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ABSTRACT Metaheuristic algorithms are widely used to solve NP-complete problems in several domains.
Distributed predicates detection is a fundamental distributed systems problem that has many useful appli-
cations. The problem of distributed predicates detection, in general, is known to be an NP-complete
problem. In this paper, we developed a detection algorithm inspired by the particle swarm optimization
algorithm, one of the well-known metaheuristic algorithms applied to solve problems in several domains.
The proposed detection algorithm deal with distributed predicates under the possibly modality. We compared
the performance of the proposed distributed predicates detection algorithm with several other detection
algorithms. The experimental results reveal the effectiveness of the suggested distributed predicates detection

algorithm.

INDEX TERMS Artificial intelligence, computational intelligence, debugging, distributed predicates detec-
tion, distributed systems, monitoring, particle swarm optimization, runtime verification, testing.

I. INTRODUCTION

Distributed predicates detection (DPD) is a fundamental dis-
tributed systems problem. Several researchers have devel-
oped distributed predicates detection algorithms that can
be exploited for several purposes [1]-[6], [6]-[12]. For
example, to implement the following basic command in
debugging, ‘““stop the program when condition C is true,”
in a distributed environment, you can represent condi-
tion C as a distributed predicate, and then you can use
a distributed predicates detection algorithm to detect its
satisfaction [13].

Sensors can provide rich context information for perva-
sive applications that are typically designed to be context-
aware. Context-awareness allows applications to adapt
to the dynamic pervasive computing environments in an
intelligent manner [14], [15]. Detecting distributed pred-
icates over asynchronous computations can be exploited
to achieve context-awareness in pervasive environments
(6], [11], [14], [16].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ziyan Wu

105286

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Owing to concurrency in distributed systems, in which
many processes are running simultaneously, it is generally
challenging to detect a distributed predicate. Concurrency
results in an exponentially large search space for the DPD
problem. In fact, this problem has been already proved to
be NP-complete [13]. The algorithms existing in the litera-
ture for DPD work efficiently for some types of distributed
predicates [13], [17].

Several meta-heuristic based algorithms have been pro-
posed to tackle NP-complete problems. Particle swarm opti-
mization (PSO) is a well-known meta-heuristic algorithm
that has been exploited widely to solve optimization prob-
lems [18]-[24]. In this paper, we will develop a DPD algo-
rithm inspired by the PSO algorithm. In [25], the authors
claim that PSO has the same effectiveness (finding the true
global optimal solution) as Genetic algorithms but with sig-
nificantly better computational efficiency (less function eval-
uations). Compared with other metaheuristic algorithms like
Genetic algorithms, PSO works on two populations. This
allows greater diversity and exploration over a single popu-
lation. For these reasons, we have considered the use of the
PSO algorithm in this research paper.
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The remaining part of this paper involves the following
sections. Section II formally defines the principal terms to be
used during the presentation of this paper. Section III presents
some of the main contributions in the domain of DPD.
An overview of the PSO algorithm is given in Section IV.
After that, the proposed DPD algorithm exploiting the PSO
algorithm will be detailed in Section V. Section VI presents
the results of the experiments accomplished to evaluate the
proposed DPD algorithm. Finally, conclusions and future
works are presented in Section VII.

Il. A FORMAL MODEL

We have dedicated this section to describe the formal model
used to precisely represent a distributed program run. We will
also formally define the terms we are going to use in describ-
ing the proposed distributed predicates detection (DPD)
algorithm.

An asynchronous message-passing distributed program
involves n concurrent processes (Pg, P1,...,Py,—1) con-
nected through a set of channels. These processes do not share
a memory or a clock.

Each process P; executes a sequence of events (ejg, €;1, . . . )
and generates a sequence of local states (s, Si1,-..)-
An event is a result of executing some statement in the
corresponding distributed program. An event moves a process
from one local state to another. A given local state s;; involves
the values of process P; variables, including program counter
(PC), immediately after executing the event that moves pro-
cess P; to local state s;;.

Figure 1 is a graphical depiction of a simple distributed
program’s execution consisting of three processes (P, P1,
and P;). For example, process P; has executed events
(e10, €11, €12, €13) and generates the following sequence of
local states (s19, S11, S12, $13). In Figure 1, small filled circles
are used to depict events and circles are used to depict local
states. s10 is the initial local state of P;. The execution of
event e;; moves process P from local state s1¢ to local state
s11. In the context of our problem, we need only to keep a
record of the variables used in expressing the predicates to be
detected. Consequently, we are not showing all of the details
involved in a local state in general.

A message is depicted as a directed edge connecting the
send and receive events. In Figure 1, the directed edge
between eg; and e means that process Py has sent a message
to process P1. An event ¢ is said to have happened-before
event ey (e — ey) if the corresponding run contains a
directed path going from e;; to ey [26]. In Figure 1, eg9 —
e11. e10 does not happen before ey, and e>g does not happen
before e1g. 19 and eyq are called concurrent events.

A cut (subset) of a given run is called consistent if and
only if the following requirement is fulfilled:

For any two events ¢;; and ey, if ey is in the cut and e;; —
ek, then e;; is also in the cut.

For example, the dashed line drawn in Figure 1 is used
to display a consistent cut involving the set of events

{e0o, eo1, €02, €10, €11, €20}
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A global state comprises one local state from each process.
Namely, it involves the local states reached by executing the
events of a given consistent cut. The consistent cut rendered
using a dashed line in Figure 1 is mapped to a global state G
of the run. The global state G involves the following local
states {so2, s11, $20}- Go = {500, 10, 20} is the initial global
state, and Gy = {s02, 513, $22} is the final global state of the
run in Figure 1. The global states of a run produce a structure
recognized as the state lattice [27].

A distributed predicate is a Boolean expression expressed
using the variables of two or more processes. To check
whether a distributed predicate has been satisfied at some
point in a distributed programs run, we need to keep evalu-
ating the predicate until we find a global state satisfying the
predicate. Figure 2 portrays the DPD environment [17].

The number of possible global states in a given run is usu-
ally huge. For a run with n processes, where each process has
gone through m local states, we will have O(m") global states.
Consequently, DPD is a difficult time-consuming task in gen-
eral. In [13], the authors proved that DPD is an NP-complete
problem in general.

Some researchers have succeeded in developing efficient
detection algorithms for certain types of distributed predi-
cates. More details about these algorithms will be given in
the following section.

IIl. RELATED WORK

There is no efficient general algorithm to detect any dis-
tributed predicate. Researchers have developed several algo-
rithms for detecting certain types of distributed predicates.
A well-known type of distributed predicates that are easy to
detect is called stable predicates. When a stable predicate
becomes true, it will remain true. This property of stable
predicates facilitates the development of detection algorithms
for such a kind of predicates. The global snapshot algo-
rithm presented in [28], [29] can be easily used to detect
stable predicates. Termination and deadlock detection are two
well-known scenarios where we can use stable predicates.

Other researchers exploit the structure of some distributed
predicates in developing efficient algorithms for detecting
certain types of distributed predicates. For example, in [30]
the authors developed an efficient algorithm for detecting
conjunctive predicates. The time complexity of their algo-
rithm is O(n*m) (assuming we have n processes and m local
states in any process).

In [3], [31]-[33], the authors have applied genetic algo-
rithms, harmony search, artificial bee colony, and simulated
annealing to develop DPD algorithms that can be used for
DPD under the possibly modality. The experimental results
demonstrate that these algorithms are more powerful than
classical algorithms based on state enumeration.

In [34]-[36], the concept of computation slicing has been
utilized to reduce the size of the search space to be considered
by the DPD algorithms. A slice of a distributed run concern-
ing a specific predicate is the subset of the global states of
the run that contains the global states in which the desired
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FIGURE 1. A run of a distributed program.

predicates might be true. Consequently, only the global states
of the slice have to be examined throughout the detection
process. As a result, the detection time will be significantly
reduced [34]-[36].

In [37]-[39], the authors have succeeded in exploiting
the concept of atomicity in reducing the size of the search
space to be examined during the process of detecting dis-
tributed predicates. According to their work, there is no need
to consider the local state generated after the execution of
every single event. At an abstract level, a distributed program
executes a number of high-level atomic actions. Each atomic
action involves a set of events. In general, we need to consider
local states generated after executing atomic actions. This
results in a significant reduction in the size of the search space
to be processed by the DPD algorithms.

In this paper, we exploited the well-known particle swarm
optimization (PSO) algorithm in designing an efficient DPD
algorithm. An overview of the basic PSO algorithm and more
details about the proposed PSO-based DPD algorithm will be
addressed in subsequent sections.

IV. OVERVIEW OF THE PARTICLE SWARM
OPTIMIZATION (PSO) ALGORITHM

The particle swarm optimization (PSO) algorithm is
a population-based meta-heuristic algorithm developed by
Kennedy and Eberhart [40]. The PSO algorithm is inspired by
the behavior of the groups of some animals like birds flocks
or fish schools. Each member of the population is referred
to as a particle. Each particle is characterized by its velocity
and position. Algorithm 1 abstractly describes the basic PSO
algorithm which consists of the following steps:

Step 1: The velocity v;, and the position x; of each particle
pi are randomly initialized. The best local position pg reached
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by particle p; is initialized to x; (See step 1 of Algorithm 1).
The position of each particle encodes a possible solution to
the problem under consideration.

Step 2: Compute the best position globally reached by the
swarm p, (See the for loop shown in step 2 of Algorithm 1).
G() is a function that evaluates the goodness of each particle
(How close it is to the optimal solution).

Step 3: The velocity of each particle is updated by (1):

Viitl = Viy + Cm(PfJ —Xit) + Cora(pgr — xip). (1)
where:

t+ 1 means the current time step, t means the previous time
step.

x;; the previous position of particle p;.

v; ¢ is the previous velocity of particle p;.

v;.r+1 the new velocity of particle p;.

pf’t is the best position reached by particle p; in the previous
time step.

VOLUME 9, 2021
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Algorithm 1 Particle Swarm Optimization Algorithm

Step 1: (Initialization)
Randomly initialize v; and x; for each particle p;
for i = 1 to Size of Swarm do
Pf =X
end for

Step 2: (Compute p,)
Pg = X1
for i = 2 to Size of Swarm do
if G(x;) > G(p,) then
Pg = Xi
end if
end for

Step 3: (Update velocity)
Vit+l = Viy + Cir (Pf,t —Xit) + Cora(pg.r — Xit)

Step 4: (Update position)
Xit+1 = Xit + Vir41

Step 5: (Compute pf for each particle p;)
for i = 1 to Size of Swarm do
if G(x;) > G(p') then
Pg =X
end if
end for

Step 6: (Repeat Steps 2 to 5 until the satisfaction of the
termination criteria)

Dg,: 1s the best position reached by the entire swarm in the
previous time step.

Cy and C, are the cognitive and the social parameters
(usually C; = Cy = 2).

r1 and rp are two random numbers between 0 and 1.

Step 4: The position of each particle is updated by (2):

Xip+1 = Xip + Vi1 )

where x; ;41 is the new position of particle p;

Step 5: Update pf for each particle p; (See the for loop used
for this purpose in step 5 of Algorithm 1).

Step 6: Repeat steps 2 to 5 until the satisfaction of the
stopping criteria

In the next section, we will show in detail how we can
exploit the PSO algorithm to design an algorithm for detect-
ing distributed predicates.

V. PSO ALGORITHM FOR DETECTING DISTRIBUTED
PREDICATES

In this paper, we will exploit the particle swarm optimiza-
tion (PSO) algorithm in developing a distributed predicates
detection (DPD) algorithm for predicates under the possibly
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modality. A distributed predicate under the possibly modality
is said to be detected if there is at least one global state of the
run in which the predicate is satisfied [13]. Its is not easy to
adapt the PSO algorithm so that it can be used for solving the
DPD problem. This is the main contribution of this research
work.

Initially, we need to describe the input of the suggested
detection algorithm. The DPD algorithm developed in this
paper works on data collected at runtime. The collected data
are stored in history files.

The distributed program will be instrumented so that
processes will save in a history file the data necessary
to detect the desired distributed predicate. As we have
described in Section II, each process P; executes a sequence
of events (ej, ej1, -..), and generates a sequence of local
states (sj0, Si1, --.). The history file of a process contains
several lines. Each line contains information about one local
state. This information includes the values of the variables
used in the predicate at the given local state and the vector
clock timestamp of the event resulting in generating this
local state. The general format of the history file is depicted
in Figure 3. There are m lines in the file indicating that the
process has generated m local states during the run under
consideration. Each line has the form (k. <timestamp-k>,
{(variable-1, value),...}). Where k is the local state serial
number, timestamp-k is the vector clock timestamp, and
{(variable-1, value),...} is the set of the variables used in
the desired predicate, along with its values at local state
number k.

Process ID: P;

1. <timestamp-1>, { (variable-1, value), ... }
k. <timestamp-k>, { (variable-1, value), ... }

m. <timestamp-m>, { (variable-1, value), ... }

FIGURE 3. The format of the history file generated by process P;. Each
line contains information about one local state of process P;.

The following example demonstrates the above concepts.
Given the run in Figure 1, and assuming that our goal is
to detect the predicate x + y + z = 9. Each process must
generate a history file at runtime containing the necessary
information needed by the detection algorithm. For example,
process P should record, in the history file, information
about the local states that could be part of a global state
satisfying the predicate under consideration. Figure 4 shows
the history files of the processes of the run. These files are
the input to our detection algorithm. For example, the second
line in the history file of process Py is ( 2. <2,2,0>, {(y,10)} ).
This line corresponds to the second local state of P, namely
local state 511 in Figure 1. The vector clock timestamp of this
local state is <2,2,0>, and the value of variable y of process
P at this local state is 10.
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Process ID: Py

History file of | 1-<1,0,0>, {(x, 1)}
process Py |2 <2,0,0>,{(x, 1)}
3.<3,0,0>, {(x, 3)}
Process ID: P4
History file of | 1. <0,1,0>,{(y, 10)}
process P,

1.
2.
3.<2,3,0>, {
4.

(v, 1
<2,2,0>, {(y, 10)}
(2
<2,4,2>, {(y,

Process ID: P,

History file of [ 1. <0,0,1>, {(z, 5)}
process P, |2.<0,0,2>, {(z, 5)}
3.<0,0,3>, {(z, 4)}

FIGURE 4. The set of history files generated by the run presented
in Figure 1. These files contain the input necessary to the proposed
distributed predicates detection algorithm.

In the following subsection, we will start with the detailed
design of the proposed PSO-based distributed predicates
detection algorithm.

A. THE DESIGN OF THE PSO-BASED DETECTION
ALGORITHM

The first task in the design of the PSO-based DPD algorithm
is to define the precise representation of a particle in our
context. In general, a particle encodes a possible solution to
the problem under consideration. In our PSO-based detection
algorithm, a particle encodes a global state in which the
predicate of interest may be evaluated to true. Because each
local state has a serial number in the corresponding history
file, we will use these numbers to represent each global state
encoded by some particle. For example, Figure 5 shows a
particle encoding the global state associated with the consis-
tent cut depicted as a dashed line in the distributed run shown
in Figure 1.

Particle py
X4[0] Xi[1] Xil2]
Xy 3 2 1
Vi[0] Vi[1] Vil2]
Vi 4 3 2

FIGURE 5. An example of a particle in the context of the PSO-based
distributed predicates detection algorithm. This particle encodes the
global state associated with the consistent cut depicted as a dashed line
in Figure 1.

A particle py is an object involving two vectors of length
equals to the number of processes involved in the predicate
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under consideration (3 processes in our simple example).
The first vector x; encodes the position of the particle and
the second vector vy encodes the velocity of the particle.
The first element of the position of the particle p; shown
in Figure 5 (x¢[0] = 3) means that the third local state of
Py is part of the global state encoded by this particle.

Assuming that the size of the swarm is s, the PSO-based
DPD algorithm will initially generate s particles of the form
shown in Figure 5. The position of each particle will be ran-
domly initialized. After that, the algorithm needs to figure out
the position of the particle that represents the best solution
reached so far by the particles in the swarm (the global best
position p,). To accomplish this task, we need to precisely
define the function G() that will evaluate the goodness of a
given particle py. The design of this function will be the next
step in the design of our PSO-based detection algorithm.

Function G() will mainly assign a value to a particle px
indicating whether the global state encoded by this particle
satisfies the intended predicate or not. If the particle satisfies
the predicate, the goodness value assigned to it by the G()
function will be equal to 1. Otherwise, the particle goodness
will be a value greater than or equal to O and less than
1 reflecting how close it is to a particle satisfying the predicate
to be detected. A larger fitness value is better than a smaller
one, because it indicates that the particle is closer to some
global state satisfying the intended predicate.

To illustrate the G() function, we will assume that our goal
is to detect predicates of the form (varg + - - - +var,—1 = C)
in a run of a program involving n processes. var; is a variable
of P;, and C is an integer constant. The G() function will be as
shown in equation (3). It will take the position of the particle
to be evaluated as its input.

1
C) |(Z;:01 value(i, x¢[i], var;)) — C| + 1 ©

G(xy) is the goodness of particle py. xi[i] is the serial num-
ber of the local state of P; involved in the global state encoded
by particle py (See Figure 5). The function value(i, xi[i], var;)
returns the value of var; of P; in local state xi[i]. This value
can be found in the history file generated by process P;.

For example, suppose we are going to check if the run
in Figure 1 satisfies the distributed predicate x+y+z = 9. The
goodness of the particle shown in Figure 5 will be evaluated
according to equation (3) as follows:

_ 1
Gln) = (X2, value(i,x[il,var;))—9]+1

Gx) =

Using the particle shown in Figure 5, we can get the values
of x¢[0], x¢[1], and xx[2]. (xx[0] = 3, xx[1] = 2, and
x[2]=1)

Gx)

1
[(value(0,xx [0],x)+value(1,x; [1],y)+value(2,x;[2],2))—9]+1

1
- |(value(0, 3, x)+value(1, 2, y) + value(2, 1, 7)) —9|+1
Using the history files shown in Figure 4, we can get
the values of value(0, 3, x), value(1, 2, y), and value(2, 1, z).
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For example, to get the value of value(l, 2, y), we need to
access the history file of process P; (see Figure 4), then we
read local state number 2 to get the value of variable y at this
local state. In our example, the value of y at local state 2 of
process Pp is 10. Similarly, the value of x at local state 3 of
process Py is 3, and the value of z at local state 1 of process
P is 5.

1 1
=—=0.1
B3+10+5-9/+1 10

Consequently, the goodness value of particle py shown
in Figure 5 is (0.1).

One strong point of our PSO-based DPD algorithm is the
fact that we do not need to develop an entire algorithm for
different distributed predicates. If we have another distributed
predicate to be detected, we just need few modifications on
the G() function. Other parts of the PSO-based detection
algorithm will remain untouched.

The cut associated with a global state must be a consistent
(see Section II). Hence, not any set of local states form
a legitimate global state. However, since the particles are
initialized randomly, some particles may not encode valid
global states. To deal with this problem, there are several
possible solutions. For example, we can initialize incorrect
particles again randomly until we find a correct initialization.
Another possible solution is to direct the G() function to
assign particles with invalid solutions a very low goodness
value. This will result in ignoring their effect in subsequent
iterations of the algorithm. We will adopt the second solution
in our PSO-based detection algorithm. If the particle encodes
an invalid global state, then the value assigned to it by the G()
function will be —1.

After describing the design of the G() function, we can
now describe the PSO-based detection algorithm in more
details. The PSO-based detection algorithm will start by ran-
domly initializing the particles in the swarm. The position of
each particle will have a dimension equals to the number of
processes in the run under consideration. Element 7 in the
position of a particle corresponds to process P; and will be
randomly initialized with an integer number representing the
serial number of one of P;’s local states.

In the next step, the PSO-based detection algorithm will
initialize the local best position p,l( for each particle py with
an identical copy of the position of the same particle. The
PSO-based detection algorithm will repeat the following
steps until it finds a global state that satisfies the intended
predicate or reaches the maximum number of iterations.

1) The detection algorithm uses the G() function described
above to evaluate the goodness of each particle in order
to find the global best position p,. The global best posi-
tion is the position of the particle whose encoded global
state is the nearest one in the swarm to some global state
satisfying the predicate under consideration. (See step
2 of Algorithm 1)

2) Calculate the new velocity of each particle. We will use
the equation shown in step 3 of Algorithm 1.

G(pr) =
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3) Update the position of each particle. We will use the
equation shown in step 4 of Algorithm 1. Since the
position of the particle in the context of our PSO-based
detection algorithm consists of integer numbers only
(representing local states numbers), we will round the
value of the velocity before updating the position of the
particle. Moreover, the new position may involve local
states numbers outside the range of the local states of a
given process. In this case, the new local state number
is ignored and replaced with a randomly selected valid
local state number.

4) Update the local best position for each particle (See step
5 of Algorithm 1)

An algorithm is sound if, anytime it returns an answer,
the answer is true. Looking at the G() function that evaluates
the goodness of a given particle, we can easily show that the
algorithm is sound. The algorithm returns a solution (a global
state where the value of the distributed predicate of interest
is equal to true) if it found a global state whose goodness
is 1. We are dealing with predicates of the form (varg+ - - -+
varp—1 = C). The goodness function G() returns a goodness
value of 1 only and only if (varg+- - - +var,—1 — C) equals to
zero. And it will be equal to zero only if the intended predicate
(varg+- - -+var,—1 = C)is true. As aresult, if the algorithm
reports that the value of a predicate is true (G() returns 1), its
answer will be true and hence the algorithm is sound.

In the next section, we will present and describe the exper-
iments’ results to evaluate the performance of the PSO-based
DPD algorithm.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS
We have used the Java programming language to imple-
ment the proposed PSO-based distributed predicates detec-
tion (DPD) algorithm. To evaluate its performance we used
the PSO-based DPD algorithm to detect several distributed
predicates of the form (varg+- - -+var,—; = C) where n is the
number of processes, var; is an integer variable of P;, and C is
a constant. We have set the swarm size to 50, C; = C, = 2,
and we have set that max number of iterations to 10°.

We have conducted our experiments on a computer with
Intel(R) Core(TM) i17-3770QM CPU, 3.4GHz with 8GB
RAM. We have considered in our experiments different
runs with different number of processes (50, 75, 100, 125,
150, 175, 200, 225, 250, 275 and 300 processes), and dif-
ferent number of events per process (5000, 10000, and
15000 events). In each scenario, we have executed the
program implementing our PSO-based detection algorithm
200 times. We recorded the average execution time and the
average number of iterations needed to detect a predicate
of the form (varg + --- 4+ var,—; = C). Table 1 sum-
maries the experimental results. For example, given a run with
200 processes and 15000 events executed by each process,
the PSO-based detection algorithm successfully detects the
predicate (varg +vary + - - - +varjg9 = 2000) in 6845ms (on
average).
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TABLE 1. The experimental results of the PSO-based DPD algorithm.

Number of | Number of Events | Time spent
Predicate Processes executed by each | to detect the | Iterations
(n) process (m) predicate/ms
5000 2 16
varg +vary + - - - + varqg = 500 50 10000 2 16
15000 3 17
5000 9 48
varg +wvary + - -+ + varzs = 750 75 10000 10 48
15000 12 55
5000 40 155
varg +vary + - - - + vargg = 1000 100 10000 42 157
15000 45 162
5000 135 430
varog +vary + - -+ +varioa = 1250 125 10000 175 524
15000 193 545
5000 514 1365
varo +vary + - -+ + varige = 1500 150 10000 548 1366
15000 564 1384
5000 1666 3658
varg +vary + - -+ +variz4 = 1750 175 10000 1685 3532
15000 2049 4183
5000 6160 11466
varg +variy + - - - + varigg = 2000 200 10000 6312 11471
15000 6845 12130
5000 17547 28712
varg +vary + - - - + varsss = 2250 225 10000 19502 30253
15000 21255 31612
5000 54849 79406
varog +vary + - -+ + varssg = 2500 250 10000 65700 87560
15000 68409 89480
5000 171790 220488
varo +vary + - -+ +varsra = 2750 275 10000 228949 278299
15000 258755 289577
5000 584557 665015
varog +vary + - -+ + varsge = 3000 300 10000 674581 730073
15000 831917 895353

The detection of the predicate (varg+- - - +var,—1 = C) is
an NP-complete problem in general [36]. Consequently, there
is no polynomial time algorithm for detecting predicates of
this form. The only way to detect it is to go through the global
states of the run until we find a global state satisfying the
predicate. This detection process will be time-consuming and
requires exploring up to O(mm™) global states in the worst case,
where n is the number of processes, and m is the number of
local states at any process (See Section II). For example, in a
run with five processes and 400 local states for each process,
we need more than 2.8 hours to detect the predicate in the
worst case, assuming that we can check 10° global states
every second. Consequently, the developed PSO-based DPD
algorithm has a better performance.

In [36], the authors have developed efficient algorithm
to detect distributed predicates of the form (varg + --- +
vary,—1 = C) under some restricted conditions. Specifically,
their algorithm works efficiently assuming that the predicates
variables are incremented or decremented by at most one
at each step. We have extended our experiments to evalu-
ate the performance of the PSO-Based DPD algorithm in
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detecting distributed predicates under the specified restric-
tions. We have updated our programs to meet the restrictions
imposed on the predicate variables and we have performed
several experiments to compare the results. In fact, the G()
function is the only part of the PSO-Based DPD algorithm
that has to be modified, the remaining parts need not be
changed. This reflects the flexibility of the proposed DPD
algorithm.

The results shown in Table 2 demonstrate that the perfor-
mance of our PSO-Based detection algorithm in detecting
distributed predicates with some restriction has been signif-
icantly improved. We have considered in our experiments
different runs involving (50, 100, 150, 200, 250, 300, 350,
and 400 processes). In each scenario, we have executed the
program implementing our PSO-based detection algorithm
200 times, and we have calculated the average execution
time and the average number of iterations needed to detect
a predicate. For example, given a run with 300 processes
and 15000 events executed by each process, the PSO-based
detection algorithm successfully detects the predicate (varg+
vary + - - - + vargg = 300) in 84ms (on average) assuming
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FIGURE 6. The performance of the PSO-based detection algorithm compared with the performance of

the detection approach based on Genetic Algorithms.

TABLE 2. The performance of the PSO-based DPD algorithm in detecting distributed predicates of the form (varg + - - - + var,_; = c) assuming that the
predicates variables are incremented or decremented by at most one at each step.

Number of | Number of Events | Time spent
Predicate Processes executed by each to detect the | Iterations

(n) process (m) predicate/ms
varg +vary + - -+ +varsg = 50 50 2 13
varo +vary + - -+ + vargg = 100 100 6 19
varg +wvary + - - - + varigg = 150 150 16 34
varg +vary + - - - +varigg = 200 200 15000 24 38
varg +vary + - - - + varsqg = 250 250 63 85
varg +vary + - - - + varagg = 300 300 84 93
varg +vari + - - - + varssg = 350 350 130 109
varg +vary + - - - + varsgg = 400 400 332 232

that the predicates variables are incremented or decremented
by at most one at each step.

We have extended our experiments to evaluate the per-
formance of the proposed PSO-based DPD algorithm on
detecting conjunctive distributed predicates of the form (zy A
f1 A --- A tp—1) where term #; is a local predicate of process
P; (involves only variables of process P;).

To enable the PSO-based DPD algorithm to deal with
such kinds of predicates, the only thing that we need to
modify is the G() function, other parts of the algorithm
will remain untouched. This is one of the advantages of the
proposed PSO-based DPD algorithm compared with other
detection algorithms that work efficiently for specific kinds
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of predicates only. We have modified the G() function so
that it will return the number of terms (local predicates) in
the conjunctive predicate that evaluates to false. A conjunc-
tive predicate is evaluated to true in a given global state if
the G() function returns zero, which means that all of the
terms fo, t1, ..., #,—1 in the conjunctive predicate are true,
and hence, 1o A f; A - -+ A t,—1 is also true.

We have tested our algorithm in detecting conjunctive
predicates of the form (xo > cg A -+ A Xp—1 > cp—1)
where x; is a variable of process P; and cg, ..., c,—1 are
constants. Table 3 demonstrates the results of the experiments
performed to evaluate the PSO-based DPD algorithms on
several conjunctive predicates. We have considered in our
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TABLE 3. The performance of the PSO-based DPD algorithm in detecting distributed predicates of the form (xg > cg AX; > ¢ A+ AX,_1 > €,_1) Where

X; is a variable of process P; and ¢y, ..., c,_; are constants.
Number of | Number of Events | Time spent
Predicate Processes executed by each | to detect the | Iterations
(n) process (m) predicate/ms

(xo > 10Az1 > 10A -+ Ax1g99 > 10) 200 2 1
($0>10/\$1>10/\---/\$299>10) 300 18 15
(o > 10Az1 > I0A -+ Axzge > 10) 400 15000 199 147
(xo > 10Az1 > I0A--- Axage > 10) 500 2469 1525
(xo >10Az1 > 10A -+ Awsg9 > 10) 600 22153 11446

experiments different runs with different number of processes
(200, 300, 400, 500, and 600 processes). In each scenario,
we have executed the program implementing our PSO-based
detection algorithm 200 times, and we have recorded the
average execution time and the average number of iterations
needed to detect a predicate. It is clear from the results that the
proposed algorithm can efficiently detect conjunctive pred-
icates for distributed programs runs with several hundreds
of processes. For example, the PSO-based DPD algorithm
detects the predicate (xo > 10 Ax; > 10 A - -+ A xa99 > 10)
in 2469 ms.

We have implemented the genetic algorithms detection
approach presented in [33], and we have conducted sev-
eral experiments to compare its performance with the
performance of the PSO-based detection algorithm pre-
sented in this paper. Figure 6 shows that the PSO-based
distributed predicates detection algorithm clearly outper-
forms the performance of the genetic algorithms detec-
tion approach [33]. The results in [32], [33] demonstrate
that the genetic algorithms detection approach outperforms
the harmony algorithm detection approach. Consequently,
our proposed PSO-based detection algorithm also outper-
forms the harmony algorithm distributed predicates detection
approach.

The branch and bound (BSB) and the A* search algorithms
are two well-known algorithms that could be exploited in
solving the DPD algorithm. However, the biggest drawback
of the BSB and the A* search algorithms is the exponen-
tial space complexity. The A* algorithm keeps all generated
nodes in memory (to avoid visiting the same node multi-
ple times) and the BSB algorithm keeps the branch tree in
memory. Consequently, when solving problems with expo-
nential search space size, like the DPD problem, you can run
out of RAM before finding the optimal solution. In future
research papers, we will consider developing a hybrid detec-
tion approach in which metaheuristic algorithms are com-
bined with A* and BSB.

VII. CONCLUSION AND FUTURE WORK

The detection of distributed predicates is a highly chal-
lenging problem with practical applications, including con-
text change detection in pervasive environments, testing,
debugging, and monitoring distributed programs. This paper
presents a distributed predicates detection (DPD) algorithm
inspired by the particle swarm optimization (PSO) algorithm
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to detect distributed predicates under the possibly modality
efficiently. The experimental results confirm that the pro-
posed PSO-based DPD algorithm outperforms the traditional
enumerated based DPD algorithm.

In our experiments, we have studied distributed predicates
of the form (varg + --- + var,—1 = C). The current work
can be extended by considering the design and the imple-
mentation of the G() function for other forms of distributed
predicates. Several other experiments can be conducted, and
some parameter tuning techniques can be exploited to find
the best value for each parameter of the PSO-based detection
algorithm to improve its performance. We can also consider
solving the DPD problem using other known metaheuristic
algorithms like monarch butterfly optimization (MBO) [41],
earthworm optimization algorithm (EWA) [42], elephant
herding optimization (EHO) [43], moth search (MS) algo-
rithm [44], slime mould algorithm (SMA) [45], and harris
hawks optimization (HHO) [46]. Moreover, we can consider
the development of detection algorithms for distributed pred-
icates under fine-grained modalities [47], [48].
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