further research and improvement.

V. CONCLUSION
In this study, we developed an overall filtering algorithm
for removing multiscale noise point cloud data pertaining
to 14 natural rock samples, completed the denoising work
of the point cloud model, and verified the rationality of the
denoising results. The following conclusions can be drawn
from the results:

(1) An improved principal component analysis algorithm
was proposed to accurately estimate the normal vector
of the point cloud. In view of the lack of point
cloud data obtained, uneven sampling, lack of sharp
features, etc., and considering the position information
of each point in the neighborhood of the point
cloud, an improved principal component analysis was
proposed and the point cloud normal vector was
accurately estimated for the data points. Eigenvalues
were used to distinguish between large scale and small
scale noise, which lied a data foundation for point
cloud filtering.

(2) An innovative overall filtering algorithm was
developed to complete point cloud noise removal.
To remove multiscale noise in the point cloud, an inno-
vative overall filtering algorithm was established,
which combined statistical filtering for flat area
and bilateral filtering for mutation area to remove
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large scale and small scale noise close to the rock
surface, respectively, thus completing the point cloud
multiscale noise removal process.

(3) A scientific test standard was put forward for
the filtering results of the point cloud model. For
the selection of the filtering parameter values in the
overall filtering algorithm and the inspection of the
denoising results of the point cloud model, in addition
to visual judgments, a test plan with normal and
fractal distribution results were devised, providing a
scientific basis for the reliability of the filtering results
as inspection standards.

Therefore, the filtering method of the overall filtering
algorithm designed in this study can complete the task of
removing multiscale noise from data pertaining to natural
surfaces obtained using a 3D scanner. The denoised rock
surface has a real shape, so the algorithm proposed in this
paper has important value for accurately studying the surface
shape information of rock and mine.
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