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ABSTRACT Nowadays, the anomaly detection of aluminum electrolysis cell is a big problem in the
aluminum electrolysis industry. The problem of unbalanced time series samples is common in industrial
applications. The number of samples under normal conditions is much larger than that under abnormal
conditions. In the electrolytic aluminum industry, this problem is even more serious, it is very difficult
to find abnormal samples in industrial production because experts do not have a clear criterion to judge
abnormalities. In traditional machine learning algorithms, such as support vector machine (SVM) and
convolutional neural network (CNN), it is difficult to obtain high classification accuracy on the problem
of class imbalance, and these methods tend to be more biased towards positive samples. In recent years,
generative adversarial network (GAN) has become more and more popular in the field of anomaly detection.
However, these methods need to find the best mapping from the actual space to the latent space in the
anomaly detection stage, and the optimization process may bring new errors and take a long time. In this
article, we use the ability of GAN to model complex high-dimensional image distribution, and propose a
self-adaption AAE-GAN network based on adaptive changes of input samples. This time series anomaly
detection method converts multi-dimensional time series data into a two-dimensional matrix, and only
normal samples are needed in the training process, which effectively solves the above problems. The method
we proposed is to use encoder and decoder to constitute a generator and a discriminator. During the training
process, the generator and the discriminator are trained jointly and confrontationally, so that the mapping
ability of the encoder can be fully reflected. In the anomaly detection stage, we determine whether the
sample is abnormal according to the size of the reconstruction difference. Experimental results show that the
detection accuracy and speed of this method are very high.

INDEX TERMS Aluminum electrolytic cell, anomaly detection, AAE-GAN, multivariate time series,
imbalanced industrial time series.

I. INTRODUCTION
In recent years, due to the increasing development of the
Industrial Internet, industrial big data has become a very
popular research topic. In industrial production, due to the
complexity of production, the large number of sensors used
and the high sampling frequency, industrial equipment can
easily accumulate a large amount of time series data in a
short period of time [1], [2]. Certain abnormal situations that
occur during the production process will cause damage to
industrial equipment. An abnormality in the working process
of the aluminum electrolytic cell may cause damage to the
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electrolytic cell and waste of production materials, which
will greatly increase the cost of production. Through the
implementation of early preventive maintenance, early detec-
tion of abnormalities can improve the equipment production
efficiency. The characteristics of industrial time series data
include large scale and long period. To help domain experts
make key decisions quickly and design an effective anomaly
detection method is a very valuable work, which is also the
work of this article.

When an observation is very different from other obser-
vations, so that we suspect that they are produced by differ-
ent mechanisms, such points become abnormal, also called
outliers [3], [4]. The concept of time series anomaly is
also put forward by most scholars based on this definition
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and related practical applications. Nowadays, the research
of anomaly detection is involved in various data fields,
including high-dimensional data, uncertain streaming data,
network data and time series data [5]–[12]. A lot of work
has been spent on the research of time series anomaly
detection. Through our literature review, we found several
time series anomaly detection models, including autore-
gressive integral moving average (ARIMA), cumulative
sum statistics (CUSUM), exponentially weighted mov-
ing average (EWMA), Bayesian classifier, support vector
machine (SVM), neural networks, deep learning methods,
etc. [13]–[21]. However, due to the large scale and long
period of industrial time series data, traditional time series
anomaly detection methods cannot meet people’s actual
needs. Moreover, because of the fact that the industrial data
violates the assumption of sample balance: positive samples
are much larger than abnormal samples, the above methods
cannot achieve high accuracy in industrial data sets [22].
In the past research, many anomaly detection studies often
used unsupervisedmethods based on deep learning [23], [24].
Many scholars use the difference between the predicted value
and the actual value at each time point to detect anomalies.
On this basis, neural networks are used to learn the unknown
relationships in time series data and establish prediction mod-
els [25], [27]. For example, Hundman et al. established a
long short-term memory (LSTM) prediction model based
on normal time series data, which identified anomalies by
comparing the difference between the predicted value and the
true value at each time point [26]. Malhotra et al. conducted
a study on judging anomalies in time series data at multiple
time steps, and proposed a stacked LSTM network trained on
normal data [28]. Other predictive models includemulti-layer
perceptron (MLP) and support vector regression (SVR).With
the development of industrial systems, time series data has
become more and more complex. In the process of industrial
production, due to different usage methods and unpredictable
external factors, the behavior produced by the machine is
always changing [29]. In this case, it is difficult to predict
the future time series even if the data in several time steps are
integrated, which leads to a greatly reduced accuracy of the
time series anomaly detection method based on the prediction
model.

In order to solve the above problems, some models based
on sample reconstruction have been proposed by scholars.
This method uses an autoencoder (AE) to detect abnormali-
ties. The job of the encoder is to learn the latent representation
of the input time series, and the job of the decoder is to use
the generated latent representation to reconstruct the original
time series, and determine whether the sample is abnormal
by reconstructing the size of the difference [30]–[33]. Among
many methods based on sample reconstruction, AE is a rep-
resentative model, which is a network that combines encoder
and decoder. After this method was proposed, technologies
such as sliding window and variational autoencoder (VAE)
were also applied to this idea for anomaly detection of time
series data.

In [34], a time series anomaly detection method based
on sliding window and sample reconstruction was proposed.
Subsequently, in [29], some time series anomaly detec-
tion methods based on VAE were proposed. The difference
between model VAE and model AE is that VAE models the
potential probability distribution of the sample through vari-
ational inference. Not long ago, Goodfellow et al. proposed a
generative adversarial network (GAN) [35], which provided a
new solution for industrial time series anomaly detection. The
original purpose of the model is to use for image recognition
and sample generation. The basic idea of GAN is to use a gen-
erator to generate samples that people need from random data
points that meet a specific distribution (for example, Gaussian
distribution). Some scholars use the ability of GAN to learn
images and apply it to the field of image anomaly detection,
such as AnoGAN [36], BiGAN [37] and GANomaly [38]
and some GAN-based imbalanced data intrusion detection
models [61]–[63]. These GAN-based network architectures
have shown high performance. These methods only need
normal samples in the training phase, and perform anomaly
detection through the difference between normal samples
and abnormal samples in the test phase. From this point
of view, these GAN-based methods are very effective for
sample imbalance problems and can prevent the model judg-
ment result is biased towards the normal sample. However,
in industrial applications, GAN-based anomaly detection
methods are rarely seen, and the expected results cannot
be achieved. [39], [40] proposed a GAN-based mechani-
cal anomaly detection model. [41] proposed a GAN-based
anomaly diagnosis method for sample imbalance. [42] pro-
posed a GAN-based model to detect cyber-attacks from
cyber-physical system. Recently, scholars have proposed a
relatively novel GAN-based industrial time series anomaly
detection method [43]. Since the LSTM network is more
popular in the field of time series, this method adds the LSTM
network to the generator and the discriminator respectively,
and its purpose is to better learn the distribution of time
series. However, this method has a flaw. It needs to find the
best mapping from the actual distribution to the potential
distribution in the anomaly detection stage. In the process of
finding the best mapping, new errors are likely to occur, and it
will also increase the time of anomaly detection. The system
cannot report errors in a timely manner. In summary, GAN
has been successfully applied in the field of image anomaly
detection, which proves the ability of GAN to learn complex
high-dimensional image distribution. The above researches
have inspired us to use GAN’s ability to learn images to
solve industrial anomaly detection problems, especially for
no abnormalities.

The earth’s crust contains a lot of aluminum, which is sec-
ond only to oxygen and silicon, ranking third, and is the metal
element with the highest content in the earth’s crust. However,
due to the very active chemical properties of metallic alu-
minum, aluminum in the state of puremetallic elements rarely
exists in nature. Aswe all know, aluminum has good electrical
conductivity and corrosion resistance, and can easily form
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aluminum alloy with other metal elements. Therefore, it is
widely used in transportation, electric power, construction,
mechanical packaging and aerospace industries. It is called
‘‘universal metal’’. In the initial stage, people used chem-
ical reduction methods to produce metal aluminum, such
as the use of sodium potassium compounds for reduction
and extraction. Until 1886, Hall and Erou, from the United
States and France, invented the aluminum oxide molten salt
electrolysis method. Since then, the method of using elec-
trolytic technology to manufacture metallic aluminum has
been continued to this day.

The actual production process of electrolytic aluminum is
mainly completed inside the electrolytic cell, in which the
alumina melt is the main electrolyte, and the two poles are
mainly composed of carbon materials. After the electrolytic
cell is energized, the current is introduced from the anode of
the electrolytic cell, inside the body and passes through the
electrolyte layer, flows to the cathode of the electrolytic cell
and finally flows out of the electrolytic cell. Under the action
of this direct current, the originally crystalline alumina can
be melted. In addition, the electrolyte undergoes an electro-
chemical reaction under the action of the electric current. The
aluminum ions obtain electrons from the cathode of the elec-
trolytic cell and are precipitated to obtain aluminum liquid.
With the continuous operation of the electrolytic cell, the con-
tent of liquid aluminum will continue to increase. After the
aluminum liquid has accumulated to a certain extent, it can
be sucked out of the electrolytic cell by a vacuum ladle and
sent to the foundry workshop, and then undergoes a series
of subsequent processing, finally casts to produce aluminum
ingots.

In this paper, inspired by GANomaly [38], for unbal-
anced industrial data, we propose a self-adaption chang-
ing adversarial autoencoders generative adversarial network
(self-adaption AAE-GAN) to solve the above problem. The
model consists of a generator and a discriminator. The gen-
erator is composed of two sub-networks, an autoencoder
group based on a deep convolution generation confrontation
network and an encoder. In order to improve the accuracy
of anomaly detection, we propose a method to adaptively
change the model structure. According to the complexity of
the input samples, we change the number of decoder-encoder
and convolutional/deconvolutional layers in the autoencoder
group. At the same time, in order to reduce the training
time and improve the performance of the model, a feature
extraction step is inserted between the original data and the
GAN. Since the encoder, generator and discriminator are
jointly trained in the training phase, there is no need to
calculate the best mapping from real-time space to latent
space in the anomaly detection phase. The time required for
the anomaly detection phase is greatly reduced, which allows
our model to detect anomalies faster. At the same time, due
to the joint optimization of all components in our model,
our model has a higher accuracy rate in anomaly detec-
tion. Our model is compared with the other three networks
used to solve the class imbalance problem on three datasets.

The experimental results show that our method has an excel-
lent anomaly detection performance.

The main contributions of this paper are as follows:
1) Aiming at the problem of unbalanced time series samples
in the field of aluminum electrolysis, using the ability of GAN
to learn the distribution of complex high-dimensional images,
a new anomaly detection method based on GAN is proposed.
2) In order to increase the anomaly detection accuracy of
the model, a self-adaption AAE-GAN time series anomaly
detection method based on the adaptive change of input sam-
ples is proposed. 3) We propose a model that only requires
normal samples in the training phase. 4) The anomaly score is
composed of the weighted average of the two reconstruction
differences in the generator part.

II. RELATED WORK
For a long time, anomaly detection has been a hot issue
in industrial systems. Now scholars have published a large
number of papers and put forwardmany effective theories and
algorithms.

A. INTELLIGENT FAULT DIAGNOSIS MODEL BASED ON
DEEP LEARNING
Nowadays, various industrial production processes are get-
ting more and more refined, and the amount and complex-
ity of the time series are increasing, which make the deep
learning more and more popular in the field of industrial
anomaly detection [44]. These methods use black box pat-
terns to extract specific feature patterns for specific datasets.
Since these methods are mostly based on unsupervised archi-
tectures, they do not know what the final output features
are. Representative models include LSTM [45], recurrent
neural network (RNN) [46], convolutional neural network
(CNN) [47] and AE [48]. Although the above-mentioned
deep learning models are very popular in the field of anomaly
detection, their performance cannot meet people’s expecta-
tions when faced with industrial datasets with unbalanced
samples. In addition, due to the diversified forms of industrial
data, training data may consist of images or time series data.
Many deep learning models are only applicable to a single
field, but it is usually difficult to apply them to industrial
fields.

B. MODEL BASED ON CLASS IMBALANCE PROBLEM
In order to solve the problem of unbalanced time series
anomaly detection, scholars have proposed two methods: one
is based on the data direction, and the other is based on the
algorithm direction [49]–[51] proposed two methods based
on data direction, they used sampling strategies, such as
under-sampling and over-sampling techniques to improve the
problem of sample imbalance [52]. In [50], a method based
on the direction of the algorithm was proposed, which solved
the problem of sample imbalance by improving the perfor-
mance of the classifier, and using techniques such as bagging
and enhanced integration. In [49] and [53], scholars have
proposed EasyEnsemble and BalanceCascade algorithms to
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solve the problem of class imbalance. In addition to improv-
ing the classifier, a synthetic minority oversampling tech-
nique (SMOTE) algorithm was proposed in [54] and [55] to
synthesize samples of a few categories to solve the problem of
class imbalance. In some industrial production, there may be
multiple types of unbalanced problems. In order to solve this
problem, [49] has proposed an Easy-SMT integrated algo-
rithm based on the SMOTE algorithm and the EasyEnsemble
algorithm.

C. GAN-BASED MODEL
In recent years, GAN has become more and more popular in
the field of image anomaly detection with imbalances. GAN
is an unsupervised network architecture based on deep learn-
ing. It was originally proposed by Goodfellow to solve the
problems of image recognition and image generation. After
GAN was proposed, many variant models were proposed
by scholars to use adversarial algorithms to solve various
problems. For more detailed information, please refer to [56].
This article provides a lot of introductions to GAN.

In the field of anomaly detection, Lim et al. combined
GAN with LSTM-RNN and proposed an anomaly detec-
tion method for detecting cyber-physical systems’ network
attacks. In order to improve the performance of the model,
the author proposed a GAN-based data enhanced technol-
ogy and achieved good results [57]. At the same time,
Samet et al. [38] proposed a GANomaly image anomaly
detection model. In this paper, the author compares the
GANomaly model with the current popular image anomaly
detection methods. This method uses benchmark datasets
such as MNIST and CIFAR10 to verify the performance
advantages of the model [38], which has prompted us to com-
bine image anomaly detection technology with the aluminum
electrolysis industry. The following is a brief introduction
of GANomaly: The most attractive part of the model is
the generator network. Samet et al. [38] use the encoder-
decoder-encoder architecture to form the generator network
of the GANomaly model, where the encoder, decoder and
discriminator network use a deep convolutional generative
confrontation network (DCGAN) [58]. In the training pro-
cess, the model uses three loss functions to learn the mode
of mutual conversion between the latent representation of
the image and the actual feature, and uses the reconstruction
difference of the image to perform anomaly detection. The
characteristic of this model is that no abnormal samples are
needed in the training process; this means that only normal
samples are needed for model training, the problem of sample
imbalance is solvedwell, and it shows high anomaly detection
performance.

D. ANOMALY DETECTION MODEL IN ALUMINUM
ELECTROLYTIC CELL
Li Tian et al. [64] proposed an improved LMD decompo-
sition method, that was used to decompose the cell voltage
signal based on wavelet packet denoising. At the same time,
according to the energy analysis, the extracted features were

classified. They analyzed the voltage signal and extracted
features for abnormality detection. This approach is not pre-
cise enough, because the abnormality of the electrolytic cell
is determined by multiple factors, and it is not possible to just
observe the change of the voltage signal to draw a conclusion.
Enji Sun et al. [65] proposed an aluminum cell condition
diagnosis and decision system to detect heat radiation. Their
method was also used to judge the abnormality of the elec-
trolytic cell which was only based on the temperature, and
the abnormal state of the electrolytic cell was divided into
many types, which might not be reflected in the temperature.
Chen Xiaofang et al. [66] considered the strong link between
the fire hole observation and superheat degree, a method
of superheat degree identification based on computer vision
technology and expert rules was proposed. Their method is
similar to the above methods, and the detection method is not
comprehensive enough.

The rest of this article is organized as follows:
Section 3 proposes our anomaly detection framework based
on GAN. The experimental setup and results are described
in the third part and the fourth part respectively. Finally,
conclusions and future work are drawn in Section 5.

III. METHOD
Aiming at the problem of the imbalance of time series sam-
ples in the field of aluminum electrolysis, we use the ability
of GAN to learn the distribution of complex high-dimensional
images, and propose a new anomaly detection method based
on GAN. In the following section, we will introduce the
structure and training process of this model.

A. SELF-ADAPTION AAE-GAN
This paper proposes a self-adaption AAE-GAN, which is a
time series anomaly detection method based on the adaptive
change of input samples. This method has two stages, one
is the model training stage and the other is the anomaly
detection stage. In the training phase, our model only learns
the distribution of normal time series data. In the testing
phase, we judge whether the sample is an abnormal sample
based on the abnormal score A(x) output by the model. The
higher the anomaly score, the higher the probability that
the sample is anomalous. Fig. 1 shows the architecture of
GAN, including adversarial autoencoders which are based on
adaptively changing of input samples.

Our model is divided into two parts. The entire network
is composed of a generator and a discriminator, and the gen-
erator is composed of an encoder and multiple autoencoder
groups.

The generator consists of an encoder and multiple autoen-
coder groups. A group of autoencoder consists of an encoder
and a decoder, and form the generator of the model. Its
structure is as follows:

G = E
(
x̂
)
+ m1 ∗ (GD (z)+ GE (x)) (1)

In order to increase the accuracy of model anomaly detec-
tion and reduce the training time of the model, the number
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TABLE 1. The influence of m1.

of autoencoder groups is determined by the dimension and
density of the input samples. The higher the dimension and
density of the two-dimensional matrix, the higher the number
of autoencoder groups is. In the process of increasing the
number of autoencoder groups, although the accuracy of the
model has been improved, it will also be accompanied by an
increase in model training time, so the number of autoencoder
groups cannot be increased blindly. The number of m1 in (1)
is determined by the following formula:

m1 =
dim(x)
16
∗ [0.5+ den (x)]+ k1, k1

= 0, 1, 2, . . . , n

den (x) =
NV

NS
(2)

where dim(x) is the dimension of two-dimensional matrix,
NV is the number of data points with value, and NS is the total
data points. The maximum value of m1 cannot exceed the
threshold 3 = 7. With the increase of m1, the average running
time and accuracy are as follows:

After exceeding 7, the training time of the model will
greatly increase, but the accuracy of the model does not
increase significantly. So, we set the threshold to 7. The
model consists of three sub-networks.

The first sub-network is the autoencoder groupDE. GE and
GD are a part of the autoencoder group DE. GE is an encoder
and GD is a decoder. The generator learns the input image
data and reconstructs the input image by using the encoder
and decoder networks respectively. The autoencoder group
consists of several encoders and decoders. The principle of
the form of the sub-network is as follows: The generator G
reads the input image x, where x ∈Rw×h×c, and forwards it
to its encoder network GE . By using convolutional layers,
batch-norm and leaky ReLU() activation, GE compresses x
into a vector z to reduce the size of x, where z ∈ Rd .
Number of convolutional/transposed convolution is:

m2 =
dim(x)
16

+ k2, k2 = 0, 1, 2, . . . , n (3)

The latent representation z of x is also called bottleneck
features of G. When the model training is completed, z can
be considered as the best feature representation of x and has
the smallest dimension. The decoder part GD of the generator
network G adopts an architecture similar to the generator
in DCGAN [58], which includes the deconvolution layer,
ReLU() activation, batch-norm and tanh layer. GD recon-
structs the vector z into x̂, where x̂ ∈ Rw×h×c, which has
the same dimension as x. The autoencoder group performs
multiple reconstruction processes according to the number of
autoencoders, so that the model increases the reconstruction
difference of abnormal samples. In summary, the self-encoder

group DE generates an image x̂ through multiple x̂ = GDi (z)
processes, where z = GEi (x).
The second sub-network is the encoder network E, which

compresses the image x̂ output from the encoder group DE
into ẑ, where ẑ and z have the same dimensions. Through
different parameterization, it has the same architecture as
GE . E process the compression process of x̂ as ẑ = E(x̂),
and ẑ is the characteristic representation of x̂. In order to
calculate the reconstruction difference more conveniently in
the anomaly detection stage, the dimension of the vector ẑ is
the same as the dimension of z. Subnet E is the most unique
part of this model. Different from the existing methods based
on autoencoders, in this method, the bottleneck features are
used to minimize the potential vector. After the model has
been fully trained, the subnet E minimize the distance by
parameterization. In addition, in the testing phase, anomaly
detection is performed through this minimized distance.

The third sub-network is the discriminator network D. Its
function is to distinguish between input x and output x̂, and
mark them as real samples or fake samples respectively. This
subnet is the standard discriminator network introduced in
DCGAN [58].

B. MODEL TRAINING
The principle of self-adaption AAE-GAN model anomaly
detection is as follows: In the training phase of the model,
only normal samples are used for parameter optimization.
In the anomaly detection phase, the abnormal samples x
are input into the generator network G, due to no abnormal
samples are involved in the training process, GE cannot map
the input x to the latent representation z well, and GD also
cannot reconstruct the abnormal samples well. The primary
cause is that the parameters in GE and GD are not suitable for
processing reconstruction of abnormal samples. The output
result x̂ of the autoencoder group DE also causes the encoder
network E to be incorrectly mapped to the abnormal feature
representation ẑ, which increases the difference between z
and ẑ. When this difference is obvious, the model will treat
the sample x as an abnormal sample. In order to make the
reconstruction difference of the abnormal samples more sig-
nificant, this paper uses the autoencoder group to encode and
decode the samples, so that the reconstruction difference of
the abnormal samples is significantly enlarged. In order to
verify this hypothesis, we formulate the objective function
by combining three loss functions, each of which plays an
important role in the optimization of the network architecture.

1) STRUGGLE-LOSS
In order to reduce the instability of GAN in the train-
ing process, we adopt the feature matching loss proposed
by Salimans et al. [60]. In the GAN model proposed by
Goodfellow et al., both the generator G and the discrimina-
tor D need to be optimized through the output results of
the discriminator D, which will reduce the stability of the
GAN training process. In our model, the generator G updates
the parameters according to the intermediate representation
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of the discriminator D. Specifically, given an input x that
conforms to the data distribution pX , suppose a function f
is used as the middle layer of the discriminator D. We use
the idea of feature matching to calculate the L2 distance
between the original feature image and the generated image.
Therefore, our Struggle-loss Lstr is defined as:

Lstr = Ex∼pX
∥∥f (x)− Ex∼pX f (G(x))

∥∥
2 (4)

2) CONTEXT-LOSS
After having the Struggle-loss Lstr, we can fully train the dis-
criminator D, but the generator G cannot optimize the param-
eters based on the input samples. We refer to the method
proposed by Isola et al. [59] to train the generator G through
the L1 distance between the input sample and the generated
sample. Since Isola et al. pointed out that the result produced
by using the L1 distance is better than the L2 distance,
so we also use the L1 distance. Therefore, we also use the
context-loss Lcon to train G by measuring the L1 distance
between the original x and the generated image (x̂ = G(x)),
where x̂ takes the value of the last decoder in the encoder
group Output result:

Lcon = Ex∼pX ‖x − G(x)‖1 (5)

3) ENCODER-LOSS
The two loss functions mentioned above can make the recon-
structed samples generated by the generator not only be close
to the original samples, but also have a reasonable context.
In addition, we added an additional encoder loss function
Lenc, its goal is to minimize the potential features of the
input sample (z = GE(x)) and the potential features of the
generated sample (ẑ = E(G(x)), where ẑ is the final output
result of the generator network. The formal definition of Lenc
is:

Lenc = Ex∼pX ‖GE (x)−E (G (x))‖2 (6)

In summary, the generator learns how to perform feature
encoding on the input normal samples through a series of
encoding and decoding operations. However, in the case of
input abnormal samples, since both the DE and E networks
are only optimized for normal samples, the distance between
x and x̂ and z and ẑ cannot be minimized. In summary, our
objective function for the generator is as follows:

L = wstrLstr + wconLcon + wencLenc (7)

wstr, wcon and wenc are weighted parameters that adjust the
influence of a single loss on the overall objective function.
We set them all to 1/3.

C. ANOMALY SCORE
In the testing phase, the model uses the weighted average of
Lcon and Lenc given in (5) and (6) to score anomalies in a given
image. Therefore, for the test sample x́, our anomaly score
A(x́) or sx́ is defined as:

A
(
x́
)
= w1Lcon + w2Lenc (8)

TABLE 2. The influence of threshold ε on model performance.

In order to facilitate our evaluation of the model anomaly
detection performance, we have prepared a test set D́, and cal-
culated the anomaly score of each test sample x́ in the test set
according to (8), and finally formed a set of abnormal scores
S = {si: A

(
x́i

)
, x́i ∈ D́}. In order to facilitate comparison

and statistics, we use feature scaling technology to scale each
score to the range of [0, 1], the formula is as follows:

śi =
si −min(S)

max (S)−min(S)
(9)

Equation 9 finally generates an anomaly score vector Ś
for the final evaluation of the test set. If śi is greater than
a threshold ε, we consider this sample to be an abnormal
sample. The setting of the threshold ε will directly affect the
accuracy of model detection. The specific conditions are as
follows:

Algorithm 1 Anomaly Detection Algorithm Used the
Self-Adaption AAE-GAN
Input: training data Xtrain, testing data Xtest
Output: anomaly or no anomaly
At training model stage:

Initialize Gen, Dis
In each iteration:

Generate random mini-batch X from training data Xtrain
Generate z from encoder z = GEi (x)
Generate x̂ from decoder x̂ = GDi (z)
Generate ẑ from decoder ẑ = E(x̂)
Update parameters of discriminator according to gradient

θDis ←
{
Ex∼Xtrain

∥∥f (x)− Ex∼pX f (G(x))
∥∥
2

}
Dis

Update parameters of generator according to gradient

θGen ←
{
Ex∼Xtrain ‖x − G(x)‖1

}
Gen

Update parameters of encoder according to gradient

θE ←
{
Ex∼Xtrain ‖GE (x)−E(G(x))‖2

}
E

At anomaly detection stage:
Calculate Lcon: Ex∼Xtest ‖x − G(x)‖1
Calculate Lenc: Ex∼Xtest ‖GE (x)−E(G(x))‖2
Calculate anomaly score: A (xtest) = w1Lcon + w2Lenc
Calculate anomaly score for each point of the testing data Xtest
if (score > threshold):
return anomaly

else:
return no anomaly

IV. EXPERIMENTAL RESULT
A. TIME SERIES DATA
A time series is a sequence of data points arranged in the
order of time. In other words, it is a sequence composed of
consecutive points at equal intervals in time.

We use three time series datasets in the experiment. They
are aluminum electrolysis industry data, SWaT and WADI,
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which are used to evaluate the performance of the time series
anomaly detection model in this paper. In these datasets,
both abnormal and normal points need to be marked. The
introduction of each dataset is as follows:

SWaT: The Safe Water Treatment (SWaT) system is an
operational test platform for water treatment that represents
the working process of a large modern water treatment plant
in a large city [67]. The overall design of the test platformwas
done in collaboration with the Public Utilities Commission of
Singapore, the national water utility, to ensure that the overall
physical processes and control systems were similar to the
real systems on site. The SWaT dataset collection process
lasted 11 days, with the system running 24 hours a day. In the
last four days of the 2016 SWaT data collection process,
a total of 36 attacks were launched. Typically, targets of attack
include sensors (e.g., water level sensors, flow rate counters,
etc.) and brakes (e.g., valves, pumps, etc.). Over the last four
days, these attacks were launched on the test platform with
different intents and durations ranging from a few minutes to
an hour. Allowing the system to reach its normal operational
state before another attack or before successive attacks were
launched. For more detailed information about SWaT dataset,
visit the SWaT Website.

The water purification process in SWaT consists of six sub-
processes, called P1 through P6. The first process is about
raw water supply and storage, and P2 is a pretreatment used
to assess water quality. Undesired components are removed
by backwashing with an ultrafiltration unit (UF) in P3. The
excess chlorine is removed in the fourth process (P4). The
water from the P4 is then pumped into the reverse osmo-
sis (RO) system (P5) to reduce inorganic impurities. Finally,
P6 stores water ready for distribution.

WADI: Unlike the water treatment system plant, which is
usually located in a fixed location, the water supply system
consists of numerous pipes spanning a large area. This greatly
increases the risk of a physical attack on the water supply
network. The Water Distribution (WADI) [68] test platform
is an extension of the SWaT system that absorbs a portion
of SWaT reverse osmosis permeate and raw water to form a
complete and realistic water treatment system, a storage and
distribution network. There are three control processes in the
water supply system. The first process is to obtain raw water
from SWaT, PUB inlet or WADI return water and store raw
water in two tanks. P2 distributes water from two elevated
tanks and six consumer tanks according to preset demand
patterns. The water is recycled and returned to P1 in the third
step.

The WADI test platform is also equipped with a quanti-
tative chemical feed system, booster pumps, valves, instru-
ments and analyzers. In addition to network simulation of
attack and defense on a PLC, WADI also has the capability
to simulate the effects of physical attacks such as water leaks
and malicious chemical injections. The WADI data collec-
tion process consists of 16 consecutive days of operations,
of which 14 days are collected under normal operation and
2 days are collected in the event of an attack. During the data

collection, all network data, sensor and actuator data were
collected. For more details on the WADI data set, visit the
WADI website.

Aluminum electrolysis data: The aluminum electrolysis
data in this article comes from certain Intelligent Technology
Company. The first phase of the ‘‘data service platform’’
construction project of China Aluminum Technology Center
was started in December 2017 and had been completed as
of January 2019 Data collection of 5 production compa-
nies in 3 sectors: electrolytic aluminum sector (Huasheng,
Shanxi New Materials, Lanzhou), alumina sector (Guangxi,
Zunyi), carbon sector (Shanxi New Materials). The carbon
and alumina are the anode and electrolyte in the aluminum
electrolysis process. We focus on the state of the aluminum
electrolysis cell in the aluminum electrolysis process. In the
process of aluminum electrolysis, both alumina and carbon
are consumed, resulting in parameters such as alumina con-
centration.We comprehensively judge whether the aluminum
electrolysis cell is abnormal based on these parameters. The
aluminum electrolysis data includes 203 parameters, and each
parameter takes a value once a day.

As the energy consumption of upstream and downstream
products of aluminum electrolysis and the consumption of
raw materials have increased significantly, the technical indi-
cators have deteriorated, and the product quality has also
declined; the comprehensive energy consumption and the
process energy consumption have increased significantly.
Production departments are very concerned about the changes
in key indicators, including energy consumption indica-
tors such as water, gas, wind, and electricity, and control-
lable production data indicators for electrolytic aluminum.
Due to the many key indicators related to the upstream
and downstream of electrolytic aluminum, the organization
and management of production operation are quite diffi-
cult, the adjustment and optimization measures of production
operation are relatively lagging, and the control of production
costs is very difficult. It is necessary to optimize the existing
production operation control mode and cost management
mode.

Collect and sort out the production data of the electrolytic
aluminum plate, and monitor the key indicators, and study
the changes of the key indicator data, the decision-making
methods, and the relationship between the key indicators.
Carry out layer-by-layer decomposition, study the relation-
ship between process consumption andmain technical indica-
tors and their interactions, find out various factors that affect
key indicators through empirical formulas, data mining algo-
rithms, statistical analysis and other methods, and establish
key indicators and main technical indicators mathematical
model. In order to ensure the implementation effect of the key
indicator models of electrolytic aluminum, the achievement
of various operating indicators should be dynamically moni-
tored to ensure that the results of production process control
will be reflected in operating performance. The total number
of collected data is 280,000, and there are 203 parameters
involved. The details are shown in Table 3:

VOLUME 9, 2021 100997



D. Cao et al.: Self-Adaption AAE-GAN for Aluminum Electrolytic Cell Anomaly Detection

FIGURE 1. Self-adaption AAE-GAN.

TABLE 3. General information about datasets.

Due to the variety of data in aluminum electrolysis cells,
it is difficult for experts to assess the status of data samples.
In order to facilitate the labeling of aluminum electrolysis
experts, in the field of aluminum electrolysis we have pro-
posed an automatic sample labeling method to assist experts
in marking samples. The labeling system requires experts
to provide the following parameters: labeling parameters,
the number of consecutive samples of the labeling parame-
ters, and the number of samples with abnormal trends for-
warded. The labeling parameter is used to label the sample,
and the normal range of the labeling parameter needs to be
given, and the sample is divided into three states: normal,
abnormal trend, and abnormal. The number of consecutive
samples of labeling parameter n is used to label abnormal
samples, and the average value of n continuous samples is
compared with the normal range of the labeled parameter.
If the range is exceeded, it is judged as abnormal; the number
of samples with abnormal trend forwarded m is used to label
abnormal trend, the abnormal sample is pushed forward by m
days, this m days is the abnormal trend sample. The network
model mainly learns abnormal trend samples that cannot be
distinguished by experts. The abnormal trend samples and
abnormal samples are collectively called abnormal samples.

B. DATA PREPROCESSING
In data preprocessing, in order to minimize the computa-
tional burden of self-adaption AAE-GAN, we use PCA to

project the original multivariate time series data into the
lower-dimensional space, instead of directly inputting the
high-dimensional data to self-adaption AAE-GAN model.
In this paper, we set the value of PC to 25. Then, in order
to use the ability of GAN to learn complex high-dimensional
image distributions, we convert the reduced-dimensional
multi-dimensional time series data into a two-dimensional
matrix. Since there are many parameters of aluminum
electrolysis, in order to make the data points of each
two-dimensional matrix evenly distributed, we calculate the
maximum value max and minimum value min of each param-
eter, so that the upper and lower limits of each time series
curve are equal to 0.9∗max and 1.1∗min. Each curve repre-
sents a parameter.

In addition, in some industrial productions, such as the
aluminum electrolysis industry, it is usually impossible to
determine whether the aluminum electrolysis cell has abnor-
malities based on the values of various sensors during one
day. It is necessary to obtain the values of various param-
eters in multiple time steps to determine whether there are
abnormalities. If the molecular ratio and voltage of a cer-
tain electrolytic cell on one day are too large or too small,
it cannot be judged that the electrolytic cell on that day is
abnormal. In addition, there are serious hysteresis problems
in the aluminum electrolysis industry. For example, an expert
adjusts the temperature of an electrolysis cell on a certain
day, but the expert does not know whether it is correct or
not. You must observe the state of each parameter in a later
period of time to judge. And, there are usually many states
that experts cannot distinguish. Therefore, we divide the data
into segments, and divide the multivariate time series into
multiple sub-sequences through a sliding window with a size
of 10 and step 2 for the training phase and the testing phase.
The final result is shown in Fig. 2:

This experimental result shows the result of converting a
multi-dimensional time series into a two-dimensional matrix.
The x axis of the image represents time, the y axis represents
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FIGURE 2. Data preprocessing results.

the value of each parameter, and each curve represents the
trend of a parameter over time. At this point, we focus on
the trend of each curve, not on the parameter that each curve
represents. Three images show the process of cutting the
sample, cutting multi-dimensional time series in a step.

If a certain two-dimensional matrix contains abnormal
sample data, then we divide this matrix into abnormal sam-
ples, other matrices are divided into normal samples, and
therefore the generated two-dimensional matrix sample is
divided into two parts. Since our model only learns on the
distribution of normal data during the model training phase,
our first part of the data does not contain any abnormal
samples. The data in the second part contains normal and
abnormal samples for model testing.

C. EVALUATION CRITERIA AND RESULTS
We use Precision, Roc and F1 scores to evaluate the anomaly
detection performance of our model.

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 =
2× Precision× Recall
Precision+ Recall

(12)

where TP is the number that is correctly detected in all normal
points, FP is the number that is detected as abnormal in all
normal points, and FN is the number that is detected as normal
in all abnormal points.

The full name of ROC is Receiver Operating Characteristic
Curve. As the name suggests, its main function is to analyze
the problem by drawing this characteristic curve. The ROC
curve defines the false positive rate (FPR) as the X axis and
the true positive rate (TPR) as the Y axis. The formula for
calculating these two values is as follows:

1) TPR
In all samples that are actually normal, the rate that is cor-
rectly detected as normal.

TPR =
TP

TP+ FN
(13)

2) FPR
In all samples that are actually abnormal, the ratio of falsely
detected as normal.

FPR =
FP

FP+ TN
(14)

Put in specific areas to understand the above two indicators.
For example, in the electrolytic cell abnormality detection,
expert want to determine the abnormal electrolytic cell. Then
try to identify the real normal samples, that is, the first
indicator TPR, the higher the better. Try to identify what is
really abnormal, that is, the second indicator FPR, the lower
the better. It is not difficult to find that these two indicators
influence each other. If an expert’s judgment on abnormal
symptoms is rather vague, and basically regards all samples
as normal, then his first index should be very high, but
the second index will be correspondingly higher. In the most
extreme case, he regards all electrolytic cell as normal, then
the first index reaches 1, and the second index is also 1.

The value of AUC is the area covered by the ROC curve.
Obviously, the larger the AUC, the better the classification
effect of the classifier will be. When AUC = 1, it can be
proved that this is a perfect classifier. When using this model
to predict samples, no matter what threshold is set, the correct
prediction can be obtained. But in most practical situations,
a perfect classifier is impossible. When 0.5 < AUC < 1,
it proves that this classifier is better than random guessing.
This classifier (model) can get good prediction results if the
threshold is properly set. When AUC = 0.5, the effect of this
classifier is the same as the random guessing (for example:
toss a coin), which proves that this model has no application
value.When AUC<0.5, the effect of this model is worse than
random guessing; but as long as you always make backward
predictions, you will get better results than random guessing.
Our experiment mainly records the value of AUC in the ROC
curve.

In order to evaluate the performance of this method,
we implemented three baseline methods, which are represen-
tative time series anomaly detection methods based on gen-
erative models and sample reconstruction. They all perform
anomaly detection by reconstructing the difference.

Table 4 shows the final results of our self-adaption
AAE-GAN method based on adaptively changing according
to the input samples, and the final results of the representative
time series anomaly detectionmethod based on the generative
model. Both LSTM-AE and LSTM-VAE use the LSTM net-
work as the basic module, and the values of the parameters are
the same as those in the LSTM-based VAE-GAN. In order
to compare the anomaly detection capabilities of the model
more objectively, we use the same threshold, window length,
and moving step selection strategy for all methods. As shown
in Table 4, compared to other generative models, our method
does not perform very well in SWaT and WADI which are
based on a single point of data to identify abnormal dataset.
However, in the field of aluminum electrolysis, it is neces-
sary to determine whether an abnormality occurs during this
period based on the time series data at multiple time steps.
The performance of our model is higher than the existing
time series anomaly detectionmethod based on the generative
model.

Table 5 shows the final results of our self-adaption
AAE-GAN method based on adaptive changes according
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TABLE 4. Generate model comparison results.

TABLE 5. Methods based sample reconstruction comparison results.

to the input samples, and the final results of representative
time series anomaly detection methods based on the idea of
sample reconstruction. MAD-GAN uses the LSTM network
as the basic module, and the values of the parameters are the
same as those in the LSTM-based VAE-GAN. GANomaly
uses the GAN network as the basic module, and its basic
parameters are similar to those in DCGAN. We also use the
same threshold, window length and moving step selection
strategy for all methods. As shown in Table 5, compared to
other anomaly detection models based on the idea of sample
reconstruction, our method also performs poorly on SWaT
and WADI datasets, but in the field of aluminum electrolysis,
our model performs better than the existing ones based on
time series anomaly detection method which was based on
the idea of sample reconstruction.

V. CONCLUSION
In this paper, a time series anomaly detection method named
the self-adaption AAE-GAN based on the adaptive change
according to the input samples is proposed. This method
aims to judge whether the equipment is abnormal through the
aluminum reduction cell data collected in the form of time
series.

The time series anomaly detection method based on sam-
ple reconstruction can be divided into two stages. One is
the model training stage, where the model learns the distri-
bution of normal data. The other is the anomaly detection
stage, where anomaly scores of the time series are calculated
to identify anomalies. The self-adaption AAE-GAN joint

training generator and discriminator can utilize the mapping
capabilities of the encoder and decoder at the same time.
Meanwhile, the optimization process in the anomaly detec-
tion phase is avoided, so that anomalies can be detected faster
and more accurately. In experiments based on SWaT, WADI
and aluminum electrolysis time series data, our method has
an higher performance on aluminum electrolysis dataset than
other time series anomaly detection methods based on gener-
ativemodels and sample reconstruction. Ourmodel is suitable
for specific industrial scenarios, such as the aluminum elec-
trolysis industry. Experts will not need to pay special attention
to whether there is an abnormality on a certain day, because
it is very difficult and not rigorous to judge the state of the
aluminum electrolysis cell on a certain day. It is necessary
to observe a certain period to judge whether the state of
the aluminum electrolytic cell is abnormal. For industrial
scenarios that only focus on the state of the equipment on
a certain day, our model cannot achieve the optimal results.
Due to themovingwindowmechanism, the anomaly scores of
certain points are calculated multiple times, but the accuracy
is not affected by the number of calculations of the anomaly
scores in the anomaly detection stage. In order to increase
the number of samples used to train the model in the training
phase, we usually set the step size to be smaller than the length
of the window. If the length of the time series is long enough,
the time series can be divided by the length of the window as
the time interval.

Although our method can accurately and quickly detect
anomalies in time series, it still has some limitations. In our
paper, we judge whether there is an abnormality during this
period of time based on the time series data of multiple time
steps, and the threshold and window size of the abnormality
score are designed according to the aluminum electrolysis
background. In certain scenarios where the abnormal state at
a specific point in time needs to be known, a new abnormal
scoring mechanism design is required to meet this application
scenario.

Our research has room for further development. In the cur-
rent situation, our method needs to try certain data to adjust
the threshold and window length of the abnormal score. Our
next improvement goal is to provide an adaptive threshold
and window adjustment method that can speed up the model
training time.
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