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ABSTRACT The accuracy of behavioral interactive features is a key factor for improving the performance
of rating prediction. In order to deeply explore the potential rules of user behavior and enhance the accurate
representation of interactive features, this paper proposes two rating prediction models, based on the spatial
dimension and distance measurement (SDDM), under the premise of taking the mean value of the user
behavior history as a user feature, and obtaining the interactive features of an item and a user by calculating
the distance between them in each feature dimension. In the proposed SDDM-Var and SDDM-PCC models,
the variance and the Pearson correlation coefficient (PCC) are respectively utilized to evaluate the user’s
attention to each feature dimension as to further obtain the weight vector of the interactive features. Finally,
in order to improve the generalization ability of the proposed models, the rating prediction is accomplished
by means of a specially designed multi-layer full-connection neural network. The conducted experiments
with two public MovieLens datasets demonstrate the superior rating prediction performance of the proposed
models in comparison with the existing baseline models, in terms of the root mean square error (RMSE),
by achieving values of 0.865 and 0.872 on MovieLens 100K, and 0.839 and 0.832 on MovieLens 1M,
respectively for SDDM-Var and SDDM-PCC.

INDEX TERMS Variance, Pearson correlation coefficient (PCC), rating prediction, recommendation system,
neural network, Item2Vec.

I. INTRODUCTION
It is quite difficult for users in the ‘Big Data’ era to quickly
find and obtain valuable knowledge from the massive infor-
mation volumes presented by multiple sources. The emer-
gence of recommendation systems has provided a generic
solution to this problem. Such systems are now widely used
in different fields, such as e-commerce, video and music
streaming, news delivery, etc., and huge profits have been
made by many Internet companies as a result of this [1], [2].

In the field of personalized recommendation systems,
the most widely utilized approach is collaborative filtering
(CF) [3], which is based on the user behavior sequence.

The associate editor coordinating the review of this manuscript and
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CF provides recommendations based on computing the sim-
ilarity between users or items, e.g., by using the cosine
similarity or the Pearson correlation coefficient (PCC). CF is
simple, quick, and efficient. However, it is difficult for the
traditional CF tomeet the current needs due to its limitation in
generalization ability. For this, matrix factorization (MF) [4]
has been proposed, which maps users and items into the
same potential feature space according to the rating matrix.
The rating prediction can be then realized by calculating the
inner product of the potential feature vectors of a user and an
item. MF with gradient descent proved to deliver an obvious
performance improvement compared to traditional CF. How-
ever, the simple inner product operation still heavily limits
the generalization ability of MF. With the deep learning (DL)
technology developed in the past few years, the deep neural
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networks (NNs) have evolved as a feasible way to improve
the generalization ability of recommendation systems. For
instance, by linking classical MF with NN, the neural CF
(NCF), proposed by He et al. in [5], uses multi-layer per-
ceptron to replace the inner product operation of MF, which
effectively enhances the generalization ability of the model.

NCF is able to achieve better recommendation perfor-
mance only at the expense of regularly training the potential
feature vectors of a user and an item. However, due to the
large number of users and items, such regular training con-
sumes lots of computing resources and time. As a solution
to this problem, in some recent research works, the user
features have been obtained according to the mean value of
the user behavior history [6], [7]. However, this approach
often reduces the accuracy of rating prediction. Consequently,
some other researchers attempted to introduce time decay and
attention mechanism for achievingmore accurate user feature
representation [8], [9]. Our previous research efforts in the
field of rating prediction are presented in [10], [11].

In this paper, two rating predictionmodels, based on spatial
dimension and distancemeasurement (SDDM), are proposed.
The variance and PCC are used to deeply explore the varia-
tion rules of potential feature vectors from the user behavior
history and a multi-layer full-connection NN is adopted to
boost the accuracy of rating prediction and the generaliza-
tion ability of the proposed models. The initial item features
are obtained by pre-training, based on the Item2Vec model
proposed in [12] for training item feature vectors. The user
feature is themean value of the potential feature vectors of the
item in the user behavior history, while the interactive feature
represents the difference (distance) between the item feature
and the user feature in each dimension. A weight vector is
constructed by taking the variance of the user behavior history
and PCC as the interactive feature to alleviate the limitation
of using historical mean value as a user feature. Different
from traditional CF that uses PCC to measure the correla-
tion between users or items [13], the research presented in
this paper adopts PCC to measure the correlation between
potential features, and rating level and variance to evaluate
the stability of potential features in various dimensions. The
analysis of results, obtained from the conducted experiments
based on two public MovieLens datasets by using the mean
absolute error (MAE) and root mean square error (RMSE)
as evaluation metrics, indicates that two proposed SDDM
models are equipped with excellent rating prediction ability.

In summary, the research work presented in this paper was
focused on solving two main problems:

1) How to enhance the interactive feature representation
by exploring the variation rules of the user potential
features.

2) How to improve the generalization ability of the rec-
ommendation model as to more accurately predict the
user rating of items.

In order to solve these problems, we have conducted a
lot of research and experiments. For this paper, the main
contributions are as follows:

1) Two SDDM rating prediction models are proposed,
whereby the interactive features of users and items are
obtained by virtue of the calculation of the distance
between them in each dimension.

2) The utilization of the variance and PCC is put forward
to deeply explore the variation rules of user potential
features. Based on this, a weight vector of interactive
features is constructed for the accurate representation
of interactive features.

3) Under the premise of using the Item2Vec model
for item feature pre-training, a specially designed
multi-layer full-connection neural network is utilized to
improve the generalization ability and rating prediction
performance.

II. RELATED WORK
A. CONVENTIONAL RECOMMENDATION APPROACHES
The conventional recommendation approaches could be
divided into three groups: content-based filtering (CBF), CF,
and hybrid approaches utilizing both content and collabora-
tive information.

CBF [14] depends on the item portrait and user behavior.
It can search for similar items under the portrait information
of interesting items in the user history and recommend them
to the user. CBF iswidely used in industry due to its simplicity
and efficiency.

However, when user–item ratings are the only information
available for analysis, CF [15]–[17] is favored over CBF.
A variety of CF recommendation models have been devel-
oped, such as SVD [18], SVD++ [19], and other MF-based
models. Compared with the most basic CF, these models
can improve the recommendation- and generalization perfor-
mance to a large extent. CF and MF are still hot research
topics in the area of recommendation systems.

B. DEEP LEARNING-BASED RECOMMENDATION
APPROACHES
Deep learning (DL) has been successfully applied in the field
of computer vision and natural language processing (NLP).
A lot of research work has verified the excellent performance
of DL in dealing with regression and classification tasks,
e.g., [20], [21]. A new trend in recent years is represented
by theDL-based recommendation approaches, initially devel-
oped by some large Internet technology companies. For
instance, the wide & deep model, proposed by Google [22],
is provided with the advantages of the logical regression
model and the NN model, resulting in better memory-
and generalization abilities. The NN-based recommendation
model, proposed by YouTube in the field of video stream-
ing [23], is suitable for large-scale data screening recommen-
dation scenarios. The deep interest network (DIN) model,
proposed by Alibaba, can capture the user’s interest direction
by utilizing the attention mechanism, leading to a better
recommendation performance [24]. Academia has also paid a
lot of attention to the use of DL in recommendation systems.
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FIGURE 1. The overall structure of the proposed SDDM models.

For instance, Kuang et al. proposed the DMF-CDR model,
utilizing a multi-layer perceptron to learn the feature rep-
resentation of users and items, and adding a cross-domain
information to alleviate the sparsity problem of CF and to
improve the recommendation performance [25]. Based on
a graph neural network (GNN), Xian et al. proposed the
ReGNN model for recommendation tasks, which combines a
repeated search mechanism and achieved more accurate pre-
diction bymodeling the repeated exploration behavior pattern
of users [26]. These and other DL-based recommendation
models, developed in recent years, demonstrated the advan-
tages of the DL technology in the field of recommendation
systems.

C. ITEM2VEC MODEL
A common approach in this field is to construct correspond-
ing potential feature vectors for each user and item, regarded
as an embedding process. Being an improved version of
Word2Vec [27], [28], Item2Vec [12] is an excellent item
embedding training model, which can better adapt to differ-
ent recommendation scenarios. Basically, Item2Vec maps all
items to a potential feature space according to the user behav-
ior history and calculates the similarity between items using
the cosine of the angle. In addition, the simple full-connection
layer structure in Item2Vec ensures its fast-computing speed
and excellent embedding performance. The optimization
objectives of Item2Vec are defined as follows:

1
K

∑K

i=1

∑K

j 6=i
log p(wj|wi), (1)

where wi and wj are the center item and its corresponding
surrounding items in any behavior sequence, and K is the
sequence length.

III. SDDM MODELS
A. PROBLEM DEFINITION
Given a set of users U = {u1, u2, . . . , un, . . . , uN }, a set
of items I = {i1, i2, . . . , im, . . . , iM }, and a set Sun ={
S i1un , S

i2
un , . . . , S

im
un , . . . , S

iM
un

}
of the interaction behavior of

user un with these items, the purpose of the proposed SDDM
models is to predict the future interaction behavior S imun of
user un towards item im, i.e., to predict any rating values S imun
missing in Sun .

B. OVERVIEW
The proposed SDDM models consist of the following two
modules (Fig. 1):

1) Item feature pre-training module – based on Item2Vec
[12], this module maps all items to the feature space
by inputting the user behavior record in order to get
the item feature vectors that express user- and item
features existing in a multi-dimensional space. The
user behavior record refers to the behavior history sets,
generated so far based on the user interaction with
items, containing the rating values given by the user
to different items (generally, a separate rating value is
assigned by the user to each item feature). The behavior
record could be interpreted as a sentence composed
of different words, following the Word2Vec concept.
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To enable faster convergence of the rating prediction
algorithm executed in the other module, this module
obtains the feature vector of an item by calculating the
co-occurrence probability of different items by utiliz-
ing, for pre-training, the Item2vec model instead of a
common embedding layer.

2) Rating prediction module – based on a specially
designed multi-layered full-connection NN, this mod-
ule is used to improve the generalization ability of
the proposed models by enhancing the feature rep-
resentation. The input user- and item feature vectors
are respectively processed by the first two layers of
the neural network and then the difference between
the two corresponding feature dimensions is calcu-
lated to obtain the interactive feature vector of the
particular user and item. Finally, the Hadamard prod-
uct calculation is performed on the interactive feature
vector and the interactive weight, and the predicted
rating is obtained through the final four layers of the
full-connection NN. To compensate the shortcomings
of the full-connection NNs, such as over-fitting, reg-
ularization parameters are added in the process of
model training. The implementation of the designed
multi-layer full-connection NN is described in detail in
Subsection III.F.

C. PRE-TRAINING OF ITEM FEATURES
Pre-training of item features can be done in different ways,
e.g., by utilizing the SVD model [18] or an embedding
model [12], [27], [29]. The latter approach was utilized in the
proposed SDDMmodels for the pre-training of item features,
based on Item2Vec.

In the original Item2Vec model, all items in the behavior
record of user un are regarded as a sentence for training with-
out distinguishment between high and low ratings. However,
the SDDM models, proposed in this paper, focus on explicit
feedback behavior, so for each user, the items in his/her
behavior records are first divided into different sentences
according to their rating value given by the user, so that the
items in the same sentence are equally graded. Then these
sentences are inputted into the Item2Vec model for training
and getting the set V(I ) = {vi1 , vi2 , . . . , vim , . . . , viM }, which
contains the feature vectors of all items. Each vector vim is
a dense vector with dimension j, where j represents the total
number of item features.

In the proposed SDDM models, the interactive features
of a user and an item are calculated through the difference
between them in each dimension. The interactive features
need to reflect the similarity between the user- and item
features to a certain extent. However, the feature vector gen-
erated by Item2Vec cannot meet this requirement because
it measures the similarity between the two kinds of fea-
tures through the cosine of the angle and the difference
in each dimension cannot directly reflect the level of sim-
ilarity. Consequently, it is necessary to normalize the cal-
culation of all generated item feature vectors so that each

vector can be transformed into a unit vector with a mod-
ule length of 1. So, in the SDDM models presented in this
paper, the following normalization is applied for each vector
vim =

(
v(1)im , v

(2)
im , . . . , v

(j)
im

)
:

v′im =
1√∑j

c=1

(
v(c)im

)2 (v(1)im , v(2)im , . . . , v(j)im) . (2)

D. REPRESENTATION OF USER FEATURES
User feature is the mean value of all positive rating values
given by a user (and presented in his/her behavior history
record) to a particular feature of items. Given a set V

u+n
(I ) ={

v1, v2, . . . , vq, . . . , vQ
}
, V u+

(I ) ⊆ V(I ), of feature vectors of
items containing only positive rating values given by user
un, where the feature vector of item q in the set is vq =(
v(1)q , v

(2)
q , . . . , v

(j)
q

)
, the interest feature matrix Mu+n of user

un can be presented as follows:

Mu+n =


v1
v2
...

vQ

 =

v(1)1 v(2)1 · · · v(j)1
v(1)2 v(2)2 · · · v(j)2
...

...
. . .

...

v(1)Q v(2)Q · · · v(j)Q

 . (3)

Then, the feature vector of user un can be obtained by
average pooling of the item feature vectors:

vun =
1
Q

∑Q

q=1

(
v(1)q , v(2)q , . . . , v(j)q

)
. (4)

It can be considered that the user- and item feature vectors
are in the same potential space as the former is obtained by
average pooling of the item feature vectors present in the user
behavior history record. A sample 3D feature space is shown
in Fig. 2, where the blue arrows represent the feature vectors
v1 and v2 of two items in the user behavior sequence, whereas
the red arrow represents the feature vector of user vu resulted
from the average pooling of the feature vectors of these two
items.

FIGURE 2. A sample 3D feature space.

E. FEATURE INTERACTION
Feature interaction is about getting an interactive feature
vector according to the user- and item feature vectors under
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interaction rules, which is similar to the concatenation oper-
ation performed on the user- and item features. The user- and
item feature vectors are mapped respectively through the first
two layers of the designed full-connection NN as to enhance
feature representation prior to the implementation of feature
interaction. The process can be represented as follows:

vun ← ψNone
(
vun
)
;

vim ← ψNone
(
vim
)
, (5)

whereψNone denotes the full-connection NN andNonemeans
that the activation function is not set.

Interactive feature is a vector that is composed of the
distance between the user features and item features in each
dimension. In this step, the user- and item feature vectors
could be each regarded as a point in the potential space and the
distance between the two points in each dimension could be
deemed as a reflection of the similarity or difference between
the two entities to some extent. Thus, the interactive feature
vector of item im and user un can be expressed as follows:

vim−un =
(∣∣∣v(1)im − v(1)un ∣∣∣ , ∣∣∣v(2)im − v(2)un ∣∣∣ , . . . , ∣∣∣v(j)im − v(j)un ∣∣∣) . (6)

However, it is hard to achieve a good performance only
by using the above interactive features as a basis for rat-
ing prediction because: (i) the user features are obtained
by average pooling at the beginning, which leads to some
inaccuracy; and (ii) not all dimensions would be of equal
importance/interest to users, so the distance on some dimen-
sions cannot serve as a real basis for rating prediction.
Therefore, it is necessary to determine which dimensions
of interactive features are meaningful and to weaken the
influence of meaningless or less significant dimensions. Con-
sequently, two different methods – the variance and PCC
– are used in this paper to capture the user’s interest in
each dimension, based on the user behavior history record,
which results in two different models, called SDDM-Var and
SDDM-PCC, respectively. The two ways of calculation of the
weight w(k)un of the k th dimension for user un are described in
the following two subsections.

1) CALCULATION OF DIMENSIONS’ WEIGHT
USING VARIANCE
According to (3), the variance of each column in matrixMu+n
is calculated under the circumstance of considering only the
positive feedback of user un. The smaller the variance is,
the more stable the value of the corresponding dimension and
the stronger the reference value. Since the purpose of vari-
ance calculation is to get the weight of interactive features,
the smaller the variance of the dimension is, the larger the
weight value. Therefore, the weight w(k)un of the k th dimension
for user un can be obtained as:

var (k)un =

∑Q
q=1

(
v(k)q − v̄(k)

)2
Q

; (7)

w(k)un = e−γ
∗var(k)u , (8)

where v̄(k) represents the mean value at the K dimension in
the behavior history record of user un, and γ is a user-defined
parameter.

2) CALCULATION OF DIMENSIONS’ WEIGHT USING PCC
When PCC is used for calculating the dimensions’ weight, all
rating values (both negative and positive) given by a user (and
presented in his/her behavior history record) are considered,
i.e., not just the positive rating values. So, the interactive
feature vector of item im and user un becomes:

vim−un =
(
v(1)im − v

(1)
un , v

(2)
im − v

(2)
un , . . . , v

(j)
im − v

(j)
un

)
. (9)

Then, the weight w(k)un of the k th dimension for user un can
be obtained by using PCC as:

w(k)un =

∑M
m=1

(
v(k)im − v̄

(k)
) (

r imun − r̄un
)

√∑M
m=1

(
v(k)im − v̄

(k)
)2∑M

m=1

(
r imun − r̄un

)2 , (10)

where r imun is the rating value given by user un to item im and
r̄un is the average value of all ratings in the behavior history
record of user un.
The process of interactive weight calculation is formally

presented as Algorithm 1.

Algorithm 1 Calculation of Dimensions’ Weight for User un
Input: i_vec_List (feature vector of items in the behav-
ior history record), i_rat_List (items rating record), γ
(user-defined parameter), dim (dimension of feature vec-
tor)
Output: dw (dimensions’ weight)
1: start:
2: Define dw as a list
3: for k = 1 to dim
4: X = (i_vec_List(k)1 , i_vec_List(k)2

, . . . ,i_vec_List(k)n )
5: if using PCC:
6: Y = (i_rat_List(k)1 , i_rat_List(k)2

, . . . ,i_rat_List(k)n )
7: w(k)

= Pearson(X ,Y )
8: end if
9: if using Variance:
10: w(k)

= exp(−γ ∗ Var (X))
11: end if
12: append w(k) to dw
13: end for
14: return dw
15: end

After calculating the weight of each dimension (either by
using the variance or PCC), the final interactive feature vector
is obtained as follows:

vim−un←
(
v(1)im−un ∗ w

(1)
un , v

(2)
im−un ∗ w

(2)
un , . . . , v

(j)
im−un ∗ w

(j)
un

)
.

(11)
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F. OUTPUT OF RATING PREDICTION
In the proposed SDDM models, a specially designed multi-
layer full-connection NN is used for rating prediction. The
output ŷ of the corresponding rating prediction module
(c.f. Fig. 1) is:

ŷ = fLReLu
(
. . . fLReLu

(
g
(
ψNone

(
. . . ψNone

(
vun
))
,

ψNone
(
. . . ψNone

(
vim
))
,wun

)))
+ τbun + (1− τ) bim ,

(12)

where fLReLu denotes a full-connection NN layer using
Leaky ReLu as an activation function, ψNone denotes a
full-connection NN layer without activation function, g
denotes the calculation process of the final interactive feature
vector, bun and bim are the user- and item offset terms (c.f. [4]),
and τ (0 ≤ τ ≤ 1) is the offset term coefficient. When
τ> 0.5, the rating value is inclined to user personalization,
otherwise, it tends to item popularization.

In the training process of the rating prediction module,
the output of the l th layer of the full-connection NN can be
expressed as in the process of forward propagation as:

Yl = fa(Xl ∗W T
l + Bl), (13)

where Xl denotes the input of the l th layer of the
full-connection NN, fa is the activation function, and Wl and
Bl are the weight and bias, respectively, which are constantly
updated during the training.

In the process of backward propagation, the mean square
error (MSE) function is used as a loss function and L2 regu-
larization is added to prevent the model from overfitting:

Loss =
1
k
(
∑k

i=1

(
yi − ŷi

)2
+

∑L

l=1
ϕL2(Wl, λ)), (14)

where yi and ŷi are the real- and predicted rating values,
respectively, k is the number of samples of the current training
batch, L is the total number of NN layers, and λ is the
regularization coefficient.

The rating prediction process is formally presented as
Algorithm 2.

IV. EXPERIMENTS AND RESULTS
A. DATASETS
To evaluate the rating prediction performance of the proposed
models in comparison with the existing baselines, corre-
sponding experiments were conducted on two public movie
rating datasets – MovieLens 100K (ML-100K) and Movie-
Lens 1M (ML-1M).1 ML-100K contains 100,000 ratings
from 1000 users on 1700 movies, whereas ML-1M contains
one million ratings from 6000 users on 4000 movies. In the
experiments, the ratings in each dataset were divided into
five groups, corresponding to the rating values, ranging from
1 to 5. In terms of the user rating behavior, only users who
provided at least 20 movies ratings were considered in the
experiments.

1 https://grouplens.org/datasets/movielens/

Algorithm 2 Rating Prediction
Input: train_set {u_vec (user feature vector), i_vec (item
feature vector), bu (user rating bias), bi (item rating bias),
u_dw (user dimensions’ weight), ylabel (rating label)}, τ
(bias control parameter for users and items), eps (number
of epochs), batchsize (number of samples per training ses-
sion)
Output: Rating Model (NN parameters)
1: start:
2: Rating Model initialization
3: for i in range (eps):
4: for j in range (len(train_set) / batchsize):
5: u_vec′ = ϕ(2)None(ϕ

(1)
None(u_vec))

6: i_vec′ = ϕ(4)None(ϕ
(3)
None(i_vec))

7: Calculate vi−u based u_vec′ and i_vec′,
using (6) and (9)

8: vi−u← Hadamard(vi−u, u_dw), c.f. (11)
9: ŷ = f (n)LReLu

(
· · · f (1)LReLu (vi−u)

)
+ τ ∗ bu

+ (1− τ) ∗ bi)
10: Calculate Loss(ŷ, ylabel)
11: Update all NN parameters in f (k)LReLu, ϕ

(k)
None

12: end for
13: end for
14: Save Rating Model
15: end

B. EVALUATION METRICS
For evaluating the rating prediction performance of different
models included in the comparison, the standard metrics
RMSE and MAE were used, defined as:

RMSE =

√
1
K

∑K

i=1

(
yi − ŷi

)2
; (15)

MAE =
1
K

∑K

i=1

∣∣yi − ŷi∣∣ . (16)

C. MODELS FOR COMPARISON
The two proposed models, SDDM-Var and SDDM-PCC,
were compared to the following eight baseline models:

• IGMC [30] – an inductive graph-based matrix comple-
tion model, which can achieve good recommendation
performance without using any auxiliary information.

• GC-MC [31] – a graph autoencoder model, based on
distinguishable messages passed on a bidirectional inter-
action graph.

• Factorized EAE [32] – a DL-based model for
cross-domain recommendation, with good generaliza-
tion performance.

• NNMF [33] – a recommendation model combining NN
and MF, whereby the inner product operation of MF is
replaced by a multi-layer perceptron.

• MetricF [34] – a measurement decomposition model,
based on the Euclidean distance meeting inequality
attributes to measure the explicit proximity between
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users and items for rating prediction or personalized
ranking.

• AutoSVD++ [35] – a hybrid model, which integrates a
compression autoencoder into the MF framework.

• HGAR [36] – a recommendation model, which com-
bines the SVD algorithm and a multi-layer perception
while also considering both implicit and explicit infor-
mation.

• SSAERec [37] – a rating prediction model, based on a
stacked sparse autoencoder and MF.

D. EXPERIMENT SETTINGS
The experiments with the proposed models were carried out
under the DL framework Pytorch. Each dataset was divided
according to the level of rating by means of stratified random
sampling, in which the training set and the test set account
for 80% and 20%, respectively. In addition, the experiments
with the proposed models were conducted in two steps –
pre-training of item features and rating prediction. When
using Item2Vec to pre-train item features, the trainingmethod
Skip-gram was applied with 150 iterations. In the rating pre-
diction step, the learning rate, the regularization coefficient,
and the bias term coefficient were set to α = 0.005, λ =
0.005, and τ = 0.2, respectively. For calculating the weight
of dimensions based on the variance, the value of parameter
γ was set to 15.

E. RESULTS
1) PERFORMANCE COMPARISON OF SDDM-VAR AND
SDDM-PCC MODELS
Fig. 3 and Fig. 4 show the MAE and RMSE downward
trend, respectively, with increasing the number of epochs2

for the two proposed models, SDDM-Var and SDDM-PCC,
based on the ML-100K and ML-1M datasets, whereby the
item- and user feature dimensions3 are set to 128 for both
models. From Fig. 3, the following observations can bemade:
(i) with increasing the number of epochs, the decrease of
MAE is more stable for both models on ML-100K; (ii) on
ML-1M, SDDM-PCC needed 35 epochs to start perform-
ing stably better than SDDM-Var (in terms of MAE); how-
ever, on ML-100K, SDDM-PCC is generally outperformed
by SDDM-Var; (iii) on ML-1M, the MAE values for both
models are lower than that on ML-100K, as a result of the
much greater amount of data available on ML-1M, which
allows the neural network to better learn the sample features
of data and achieve better rating prediction performance.
From Fig. 4, it can be observed that the downward trend of
RMSE closely follows that of MAE depicted in Fig. 3. Here,
30 epochs were needed for SDDM-PCC to start performing
stably better (in terms of RMSE) than SDDM-Var onML-1M.
However, on ML-100K, SDDM-Var is overall outperformed
by SDDM-PCC.

2Epoch -a parameter, defining the number of times a model has worked
through the entire training set.

3 Feature dimension represents the amount of information expressed by a
feature vector.

FIGURE 3. The dependence of MAE on the number of epochs for the
SDDM-Var and SDDM-PCC models, on datasets ML-100K and ML-1M.

FIGURE 4. The dependence of RMSE on the number of epochs for the
SDDM-Var and SDDM-PCC models, on datasets ML-100K and ML-1M.

As different values of feature dimension (d) may result
in different prediction performance, additional experiments
were carried out to investigate this. Tables 1 and 2 show
the obtained MAE and RMSE results, respectively, for both
proposed models after 70 epochs. From these results, it can
be seen that both MAE and RMSE get their highest value
when d = 32, after which they stably decrease, reaching a
minimum when d = 128, except for the SDDM-PCC model
applied on the ML-100K dataset, where the minimum is
reached earlier – forMAEwhen d = 64, and for RMSEwhen
d = 96, respectively. Thus, d = 128 is recommended for
use as a good balance between the calculation time/cost and
the prediction performance, as further increase of the feature
dimension leads to a significant increase of the calculation
time and cost.

2) PERFORMANCE COMPARISON OF ALL MODELS
The rating prediction performance comparison of all consid-
ered models (in terms of RMSE) is presented in Table 3.
The RMSE results for the proposed models, SDDM-Var
and SDDM-PCC, were obtained based on the conducted
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TABLE 1. The MAE results for the proposed SDDM models, for different
values of feature dimension (d ).

TABLE 2. The RMSE results for the proposed SDDM models, for different
values of feature dimension (d ).

TABLE 3. Rating prediction performance comparison of models in terms
of RMSE.

experiments, whereas the RMSEvalues for the baselineswere
all taken from the corresponding papers. As most of these
papers do not provided MAE results, this metric was not used
in this comparison.

The RMSE results in Table 3 clearly demonstrate that both
proposed models outperform all the baseline models, on both
datasets, with only one exception on ML-1M, namely the
GC-MC model, which shows equal rating prediction perfor-
mance with the leader SDDM-PCC. This superior perfor-
mance of the proposed models is due to the fact that they

fully consider the changes of item feature vectors in the user
behavior history records in each dimension, which, compared
to the baselines, allows them to more accurately grasp the
users’ interests in each feature dimension.

V. CONCLUSION
This paper has put forward two recommendation models,
based on the spatial dimension and distance measurement
(SDDM), for rating prediction by means of utilizing a spe-
cially designed multi-layer full-connection neural network.
In the proposed models, the interactive features are obtained
by calculating the distance between the user feature and item
feature in each feature dimension. In addition, in order to
achieve better prediction performance, the user’s attention
to different feature dimensions is fully considered and the
interaction weight is obtained by utilizing the variance and
the Pearson correlation coefficient (PCC), in the presented
models, SDDM-Var and SDDM-PCC, respectively. The con-
ducted experiments on two public MovieLens datasets con-
firmed that both proposed models outperform (in terms of
RMSE) the baseline models considered.

Although the rating prediction performance of the pro-
posed models is sufficiently high, there is still room for
further improvement. For instance, extra user features, such
as age and gender, as well as other relevant item attributes
can be taken into account to improve the performance of
the models. Extra work is also needed as to achieve feature
crosses. All this will be a subject of our future research work.
In addition, we plan to optimize both models to work faster
with high values of feature dimension, as to make them more
suitable for real-time recommendations.
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