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ABSTRACT Noise reduction is important for X-ray images because it can reduce radiation exposure
to patients. X-ray image noise has a Poisson-Gaussian distribution, and recently, noise analysis and
removal in multiscale transformations have been widely implemented. The nonsubsampled contourlet
transform (NSCT) is a multiscale transformation suitable for medical images that separates the scale and
direction. This study proposes a Poisson-Gaussian noise-removalmethod usingNSCT shrinkage that is based
on the characteristics of Poisson-Gaussian noise in NSCT domain. It has the structure of a block-matching 3D
filtering algorithm in the form of basic estimation and noise removal process; however, the main processes
are modified to consider Poisson-Gaussian noise characteristics. In the basic estimation process, an NSCT
shrinkage method that is suitable for Poisson-Gaussian noise characteristics is developed by optimizing the
local linear minimummean square error estimator in the NSCT domain. In the denoising step, the noise term
of the Wiener filter is determined using the result of the NSCT shrinkage, and finally, the denoised image is
obtained. The proposed method is applied to simulated and real X-ray images and is compared with other
state-of-the-art Poisson-Gaussian noise removal methods; it exhibits excellent results in both quantitative
and qualitative aspects.

INDEX TERMS Poisson-Gaussian noise, noise removal, nonsubsampled contourlet transform (NSCT),
X-ray image, local linear minimummean square error (LLMMSE) filtering, block-matching and 3D filtering
(BM3D).

I. INTRODUCTION
Image acquisition devices acquire digital images by con-
verting light into electrical signals via complementary metal
oxide semiconductors or charged coupled devices image sen-
sors [1], [2]. The intensity of the image is determined by the
number of photons incident on the sensor, and the number
of photons follows a Poisson distribution. This is the pri-
mary cause of noise in the image, which also has Poisson
characteristics. However, the noise of an image acquired in
a general situation (medium, high-illumination situation) pri-
marily follows a Gaussian distribution because the number of
photons incident on the sensor is sufficiently large; therefore,
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the Poisson distribution is approximated to a Gaussian dis-
tribution. However, in low-light, ultra-low-light conditions,
or when the number of photons incident on the sensor is
small, the image noise cannot be approximated by a Gaussian
distribution, and it follows the Poisson distribution [3], [4].
In addition to the Poisson noise generated during the image
acquisition process, noise from the electric equipment also
appears in the image. Noise generated by sensors or other
electronic devices follows a Gaussian distribution, and it
is modeled using a combination of Poisson and Gaussian
distribution, called a Poisson-Gaussian distribution [5].

X-ray image noise follows a Poisson-Gaussian distribu-
tion [6], which causes the image to be degraded; thus,
a method to overcome this degradation is necessary. There
are two ways to increase the signal-to-noise ratio (SNR) of an
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image. The first method is to increase the signal power while
maintaining the intensity of the image noise. The second
method is to reduce the image noise while maintaining the
signal power. For the first method, the power of the signal can
be increased by increasing the photon energy using stronger
X-ray generator or by increasing the number of photons via
longer exposure time. However, X-rays use high- energy; they
can pass through the human body to obtain an image inside
the body, and these high-energy photons expose the human
body to radiation. Thus, these methods increase the amount
of radiation exposure, whichmay adversely affects the human
body. Therefore, alternative methods are required to obtain a
cleanX-ray imagewhile reducing the amount of exposure [7].

The second method to increase the SNR is to reduce
the power of the noise while maintaining the power of the
signal, i.e., noise removal. Noise removal has been exten-
sively studied, and traditional denoising methods mainly
focus on removing additive Gaussian noise. Robbins pro-
posed an empirical Bayesian framework to estimate Gaussian
noise [8], and Lee proposed a two-step empirical Bayesian
estimation [9], which estimates the signal variance from local
statistics and applies a minimum mean square error esti-
mator to obtain the noise filtering algorithms. Buades et al.
proposed nonlocal means (NLM) filtering [10], which is a
method to remove noise by calculating the weighting coef-
ficients of neighboring pixels using the similarity between
patches. Block-matching and 3D filtering (BM3D) [11],
which is a state-of-the-art technology, effectively removes
noise by grouping similar 2D patches into 3D data and
then implementing thresholding and collaborative Wiener
filtering.

Poisson noise is signal dependent: therefore, it is difficult
to apply an additive Gaussian noise removal method because
it does not have a constant noise variance. To solve this
problem, variance stabilization transformation (VST), such
as Anscombe transformation [12] or Fisz transformation [13]
has been introduced. Signal-dependent Poisson noise that
has undergone the Anscombe transform has a constant vari-
ance; thus, noise can be removed using a Gaussian noise
removal algorithm. The image from which Poisson noise
has been removed can be obtained through an inverse trans-
form [14]–[16]. The Fisz transform can be combined with the
Haar wavelet [17], and they are widely used as a Haar-Fisz
transform [18]. Moreover, because these VSTs take into
account when noise has a Poisson distribution, a general-
ized Anscombe transform (GAT) was introduced [19] that
developed Anscombe transform into Poisson-Gaussian noise.
However, because these transforms are nonlinear transforms,
bias errors occur during inverse transforms. Therefore, noise
removal may not be performed properly or images may
be damaged [20]–[22]. To overcome this problem, Mak-
italo and Foi proposed the exact unbiased inverse of the
GAT [23]–[26].

There are also techniques to remove noise using
the signal-dependent noise characteristic without VSTs.
Kuan et al. proposed a local linear minimum mean square

error (LLMMSE) filter [27] that estimates the variance
of signal and noise using the local mean and variance;
they also design a noise removal filter using the estimated
value. Le et al. proposed a noise removal method based on
total variation normalization considering Poisson noise [28],
and Bindilatti and Mascarenhas proposed an NLM filter
that uses stochastic distances for Poisson noise instead of
Euclidean distances for Gaussian noise when calculating the
similarity between patches [29]. Another way to effectively
remove Poisson noise is to usemultiscale transformation. The
wavelet transform [30], which is a representative multiscale
transform, divides images into vertical and horizontal direc-
tions for each band. An expectation-maximization image
restoration technique based on a maximum penalized like-
lihood estimator [31] in the wavelet domain was proposed.
A noise removalmethod based on Poisson-Gaussian unbiased
risk estimator (PG-URE) [32], [33] is also performed in the
wavelet domain, in which Stein’s unbiased risk estimator [34]
is extended to Poisson-Gaussian noise. Thewavelet transform
is excellent for separating scales; however, it does not con-
sider directions other than vertical and horizontal. Thus, it is
ineffective for separating curves included in natural images.
To overcome this limitation, ridgelet [35], curvelet [36], and
contourlet transforms (CT) [37], [38] that considered scale
and directionality were introduced.

As mentioned above, many studies have been conducted
on methods that remove Poisson noise; however, there
have been few studies on the removal Poisson-Gaussian
noise using its own characteristics without using VSTs.
Because X-ray images, particularly on low-dose condition,
have Poisson-Gaussian noise [5], it is necessary to effec-
tively remove them. Medical images, including X-rays,
are primarily composed of curves; therefore, the nonsub-
sampled contourlet transform (NSCT), which is a type of
CT, effectively separates the images into their scale and
direction among multiscale transformations. In our previ-
ous study, we performed Poisson-Gaussian noise analysis
in the NSCT domain [39]. Based on the analyzed results,
an LLMMSE-based shrinkage method is applied through an
NSCT, and a BM3D-based noise removal method is intro-
duced. Experiments are conducted using simulated images
with artificially generated noise as well as images acquired
with actual X-rays, and the denoising results are com-
pared with those of other recent studies. The main contribu-
tions of this paper are as follows:

1) the NSCT is used to separate bands suitable for curves;
2) LLMMSE-based NSCT shrinkage is developed based

on the noise relationship between the low-band layer
and the detail layer of the same scale level;

3) finer level noise is removed by inheriting the denoised
result of coarser level;

4) the noise removal performance is maximized using
BM3D-based method.

The remainder of this paper is organized as follows.
In Section II, we briefly review the Poisson-Gaussian noise
analysis in NSCT that we performed in our previous study
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FIGURE 1. Decomposition schemes of CT and NSCT. (a) CT; (b) NSCT.

and the noise reduction method, which is the basis of the
proposed method. In Section III, we describe the proposed
LLMMSE-based inherited NSCT shrinkage noise removal
method. Finally, we demonstrate the performance of the pro-
posed method on both simulated and real X-ray images in
Section IV, and we present our conclusion in Section V.

II. RELATED WORKS
This section summarizes the key ideas referenced in
this study from previously studies. We briefly describe
Poisson-Gaussian noise analysis in the NSCT domain,
LLMMSE filtering, and BM3D filtering. The reader is
referred to [11], [27], [39] for further details.

A. POISSON-GAUSSIAN NOISE IN NSCT DOMAIN
1) POISSON-GAUSSIAN NOISE MODELING
In our previous study, we established a Poisson-Gaussian
noise model and analyzed its suitability using real X-ray
images acquired under low-dose conditions [39]. The obser-
vation model of X-ray and Poisson-Gaussian noise model are
expressed as follows [5]:

y (i, j) = x (i, j)+ η (x (i, j))·δ,

η2 (x (i, j)) = α · x (i, j)+ β2, (1)

where (i, j) are spatial coordinates, y (i, j) is the acquired
image, x (i, j) is the original image, η (x (i, j)) is the standard
deviation of the Poisson-Gaussian noise, δ is the independent
Gaussian noise with zeromean and a standard deviation equal
to one, α is the Poisson noise parameter, and β is the standard
deviation of the Gaussian noise. A large number of stationary
X-ray images were acquired to confirm that model (1) is suit-
able. The average and variance of the acquired images were
assumed to be a noiseless image and the noise variance of
images, respectively. These two images were then compared
and analyzed. As a result, the noise variance exhibited a linear
relationship with the signal power, which can be expressed
as a linear equation (1). Thus, it was demonstrated that the
observation and noise model were properly modeled.

2) NONSUBSAMPLED CONTOURLET TRANSFORM
The CT is a transformation that separates bands by scale
and direction using a Laplacian pyramid (LP) [40], [41] and
directional filter bank (DFB) [42]. As shown in Fig. 1(a),
the process of the CT is to first use an LP to separate the
scale and then use a DFB to separate the band-pass and
the high-pass subbands by direction, excluding the low-pass
subband. However, the LP and DFB used in CT both contain
a subsampling process; thus, the size of the subbands after
transformation is different from the original image size. That
is, the CT has spatial variant property, which is unsuitable
for noise removal. NSCT [43] was proposed to overcome
these shortcomings. The NSCT replaces the LP and DFB of
CT with nonsubsampled pyramid (NSP) and nonsubsampled
DFB (NSDFB), respectively, to perform multiscale, multidi-
rectional, and shift-invariant image decomposition.

The decomposition process of the NSCT is shown in
the Fig. 1(b). We describe the NSCT separation process in
detail. First, the image is separated into a low-frequency
band and a high-frequency band by using the low-pass
(H0 (z)) and high-pass (H1 (z)) filters of the NSP. The sep-
arated high-frequency band is used as a detail layer, and
the low-frequency band passes through a low-pass (H0

(
z2I
)
)

and high-pass filter (H1
(
z2I
)
) of next level, and it is

divided into lower- and band-frequency regions. The sepa-
rated band-frequency region becomes the detail layer of the
next level, and the low-frequency band is repeatedly used for
the next level of scale transformation. The filter that separates
them-level detail layer is referred to as9m, and it is expressed
as follows:

9m (z) =

H1 (z) , m = 1∏m−2

k=0
H0

(
z2

k I
)
H1

(
z2
(m−2)I

)
, m ≥ 2.

(2)

Assuming that the image is divided into a total of M scale
levels, each scale level is denoted by m (m = 1, 2, · · · ,M ),
where m = 1 and m = M are the finest and the coarsest lev-
els, respectively. The decomposed low-band layer is denoted
asG (·), the detail layer is denoted as L (·), the original image
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is denoted as G0 (·), and the low-band and detail layers at the
m-th scale level is denoted as Gm (·) and Lm (·), respectively.
Next, the detail layer, the scale of which is separated by

NSP, is separated for each direction by the NSDFB. The
number of directions separated by NSDFB is expressed as
Nm, which must be a power of two. Each direction level is
denoted by n (n = 1, 2, · · · ,Nm), and the n-th direction
subband of the m-th scale is denoted by Lm,n (·).

3) POISSON-GAUSSIAN NOISE ANALYSIS IN NSCT DOMAIN
In our previous study, to analyze Poisson-Gaussian noise in
the NSCT domain, we conducted a step-wise analysis of the
noise distribution through the NSP and NSDFB. First, as in
the Section II-A1, 100 still images were decomposed by the
NSP, and the Poisson-Gaussian noise in the NSP domain
was analyzed using the detail layer variance. This shows
that Poisson-Gaussian noise still maintains its characteristics,
even after NSP decomposition. The noise of the NSP detail
layer has a Poisson-Gaussian distribution, which is dependent
on the low-band layer at the same level and is expressed as
following equations:

Lm (y (i, j)) = Lm (x (i, j))+ ηm (Gm (x (i, j))) · δ,

η2m (Gm (x (i, j))) = αmGm (x (i, j))+ β
2
m, (3)

where ηm (Gm (x (i, j))), αm, and βm are the standard devia-
tion of the noise, Poisson noise parameter, and standard devi-
ation of the Gaussian noise of NSP detail layer of m-th scale,
respectively. At the same m-th scale, α and αm as well as β2

and β2m have the same ratio,

Em =
αm

α
=
β2m

β2
. (4)

Em is equal to the energy of the filters passing through
the NSP decomposition. The energy of these filters can be
calculated as Em = ‖9m (z)‖22. Next, the noise distribu-
tion after applying the NSDFB was analyzed, and finally,
the Poisson-Gaussian noise in the NSCT domain was ana-
lyzed. The analysis was performed in the same manner as the
noise analysis process in NSP, and NSDFB decomposition
was also demonstrated to retain the Poisson-Gaussian dis-
tribution when decomposing Poisson-Gaussian noise. There-
fore, it was confirmed that Poisson-Gaussian noise has a
Poisson-Gaussian distribution even after NSCT decomposi-
tion. The noise of the NSCT detail layer is also dependent
on the NSP low-band signal, as shown in the following
equations:

Lm,n (y (i, j)) = Lm,n (x (i, j))+ ηm,n (Gm (x (i, j))) · δ,

η2m,n (Gm (x (i, j))) = αm,nGm (x (i, j))+ β
2
m,n, (5)

where ηm,n (Gm (x (i, j))) is the standard deviation of the
noise of NSCT subband of m-th scale and n-th direction,
and αm,n and βm,n are the Poisson noise parameter and the
standard deviation of the Gaussian noise of the NSCT detail
layer of m-th scale and n-th direction, respectively. NSDFB
also changes the noise parameter at the same rate for the same

direction level and distributes 1/Nm equally for the same scale
level. This can be expressed by the formula:

1
Nm
=
αm,n

αm
=
β2m,n

β2m
. (6)

Because the filter of NSDFB distributes the entire band
equally, the energy of the filter in each direction is 1/Nm, and
the noise parameters are divided at an equal ratio.

B. CONVENTIONAL POISSON-GAUSSIAN NOISE
REMOVAL METHOD
1) LOCAL LINEAR MINIMUM MEAN SQUARE ERROR
The minimum mean square error (MMSE) estimate of x,
given observation y, is the conditional mean estimate of

x̂ = E (x|y) . (7)

In boldface, the signal is expressed in the form of a vec-
tor, and E (x) means the ensemble mean of x. In general,
the MMSE estimate is nonlinear, and it depends on the
probability density function of x and η; therefore, in most
cases, it is difficult to obtain an explicit form of the MMSE
estimator. Thus, the following linear minimum mean square
error (LMMSE) [44] estimator is used by applying a linear
constraint to the structure of the estimator:

x̂LMMSE = E (x)+ CxyC−1y (y− E (y)) , (8)

where Cxy is the cross-covariance matrix of x and y, and Cy
is the covariance matrix of y.
Kuan et al. proposed the LLMMSE noise removal fil-

ter [27] for images without degradation, except for nonsta-
tionary mean and nonstationary variance. In the case where
there is no degradation owing to blurring and the noise is
uncorrelated, (8) is expressed by the following scalar process-
ing filter:

x̂LLMMSE (i, j) = E (x (i, j))+
σ 2
x (i, j)

σ 2
x (i, j)+ σ 2

η (i, j)
· [y (i, j)− E (y (i, j))] , (9)

where σ 2
x (i, j) and σ

2
η (i, j) are the ensemble variances of the

original image and nonstationary noise, respectively. Because
the noise is assumed to be nonstationary, the ensemble statis-
tics can be replaced with local spatial statistics; thus, (9) can
be written as

x̂LLMMSE (i, j) = x (i, j)+
vx (i, j)

vx (i, j)+ σ 2
η (i, j)

· [y (i, j)− y (i, j)] , (10)

where x (i, j) and y (i, j) are the local means of x (i, j) and
y (i, j), respectively, and vx (i, j) is the local spatial variance
of x (i, j). The local mean and variance can be calculated
using the uniformmoving average window of size (2r + 1)×
(2r + 1). Then,

x (i, j) =
1

(2r + 1)2
·

i+r∑
p=i−r

j+r∑
q=j−r

x (p, q) , (11)
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and

vx (i, j) =
1

(2r + 1)2
·

i+r∑
p=i−r

j+r∑
q=j−r

(x (p, q)− x (i, j))2 . (12)

The method used to obtain σ 2
η (i, j) differs according to the

type of noise, and the LLMMSE filter can be designed using
the relationship between vx (i, j), vy (i, j), and σ 2

η (i, j).

2) BLOCK-MATCHING AND 3D FILTERING
BM3D filter [11] is one of the most advanced noise removal
methods, and it is excellent for Gaussian noise removal. It has
the features of LMMSE, nonlocal means, and transformation
domain-based filtering, and it works by synthesizing them
efficiently. It consists of two steps: a basic estimation step
and a denoising step. In the basic estimation step, noise is
coarsely removed to obtain a relatively clean image, and
in the denoising step, reliable statistics are obtained using
basic estimation, and the actual noise removal is performed.
All processes are performed block-wise, similar to nonlocal
approach, and not pixel-wise using neighboring pixels. Fil-
tering is performed in the transform domain, and the final
result is derived through the Wiener filter, which is one of
the optimum LMMSE estimators.

Each step of BM3D consists of three stages: grouping,
filtering, and aggregation. In the grouping stage, blocks that
are similar to the reference block are identified in the image
and grouped in three dimensions. Because the noise of the
image is assumed to be Gaussian noise, blocks around the
reference block are searched based on the Euclidean distance.
In the basic estimation step, a noisy image is used for search-
ing and grouping. In the denoising step, the search uses the
basic estimation result of the first step, and in the grouping
stage, both the noisy image and basic estimated image in
the same position are grouped. In the filtering stage, a 3D
transform is applied to the generated group, noise is removed
in the transform domain, and an inverse transform is then per-
formed. For 3D transformation, a biorthogonal spline wavelet
or discrete cosine transform (DCT) is typically used. Because
similar blocks are grouped together, the 3D transform domain
has a sparse property. Using this property, noise is coarsely
removed via hard thresholding in the basic estimation step,
and it is effectively removed by applying aWiener filter in the
denoising step. Finally, in the aggregation stage, each block
from which noise has been removed is returned to its original
position, and the pixel value is determined using a weighted
average. Because this is a block-wise process,, if there are
many similar blocks, there are many overlapping blocks at
the same pixel position. The pixel value is determined by the
weighted average of the blocks that overlap at one location.
The weight is inversely proportional to the noise variance;
therefore, so when the noise is strong, a small weight is given,
and when the noise is weak, a large weight is given.

Because BM3D is a Gaussian noise removal filter, it is
not suitable for Poisson-Gaussian noise removal. However,
BM3D can be applied by converting Poisson-Gaussian noise

into Gaussian noise using VST. Makitalo and Foi proposed
GAT [24]–[26], the VST of Poisson-Gaussian noise, and they
confirmed that the algorithm that combines GAT and BM3D
performs better than other methods, as described in [26].

III. PROPOSED METHOD
This section introduces the removal of Poisson-Gaussian
noise by applying LLMMSE-based shrinkage in the NSCT
domain and modifying the BM3D algorithm. Because there
are more curves than straight lines or patterns in medical
images, it is necessary to use a transformation that is suit-
able for this condition. To remove noise, a transformation
with a shift-invariant feature must be used; therefore, NSCT
was used amongmanymultiscale transformations. LLMMSE
shrinkage in the NSCT domain was proposed based on
the Poisson-Gaussian noise analysis in the NSCT domain.
We briefly explain the proposed algorithm. The input image
y (i, j) is degraded by Poisson-Gaussian noise. It is first sepa-
rated into its scale and direction components through NSCT
decomposition. From the subbands of the coarsest level, noise
is removed by LLMMSE shrinkage. After removing the noise
of all subbands at the same scale level, the low-band of the
finer level is reconstructed using NSDFB and NSP recon-
struction. The reconstructed low-band from which noise has
been removed is used again for the next finer level LLMMSE
shrinkage, and this process is repeated up to the finest level
to obtain an image from which the noise has been primarily
removed. Using this image as a basic estimation, the modified
BM3D algorithm is performed with the noisy input image to
obtain a clean imagewith the noise removed. An overall block
diagram of the proposed algorithm is shown in Fig. 2.

A. LLMMSE BASED NSCT SHRINKAGE
Low-dose X-ray images have Poisson-Gaussian noise as
shown in (1). The input image is first separated into subbands
for each scale and directional band using NSCT decompo-
sition. Because there is no low-frequency component in the
subband, E

[
Lm,n (x (i, j))

]
= E

[
Lm,n (y (i, j))

]
= 0; thus,

the LLMMSE filter in (10) becomes

Lm,n
(
x̂shr (i, j)

)
=

vLm,n(x) (i, j)

vLm,n(x) (i, j)+ σ
2
Lm,n(η)

(i, j)
· Lm,n (y (i, j)) , (13)

where x̂shr (i, j) is the denoised result of the LLMMSE shrink-
age in the NSCT domain. Because Lm,n (x (i, j)) ≈ 0,
vLm,n(x) (i, j) can be calculated as

vLm,n(x) (i, j) =
1

(2rm + 1)2
·

i+rm∑
p=i−rm

j+rm∑
q=j−rm

(
Lm,n (x (p, q))

)2
= L2m,n (x (i, j)) , (14)

where rm is the size of the moving window. Because NSCT
does not have a subsampling process; therefore, to obtain
accurate local statistics, the size of the window needs to
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FIGURE 2. Block diagram of the proposed method.

increase as the level increases. Thus, the window size was
applied differently according to the scale level as rm = 2m.
We set up the noise model in (1) in the form of an additive

stationary and this property does not change after NSCT
decomposition, as shown in (5); therefore, the relationship
between vLm,n(y) (i, j) and vLm,n(x) (i, j) is

vLm,n(x) (i, j) = vLm,n(y) (i, j)− σ
2
Lm,n(η) (i, j) . (15)

The variance of the noise σ 2
Lm,n(η)

(i, j) can be estimated
based on the Poisson-Gaussian noise analysis in the NSCT
domain using (5), and the noise parameters αm,n, β2m,n can be
calculated using (4) and (6), as follows:

σ 2
Lm,n(η) (i, j) = η

2
m,n (Gm (x (i, j)))

= αm,nGm (x (i, j))+ β2m,n, (16)

αm,n =
αm

Nm
=
Em · α
Nm

, β2m,n=
β2m

Nm
=
Em · β2

Nm
. (17)

Substituting (14)–(17) into (13) yields the LLMMSE
shrinkage filter as per the following equation:

Lm,n
(
x̂shr (i, j)

)
= Lm,n (y (i, j))

·

(
1−

Em
Nm

(
α · Gm (x (i, j))+β2

)
L2m,n (y (i, j))

)
. (18)

Both the numerator and denominator must have a value of
zero or higher in (13). However, there is a possibility that the
local variance of the subband may have a smaller value than
the estimated power of noise; taking this into consideration,
the final shrinkage type equation is obtained as follows:

Lm,n
(
x̂shr (i, j)

)
= Lm,n (y (i, j))

· max

(
1−

Em
Nm

(
α · Gm (x (i, j))+ β2

)
L2m,n (y (i, j))

, 0

)
. (19)

The problem is now reduced to the estimation of
Gm (x (i, j)) in the aforementioned formulas. In (17), the noise
parameter of each subband decreases as the level coarsens.
The noise that remains after being distributed to each sub-
bands exists in the low-band of the coarsest level, and the
ratio of the low-band noise to the total noise can be calculated
as 1 −

∑M
m=1 Em. Using this to calculate the noise ratio of

the low-band of the coarsest level when M = 3, for E1 =
0.769155, E2 = 0.178771, and E3 = 0.044181, a value of
0.007893 can be obtained. That is, when M ≥ 3, the noise
existing in the low-band of the coarsest level is less than 1%
of the total noise, and it can be assumed that this is a noiseless
image,

GM
(
x̂shr (i, j)

)
= GM (x (i, j)) . (20)

The low-bands of noiseless and noisy images forM = 1, 2,
and 3 are shown in Fig. 3. AsM increases, the noise appears
less in the low-band of the noisy image and appears similar to
the low-band of the noiseless image. It is recommended that
M ≥ 3 is set for the noise reduction performance.

Substituting (20) into (19), the noise of the subbands of the
coarsest level can be removed, and the denoised low-band of
the finer level is then obtained by NSDFB and NSP recon-
struction. The denoised low-band is used to estimate the noise
variance of the finer level, and this process is repeated up to
the finest level to obtain x̂shr (i, j) with the noise removed.

B. MODIFIED BM3D
The basic estimation, which is the result of the first step of
BM3D, was obtained using NSCT shrinkage; thus, the sec-
ond step of the BM3D algorithm is now performed. In the
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FIGURE 3. Low-band by scale level for noiseless and noisy images. First row: noiseless image, second row: noisy image. (a) G0; (b) G1; (c) G2; (d) G3.

grouping stage, similar blocks are identified by calculating
the difference between the blocks in x̂shr (i, j). Because noise
has been removed once in x̂shr (i, j), the distance between
the blocks is calculated using the Euclidean distance. Let
Xi,j be a WB × WB size block extracted from x (i, j), where
the subscripts i, j are the coordinates of the top-left corner.
When the top-left coordinate of the reference block is (iR, jR),
the distance between the reference block and other blocks in
x̂shr (i, j) is

d
(
X̂ shr
iR,jR , X̂

shr
i,j

)
=

[WB−1∑
k=0

WB−1∑
l=0

(
x̂shr (iR + k, jR + l)

− x̂shr (i+ k, j+ l)
)2]/

(WB)
2 . (21)

After calculating this distance, blocks within a particular
range are grouped into similar blocks as follows:

SiR,jR =
{
(i, j) : d

(
X̂ shr
iR,jR , X̂

shr
i,j

)
≤ τ

}
. (22)

After obtaining SiR,jR , blocks of the noisy image y (i, j) and
basic estimation x̂shr (i, j) that are located at these coordinates
are stacked and grouped into YSiR,jR

and X̂shr
SiR,jR

, respectively.

In the second step, YSiR,jR
and X̂shr

SiR,jR
are transformed

via 3D transformation T3D. Collaborative filtering WSiR,jR
is

then performed, and an inverse 3D transformation T −13D is
performed to obtain X̂Wie

SiR,jR
, where noise is removed. This can

be expressed as

X̂Wie
SiR,jR
= T −13D

(
WSiR,jR

T3D
(
YSiR,jR

))
. (23)

The collaborative filter operates as an element-wise mul-
tiplication of the filter and a 3D transform. Collaborative fil-
tering uses a Wiener filter, which is also based on LLMMSE.
The LLMMSE filter (9) is an adaptive Wiener shrinkage
filter in the transform domain [45]. The empirical Wiener
shrinkage defined in BM3D is

WSiR,jR
=

∣∣∣T3D (X̂shr
SiR,jR

)∣∣∣2∣∣∣T3D (X̂shr
SiR,jR

)∣∣∣2 + σ 2
η̂shriR,jR

, (24)

where σ 2
η̂shriR,jR

represents the noise variance of the block with

the top-left coordinates (iR, jR). The original BM3D experi-
ences Gaussian noise; therefore, σ 2

η̂shriR,jR

is fixed at one value.

However, in the case of Poisson-Gaussian noise, the value
of the signal changes according to the pixel position; thus,
the power of the noise also changes. Therefore, the noise
variance values for each group must be set. Noise is estimated
using the difference between the noisy image and the basic
estimation as follows:

η̂shr (i, j) = x (i, j)− x̂shr (i, j) . (25)

Because E
[
η̂shr

]
= 0, the noise variance of the reference

block is E
[(
η̂shr

)2]
, which is expressed as

σ 2
η̂shriR,jR

=
1

(WB)
2

WB−1∑
k=0

WB−1∑
l=0

(
η̂shr (iR + k, jR + l)

)2
. (26)

After removing the noise of the group, the final denoised
result is obtained by decomposing the group and distributing
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Algorithm 1 Poisson-Gaussian Noise Removal Based on
LLMMSE NSCT Shrinkage
INPUT: y (i, j)
OUTPUT: x̂ (i, j)

1: NSP decomposition: y→ {L1,L2, · · · ,LM ,GM } (y).
2: GM

(
x̂shr

)
← GM (y).

3: for m = M to 1 do
4: NSDFB decomposition:

Lm (y)→
{
Lm,1,Lm,2, · · · ,Lm,Nm

}
(y).

5: for n = 1 to Nm do
6: Obtain noise removed subband

Lm,n
(
x̂shr

)
using (19).

7: end for
8: NSDFB reconstruction:

Lm
(
x̂shr

)
←
{
Lm,1,Lm,2, · · · ,Lm,Nm

} (
x̂shr

)
.

9: NSP reconstruction:
Gm−1

(
x̂shr

)
← {Lm,Gm}

(
x̂shr

)
.

10: end for
11: x̂shr← G0

(
x̂shr

)
12: Find the similar blocks SiR,jR using (22).
13: Obtain group of denoised blocks X̂Wie

SiR,jR
by performing

Wiener shrinkage using (23), (24), and (26).
14: Obtain x̂ using (27) and (28).

the blocks. A pixel can belong to more than one group; there-
fore, it can be estimated multiple times and have different
values each time. These values should be averaged using the
appropriate weights,

x̂ (i, j) =
1
V

∑
U∈U(i,j)

wU x̂Wie
U (i, j) . (27)

Here, x̂Wie
U (i, j) is the estimated value obtained through

decomposition in group U , wU is the corresponding weight,
U is all groups including a pixel at positions (i, j), and V =∑

U∈U(i,j) wU is a normalization factor. As shown in [11],wU
is set in inverse proportion to the noise and Wiener shrinkage
coefficient as follows:

wU ∝
1

σ 2
η̂shri,j
‖WSi,j‖

2
2

. (28)

The procedure of the proposed Poisson-Gaussian noise
removal method based on the LLMMSE NSCT shrinkage
is shown in Algorithm 1, and the result of each algorithm
step is shown in Fig. 4. After decomposing the noisy image
using NSCT, it is assumed that there is no noise in the
low-band of the coarsest level, and noise is removed from
the subbands of the coarsest level. The low-band of the finer
level is reconstructed from the subbands fromwhich the noise
has been removed, as shown in Fig. 4(b) and 4(c). Fig. 4(d)
shows the basic estimation obtained by an iterative process up
to the finest level. The final result is obtained by performing
BM3D which is modified to fit the Poisson-Gaussian noise
using basic estimation, as shown in Fig. 4(e).

FIGURE 4. Results for each step during proposed method. (a) Noisy
image y

(
i, j

)
; (b) G2

(
x̂shr (

i, j
))

; (c) G1
(

x̂shr (
i, j

))
; (d) Basic estimation

x̂shr (
i, j

)
; (e) Final result x̂

(
i, j

)
; (f) Original image x

(
i, j

)
.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, various experiments are conducted to
prove the efficiency and robustness of the proposed
Poisson-Gaussian noise algorithm. It is difficult to obtain a
ground truth image for an X-ray image; therefore, experi-
ments were conducted by artificially adding noise to noiseless
images to quantitatively evaluate the noise removal effect.
In addition, the proposed algorithm was applied to an actual
X-ray image to confirm the noise-removal performance. The
parameters of the proposed method used in the experiment
are listed in Table. 1.
As a measure of quality, we used the peak SNR (PSNR),

which is defined as

PSNR = 10 log10

(
I2max

MSE

)
, (29)
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TABLE 1. Setting of parameters.

where Imax is the maximum value admitted by the data format
and the mean-square error (MSE) is defined as

MSE =
1

Row× Col

Row∑
i=1

Col∑
j=1

(x (i, j)− y (i, j))2 , (30)

where Row and Col are the sizes of the rows and columns of
the image, respectively. In addition, the structural similarity
index (SSIM) was used, which is defined as

SSIM (x, y) =

(
2µxµy + c1

) (
2σxy + c2

)(
µ2
x + µ

2
y + c1

) (
σ 2
x + σ

2
y + c2

) , (31)

where µx and µy are the averages of x and y, respectively,
σ 2
x and σ 2

y are the variances of x and y, respectively, σxy is the
covariance of x and y, c1 = (0.01L)2, and c2 = (0.03L)2,
where L is the dynamic range of the pixel values.

FIGURE 5. Original images used in the synthetic images: (a) Barbara;
(b) Lena; (c) Chest1; (d) Chest2; (e) Chest3; (f) Chest4.

A. DATA SET
The original images used for the synthetic images are shown
in Fig. 5. Experiments using synthetic images were conducted
using Barbara image, shown in Fig. 5(a), with many straight
lines and patterns, Lena image, shown in Fig. 5(b), with flat
areas and curves. As shown in Fig. 5(c)–(f), relatively clean
real X-ray images of patients [46] were also synthesized.
Images have a range of 0 to 255, and noisy images were
synthesized by changing the α and β values from low to high.

α was set to values of 0.1, 0.5, and 1, and β was set to 1,
5, and 10. The noise conditions were classified as Poisson-
dominant, Gaussian-dominant, moderately dense, and highly
dense noise, and the combinations of the noise parameter
values (α, β) are as follows: (1, 1), (0.1, 10), (0.5, 5), and
(1, 10).

FIGURE 6. The actual X-ray images. First row: noisy images, second row:
contrast enhanced images of first row. (a) Real1; (b) Real2.

The actual X-ray images to be used in the experiments
are shown in Fig. 6. The images with improved contrast
were shown together with the original images because it
is difficult to check the details in the images that had not
been post-processed. The actual X-ray images were acquired
using a clinical angiography prototype system supported by
Samsung Electronics and a chest phantom (Multipurpose
Chest Phantom N1 ‘‘LUNGMAN’’, Kyoto Kagaku, Kyoto,
Japan), that yields life-like radiographs that are very close to
actual clinical images. The image intensity had a 12-bit range.
To obtain an image that included Poisson-Gaussian noise,
a low-dose X-ray was used. The detailed image acquisition
environment was as follows: the source-to-image-receptor
distance was 120 cm, and the source-to-object distance was
70 cm. The radiation exposure level was 1.94 µGy/pulse and
the scan parameters were 62 kVp and 40 mA for Real1. And
the radiation exposure level was 1.49 µGy/pulse and the scan
parameters were 63 kVp and 20 mA for Real2.

B. COMPARING METHODS
The performance of the proposed algorithm was compared
using GAT+BM3D [26], the Poisson-Gaussian unbiased risk
estimator linear expansion of thresholds (PURE-LET) [32],
and PG-URE [33], which are state-of-the-art algorithms
that remove Poisson-Gaussian noise. The GAT is the most
reliable VST for Poisson-Gaussian noise, and BM3D is a
representative Gaussian noise removal algorithm with the
best performance; therefore, it was selected as a compar-
ison method. The performance of BM3D was maximized
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TABLE 2. PSNR results for synthetic images according to various noise environments.

through two steps of basic estimation and noise removal,
and the loss of high-frequency components was minimized
using patch-based 3D block filtering. In addition, PURE-LET
and PG-URE were used for the comparison of results
because they performed in the multiscale transform domain.
Moreover, they did not use VST, but the characteristics of
noise itself, similar to the proposed method. In PURE-LET,
the Poisson-Gaussian model was built by changing the max-
imum value of the pixel intensity without setting the Poisson
noise parameter. That is, the noise parameter α was fixed
to 1, and the intensity of Poisson noise was determined
by adjusting the maximum value of the pixel value. It was
performed on a pixel-wise; therefore, similarity with neigh-
boring pixels is not considered, unlike BM3D. PG-URE is
an extended and developed algorithm based on PURE-LET.
Unlike PURE-LET, which was performed only in the mul-
tiscale transform domain, it had been extended based on the
wavelet transform, total variation, and nonlocal means, and
VST can be applied to each method. A model that included
a gain value that normalized after adjusting the maximum
value of the signal was used. In this experiment, a method
that performed in the wavelet transform domain without VST
was selected because this method is similar to the proposed
method.

C. QUANTITATIVE EVALUATION ON SYNTHETIC IMAGES
After synthesizing various noise environments to the images
in Fig. 5, each method was applied and the results were

compared. Table. 2 and 3 show the quantitative analysis of
each noise environment and the results of each experimental
image. The bold text indicates the best results from each
of experiments. Table. 2 shows the PSNR results for each
experimental image by noise condition and noise removal
method. For moderately dense noise condition, GAT+BM3D
exhibits best performance, and for Gaussian-dominant noise
condition, the proposedmethod exhibits good performance in
the all test images. In Chest 2–4 images, PURE-LET shows
the best performance in Poisson-dominant and highly dense
noise condition. Because those two conditions had the noise
parameter α of 1; therefore, they were suitable for the noise
model of PURE-LET. PG-URE did not record the highest
value in any image, but exhibits a sense of stability showing
consistent PSNR values in any noise situation. The proposed
method exhibits the best performance on average for all
images except Barbara image, for which the GAT+BM3D
performance is the best on average. Because Barbara image
has more straight lines and patterns than curves, it seems
that patch-basedmethod of BM3D is more advantageous than
the shrinkage in the NSCT domain of the proposed method.
Additionally, even if the proposed method did not record the
best value when compared with other methods, it recorded
the second highest value. In terms of quantitative evalua-
tion, GAT+BM3D and the proposed method had a stable
performance in all noise situations. PURE-LET exhibited a
difference in performance for each noise situation. Particu-
larly, when the Poisson noise is small, the performance of
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TABLE 3. SSIM results for synthetic images according to various noise environments.

this method was significantly degraded. In PURE-LET, when
the Poisson noise intensity in the image was small, the max-
imum value of the signal had to be normalized to a very
small value. As the maximum value of the signal decreased,
the difference between the signals became subtle, and the
intensity of the estimated noise was too small, or the Gaussian
noise was misrecognized as Poisson noise. For this reason,
PURE-LET exhibits poor results for images with low Poisson
noise intensity, but excellent performance for images with
high Poisson noise intensity. Owing to the extended method
and model, PG-URE exhibits a similar performance in var-
ious noisy environments. The variation in performance for
each situation was small, and the method showed satisfactory
performance, even in Gaussian-dominant noise, which was a
limitation of PURE-LET. However, owing to the complicated
model, it was difficult to obtain both noise reduction and
high-frequency component preservation because the method
is sensitive to the setting of parameter values.

Table. 3 shows the SSIM results for synthetic images.
In most cases, methods with high values in PSNR also
exhibit high values in SSIM. For Poisson-dominant noise
condition, GAT+BM3Dor PURE-LET exhibit the best SSIM
values, and for Gaussian-dominant noise condition, the pro-
posed method exhibits the best SSIM scores. For the results
of the moderately dense noise, GAT+BM3D exhibits the
best values and for the results of the highly dense noise,
the proposed method shows the highest SSIM values except
for Lena image. However, despite the highest PSNR value

of PURE-LET, there are cases where the SSIM value of
GAT+BM3D or the proposed method is the highest. In the
Poisson-dominant noise condition of the Chest2 image,
where the PSNR was best in PURE-LET, the SSIM was the
best in GAT+BM3D, and in the highly dense noise condition
of the chest3 and chest4 images, the SSIM of the proposed
method was the highest. GAT+BM3D, PG-URE, and the
proposedmethod show uniform improvement in SSIM values
for all noise situations, and PURE-LET has poor SSIM results
in Gaussian-dominated noise condition. As for the average
SSIM value, the proposed method was the best for all of the
images except for the Barbara image where GAT+BM3D is
the best.

D. QUALITATIVE EVALUATION ON SYNTHETIC IMAGES
Fig. 7–10 show the results of noise removal from an image
degraded by Poisson-dominant noise, Gaussian-dominant
noise, moderately dense noise, and highly dense noise,
respectively. The red boxes are enlarged and displayed
in the insets of the images. In Fig. 7, the results of
GAT+BM3D and the proposed method show that the
noise is well suppressed, and the edge and detail, which
are high-frequency components, are also well preserved.
In the case of PURE-LET, the noise was removed; how-
ever, the noise removal performance was inferior to that of
the other methods. The high-frequency components were
not damaged and were very well preserved, thereby result-
ing in sharp results. PG-URE removed most of the noise,
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FIGURE 7. Experimental results for Barbara images corrupted by
Poisson-dominant noise. (a) Original image; (b) Noisy image;
(c) GAT+BM3D; (d) PURE-LET; (e) PG-URE; (f) Proposed method.

FIGURE 8. Experimental results for Chest1 images corrupted by
Gaussian-dominant noise. (a) Original image; (b) Noisy image;
(c) GAT+BM3D; (d) PURE-LET; (e) PG-URE; (f) Proposed method.

but it also damaged the high-frequency components and
exhibited a blurry result. Fig. 8 shows the noise removal
results of Chest1 images dominated by Gaussian noise. The
GAT+BM3D method and the proposed method show sta-
ble results as the case of Poisson-dominant noise. However,
PURE-LET hardly suppressed Gaussian-dominant noise.
As mentioned in Section IV-C, PURE-LET did not have the
gain of Poisson noise in the noise model; thus, when the
Poisson noise parameter was small, the noise removal per-
formance of PURE-LET decreased. PG-URE suppressed the
noise excessively and damaged many details in the process,
resulting in a blurry image, as in the case of Poisson-dominant
noise removal. Fig. 9 shows the noise removal results of Lena
images in which the Poisson and Gaussian noise were mixed
by an appropriate amount. All methods effectively removed

FIGURE 9. Experimental results for Lena images corrupted by moderately
dense noise. (a) Original image; (b) Noisy image; (c) GAT+BM3D;
(d) PURE-LET; (e) PG-URE; (f) Proposed method.

the noise, and GAT+BM3D and the proposed method also
yielded stable results that preserved high-frequency com-
ponents with the noise removal. The results of PURE-LET
showed that high-frequency components were maintained,
and they looked sharp. However, thin edges were damaged
and disappeared, but the only strong edges were preserved.
In the PG-URE results, all the weak edges disappeared, and
the strong edges were also damaged, thereby indicating that
the image was blurred overall. Fig. 10 shows the results of
Chest2–4 image sets for highly dense noise. GAT+BM3D,
PG-URE, and the proposed method show a similar tendency
to the results of other noise environments. PURE-LET per-
formed well for suppressing the noise, but did not effec-
tively recover the high-frequency components from the Chest
image. As shown in Table. 2 and 3, PURE-LET removed
the noise well and shows high PSNR, which indicates the
fidelity of data, but SSIM is lower than the proposed method
because the structure of the image is not well reconstructed.
Because only the differential in the vertical and horizontal
direction was used in PURE-LET, the accuracy in the curve
was relatively low, and the structural part of the result is
restored in poorer performance than the patch-based method
because PURE-LET was based on the pixel-wise method.
The proposedmethod considered the curve structure of image
and applied the patch-base method to restore high-frequency
components. Although the PSNR of the proposed method
shows lower than that of PURE-LET, but the SSIM of the
proposed method exhibits higher than that of PURE-LET.

E. EVALUATION ON REAL X-RAY IMAGE
The algorithms were applied to actual X-ray images. Noise
parameters were estimated from the acquired low-dose X-ray
images, and their values were estimated to be α = 0.4663
and β = 7.2111 for Real1, and α = 0.0337 and β =
10.9457 for Real2. The noise environments of Real1 and
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FIGURE 10. Experimental results for Chest2, Chest3, and Chest4 images corrupted by highly dense noise. (a) Original image; (b) Noisy image;
(c) GAT+BM3D; (d) PURE-LET; (e) PG-URE; (f) Proposed method.

FIGURE 11. Experimental results for real X-ray raw image. First row: results of Real1; Second row: contrast enhanced images of the first row; Third row:
results of Real2; Fourth row: contrast enhanced images of the third row. (a) Noisy image; (b) GAT+BM3D; (c) PURE-LET; (d) PG-URE; (e) Proposed method.

Real2 images were similar to that of moderately dense noise
and Gaussian-dominant noise in the synthetic images, respec-
tively. The noise removal results of real X-ray raw images are

shown in Fig. 11. To confirm the damage and preservation of
the high-frequency components, the contrasts were enhanced
for the denoised images. The performance of GAT+BM3D
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was still good, and PURE-LET exhibited little noise, which
was properly removed, and the high-frequency components
were less damaged, thereby making it easier to identify
the edge compared with other methods. PG-URE did not
suppress much noise for Real1 images, however, effectively
removes noise while preserving high-frequency components
for Real2 image. Finally, the proposed method removed the
noise cleanly, and it effectively restored the original signal
that was corrupted by noise.

V. CONCLUSION
We proposed the LLMMSE shrinkage method in the NSCT
based on noise characteristics using an experimental analysis
and a theoretical approach. The proposed method has a sim-
ilar structure to BM3D, and noise is removed through basic
estimation using shrinkage and a Poisson-Gaussian-oriented
Wiener filter. The NSCT has been used for medical images
that consist of many curves, and the LLMMSE filter was
designed and derived in the form of shrinkage, based on
the noise analysis in the NSCT. The reliability of the
algorithm was improved through a two-step process, and
high-frequency components that may be damaged during
noise removal were preserved as much as possible via
patch-based block filtering.

The results for the artificially synthesized images were
very satisfactory, and the proposed method exhibited the best
or second highest PSNR and SSIM values. It showed con-
sistent performance in all noise environments and recorded
the most evaluated value on average when compared with
other noise removal methods. Experiments on real X-ray
images are also encouraging, because proposed method can
better preserve relevant details while suppressing noise and
smoothing out homogeneous areas.

The NSCT has the advantage of separating the image into
the scale and direction components, but has the disadvantage
that the size of the decomposition and reconstruction filter
increases as the scale level increases, owing to the elimination
of the subsampling process. For a stable noise removal per-
formance, the maximum scale level should be set to M ≥ 3.
If the size of the image is small, there is a possibility that
the NSP may not work well, owing to the large size of the
decomposition filter. Future work will include the use of
transforms other that the NSCT or those with subsampling
to remove noise in small images.
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