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ABSTRACT Sleep apnea, a severe sleep disorder, is a clinically complicated disease that requires timely
diagnosis for proper treatment. In this paper, an automated deep learning-based approach is proposed for the
detection of sleep apnea frames from electroencephalogram (EEG) signals. Unlike conventional methods of
direct feature extraction from EEG signals, the variational mode decomposition (VMD) algorithm is utilized
in the proposed method to decompose the EEG signals into a number of modes. Use of such decomposed
EEG signals for feature extraction offers efficient processing of the variations introduced in the frequency
spectrum during apnea events irrespective of particular patients. Afterward, a fully convolutional neural
network (FCNN) is proposed to separately extract the temporal features from each VMD mode in parallel
while maintaining their temporal dependencies. The FCNN block utilizes causal dilated convolutions with
increasing dilation rates along with multiple kernel operations in convolutions. Subsequently, for further
exploration of the inter-modal temporal variations, these extracted features from different EEG-modes are
jointly optimized with a stack of bi-directional long short term memory (LSTM) layers. Hence, the trained
and optimized network is capable of generating predictions of apnea frames during the evaluation phase.
Contrary to other studies, this study is carried out in a subject independent manner where separate subjects
are considered for training and testing. Additionally, a semi-supervised approach is explored where for
facilitating better classification performance on a subject’s frames, a small portion of the patient’s data
is included in training to leverage insight regarding the possible environmental variations. Extensive
experimentations on three publicly available datasets provide average accuracy of 93.22%, 93.25% and
89.41% in the subject-independent cross-validation scheme.

INDEX TERMS Sleep apnea, variational mode decomposition, computer-aided diagnosis, neural network,
EEG signal.

I. INTRODUCTION

Sleep apnea is one of the most prevalent and severe sleep
disorders which causes restriction of airflow with repetitive
interruptions of breathing during sleep. According to some
studies, about 5 — 21% of the general adult population are
diagnosed with sleep apnea [1], [2]. The apnea events can lead
to substantial harmful physiological disorders which have
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the potential to develop longstanding sequelae, for instance,
hypertension and cardio-respiratory disorders including heart
attacks [3], [4], impairment of neuropsychological compe-
tence [5], [6], depression [7] and early all-cause mortal-
ity [8]. An increased level of cyclic alternating pattern rate
was observed among apnea patients in [9] leading to possi-
ble impairments in certain cognitive domains. In traditional
polysomnography (PSG), an expert collects numerous physi-
ological signals including electroencephalogram (EEG) from
the patient during sleep, and apneic episodes in the readings
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are later annotated manually. Shortage of sleep centers and
sleep technologists [10] along with the inter-technologist
scoring variability and other man-made errors [11], [12], are
some of the major obstacles in proper diagnosis of apnea.
An automated apnea detection scheme can provide a powerful
tool for circumventing these human errors and infrastructural
shortcomings.

Towards achieving this goal, various physiological sig-
nals, such as oxygen saturation, the variation of heart rate
and respiratory effort along with varieties of bio-signals like
ECG, EMG, and EOG have been used in numerous stud-
ies [13]-[15]. Due to the technical complications and high
expenditures of acquiring multiple bio-signals along with the
rapid development of wearable-wireless EEG acquisition sys-
tems [16], EEG based analysis has received special attention
from researchers in recent times in numerous sleep-related
problems [17]. In [18], the authors proposed Hermite coeffi-
cient based decomposition of EEG signal for apnea detec-
tion using artificial bee colony optimization. De-trended
fluctuation analysis based study of non-linear behavior and
power-law correlations of EEG signal is considered for apnea
detection in [19].

According to [20]-[24], the spectral contents in various
frequency bands of EEG signal are significantly different
during apneic episodes compared to other non-apnea peri-
ods of sleep. Hence, a number of studies have been carried
out to extract effective features for apnea detection from
decomposed EEG data. Depending on the vigilance, fre-
quency spectrum of the EEG signal is traditionally divided
into five frequency bands, namely delta (0.25-4 Hz), theta
(4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz) and beta (16-
40 Hz). Since in these frequency bands there exists variations
in frequency (Hz), amplitude and activity level, in various
applications, such frequency divisions facilitate the feature
extraction process [21], [25], [26]. Delta, theta and alpha
bands correspond to deep sleep, mild sleep and relax state,
respectively, while sigma and beta bands refer to alert states.
In [26], it is shown that during apnea, the energy contents
in various frequency bands change significantly with respect
to non-apnea events, especially, at that time higher-frequency
bands exhibit greater relative energy contribution than that
of lower-frequency bands. In [27], increased delta and beta
activity is reported for the obstructive sleep apnea patients
with high Apnea Hypopnea Index (AHI) compared to the
simple snoring group having lower AHI. In [28], relative
decrease in delta band power is found during the apnea events.
Instead of frequency division, empirical mode decomposi-
tion is also used to analyze the characteristics of the EEG
signal during apnea events. In [22], it is shown that the
use of variational mode decomposition with adaptive cen-
ter frequency surpasses the conventional spectral division of
EEG data with manual band-pass filtering due to its better
capability in capturing the variation of EEG characteristics
induced due to apneic events. All these approaches depend
on complicated statistical hand-crafted feature extraction
process, such as subframe based entropy and log-variance
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extraction [21], [22], transition of inter-band energy con-
tribution extraction [20], and different spectral band ratio
monitoring [20]. Nevertheless, it becomes extremely difficult
with these manual, hand-crafted schemes to incorporate the
most optimum features from various complex temporal and
inter-modal relationships of EEG data.

To the best of our knowledge, all other studies have been
carried out in a subject-dependent manner where informa-
tion of each subject is used for both training and testing
which severely limits the applicability of these schemes
in real-life test scenarios with unknown subjects. In this
paper, a subject-independent automated approach is proposed
for detection of apnea frames where a customized deep
convolutional-BiLSTM neural network is used for efficient
feature extraction from the EEG signal. Rather than using
the raw EEG signal, the pre-processed signal is decom-
posed into a number of modes using variational mode
decomposition (VMD) algorithm for adaptive variations in
center-mode frequencies. Instead of extracting hand-crafted
features from the VMD-decomposed EEG data, a deep fully
convolutional network (FCNN) is proposed to independently
extract the complex temporal features from each EEG-mode
separately. During this operation their causal relationships
are maintained in large-time windows using causal dilated
convolutions. These FCNN modules project the temporal
information of each EEG-mode into a smaller subspace
that contains more generalized variations of features relat-
ing apnea episodes utilizing multiple kernel convolutions
for efficient pooling. Thereafter, a stack of bi-directional
long-short term memory (BiLSTM) layers is introduced
to process the outputs of all FCNNs together for explor-
ing the inter-modal temporal feature variations in different
VMD modes. The whole process is schematically shown
in Fig. 1. This approach automatically extracts the com-
plicated temporal and inter-modal feature relationships of
the EEG data that are mostly supposed to be affected dur-
ing apnea events. Intensive experimentations carried out in
a subject-independent manner provide outstanding perfor-
mance that proves the robustness of the proposed scheme for
real-world applications.

Il. PROPOSED METHODOLOGY

The proposed scheme consists of a number of operations for
precise recognition of apnea events. All of these are discussed
in detail in the following subsections.

A. FRAME CREATION AND PROBLEM FORMULATION

The raw sampled and digitized EEG signals collected from
patients are divided into a number of frames of uniform length
to facilitate the processing with deep neural network. Frames
are created with a predefined length from the continuous
EEG data and its corresponding label is assigned according
to the annotated apnea label at the middle of the respec-
tive frame. Subsequently, a predefined shift is considered in
between subsequent frames to introduce overlapping samples
in-between frames. Such overlapping increases the number
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FIGURE 1. Schematic representation of the proposed workflow.

of available frames that can be used for training. Moreover,
larger frame length can be considered for exploring long
term dependencies of temporal features without a significant
reduction in the number of training frames by increasing
overlapping ratio. However, shorter frame length can also be
used with a smaller overlapping ratio between subsequent
frames.

Let’s consider the set of extracted EEG frames as, D =
{xj,yDl i = 0,1,2,..., N — 1}, where x; denotes the iy,
frame with corresponding label of y;. All the frames and
labels are extracted from the raw signal X and annotation
vector Y, respectively, which can be represented by

x[L2,.. ] =X[A+sxi),....,L+sxi+ D] (1)
yi=Y[1+(s*i)+1/2]
Vie{0,1,2,...,N — 1} 2)

where [ denotes the length of each frame, s is the frame
shift, and N is the total number of frames. Hence, smaller
shift, s, between subsequent frames will increase overlapping
samples between frames.

A neural network model will be trained using these
extracted frames and corresponding labels. Hence, a binary
cross entropy loss function(.Z’) can be defined that will be
optimized in training stage for generating correct predictions
from the neural network, which is given by

1 n _ _
L(w) = —;[gwn(yiw (1 —y)In(l —y»}
+izw2 3)
2n =~
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where 7 is the total number of samples in a batch, w denotes
the weight vector, y; and y; are the actual label and generated
prediction, respectively, for the iy, input, and A is the regular-
ization parameter adjusted for reducing overfitting.

During the evaluation phase, the trained and optimized
model is used to generate predictions about occurrence of
apnea in a frame by frame basis. For every case, the frame
is labelled according to the annotation of the mid-sample of
EEG frame.

B. VARIATIONAL MODE DECOMPOSITION (VMD)
As the apnea events lead to some complicated neurological
activities, these may excite the patient in sleep to balance out
the abnormalities. Hence, some random variations of spectral
contents can be introduced in the EEG signals of different
apnea patients. The time domain representation of the EEG
signals doesn’t provide the effective representation for detect-
ing the apnea events restricting the improvements in recogni-
tion accuracy. Neurological activity of the brain changes from
non-apnea to apnea episodes and this can cause significant
variation in the various frequency bands of EEG signal which
are difficult to observe and capture in the raw time domain
signal. The dominant frequencies in these frequency bands
caused by the neural activities can be expected to shift with
time and depending on the person. Such limitations can be
overcome by using a dynamic band division with adaptive
center frequencies which can be achieved by using variational
mode decomposition (VMD) algorithm [22]. Since VMD
decomposes EEG into modes whose center frequencies are
adaptively determined, these modes can better follow the fre-
quency shifts and offer an improved representation of the
apnea related neural variations. Hence, VMD facilitates the
optimization process of the deep neural network for converg-
ing to the optimal solution by extracting more effective fea-
tures. Moreover, VMD increases the computational overhead
minimally to gain better performance compared to the end-
to-end deep learning approaches.

As proposed in [29], VMD decomposes an input signal,
¥(t), into predefined N number of principal modes, m;(t),
which is given by

N
W)=Y mi(t) “)
i=1

These modes are dynamically determined to minimize the
sum of bandwidths of all modes while reconstructing the
input signal at the same time in least squares sense through
the addition of modes. Hence, the constrained variational
optimization problem becomes

N .
: . J . —joit
{ml;l}]’l{l‘cloi} : { Z 8,[(80) + 7”) *m,(t)i|e 2} ®)

i=1
where m; and w; denote the i;; mode function and its corre-
sponding center frequency, respectively.
However, several recording environmental conditions
along with varying neurophysiological characteristics at
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different sleep stages may cause misleading amplitude con-
trast in-between frames of different subjects. These issues
can be overcome by carrying out DC offset removal followed
by amplitude normalization at the pre-processing stage. After
that, the variational mode decomposition algorithm is incor-
porated to split each frame into number of modes that are
processed later using the proposed neural network.

C. PROPOSED DEEP NEURAL NETWORK

As shown in Fig. 1, the proposed deep neural network archi-
tecture consists of three separate sub-networks: a fully con-
volutional neural network, a bi-directional LSTM network,
and densely connected layers. Firstly, each mode of EEG
frame obtained from the VMD is processed separately using
a fully convolutional neural network (FCNN). Number of
such FCNNs are used in parallel to extract the temporal
feature variations from each mode separately. These opera-
tions transform the feature space of each mode into a com-
paratively low temporal dimension while maintaining the
causal temporal relationships among the extracted features.
This process facilitates the extraction of the general trends
of unimodal feature variations that are supposed to occur
during apnea events irrespective of patients. Though dividing
the raw EEG frames into number of modes with adaptive
center frequencies facilitates the temporal feature extraction
of apnea events, significant inter-modal temporal relation-
ships exist among these modes. Hence, output feature maps
obtained from each FCNN module operating with different
modes of EEG-frames are subjected to processing together.
Later, a multi-layer bi-directional long short term memory
network (BiLSTM) is being fed with these temporal feature
maps obtained from different FCNNs. This module operat-
ing with multi-modal features of EEG frames extract high
dimensional inter-modal temporal features that are supposed
to vary during apnea events. Eventually a combined feature
vector is generated from the BiLSTM module that contains
generic feature representation of all the modes of the corre-
sponding EEG frame. This feature vector is processed with
series of densely connected layers that extract the general
representations among extracted features to converge towards
the final prediction of apnea event. Detailed architectural
analysis of all these sub-networks is provided in the following
discussion.

1) PROPOSED FULLY CONVOLUTIONAL NEURAL NETWORK

(FCNN)

All the operations in the proposed FCNN can be divided into
two blocks of operations in general, which are: causal dilation
block and multi-kernel block (Fig. 2). At any instant of the
EEG signal, all the previous history of the EEG signal should
be taken into consideration to distinguish the neurological
activity pattern that instigates the apnea event. Furthermore,
for proper recognition of the apnea event, the variations of
the EEG signal should be analyzed over a longer tempo-
ral window. As short-term fluctuations at various stages of
sleep may lead to improper recognition of apnea events,
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FIGURE 2. Proposed Fully Convolutional Neural Network (FCNN) with k
number ‘Causal dilation block’ and ‘m’ number ‘Multi kernel block’. Here,
(filter@kernel size) represents the number of filters and kernel size in
each convolution.

EEG signals should be analyzed from different range of
observations. Both of these objectives are incorporated in the
‘Causal Dilation Block’ (CDB) utilizing a series of dilated
causal convolutions. As causal convolution operation at any
time instant takes into consideration all the previous his-
tory [30], it achieves the first objective. However, a very deep
architecture is needed to achieve a large receptive field by
only using causal convolution. Hence, by utilizing dilated
convolution, the receptive area can be increased by a large
margin (shown in Fig. 3). Causal dilated convolutions are
widely used in numerous speech related applications relating
speech generation, denoising and many others, where the
context is to be extracted from large window [31], [32]. If the
input signal corresponds to x € R” and the filter of length k is
represented by, f : {0, 1, ...,k — 1} — R, the causal dilated
convolution operation F' on any element s is given by

k—1
F(s) = (x#a )(8) = Y _ () Xsa)i (6)
i=0
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where *; denotes the causal dilated convolution with dilation
rate of d and (s — d) represents the causal convolution with
previous time stamps. Hence, the effective receptive area
in one such layer is (k — 1)d. The dilation rate is varied
exponentially with (d = 0(2Y) at the i-th block.

In each of such block, two causal dilated convolutions are
done in series with application of parametric rectified linear
unit (PRelu) [33] as nonlinear activation function followed by
normalization operation, where

PRelux) = | 1Tx =0 %)
ax, otherwise

Here, « is the slope used for mapping negative input values.
In this study, & = 0.2 is chosen for its faster convergence.

If f; is the output feature map obtained from the i, CDB
block, a residual output, R;, is also generated that will be fed
to the following CDB block which can be represented by

Ri=f+Ri_1 Vi={1,2,...,k} ®)

where Ry = x; is the input signal and k is the total number
of causal dilation blocks. Afterward, a combined output, F,
is generated combining the features extracted using each of
the CDB unit blocks that can be expressed as

k
F=)f ©)
i=1

After processing with number of causal dilation blocks,
the input dataframe of corresponding EEG mode is trans-
formed to a resultant feature map that contains numerous
extracted features containing diverse temporal relationships.
However, the temporal dimension of this feature map is kept
as same to the input dataframe which should be reduced fur-
ther to extract the more general unimodal temporal features.
Thus, multi kernel block (MKB) is proposed to reduce the
temporal dimension of the feature map while performing con-
volution operations with multiple kernels in parallel. Here,
average pooling operation is carried out in between convo-
lutions with different kernels in parallel that helps to incor-
porate diverse temporal contexts in the pooling operation.
Subsequently, all these pooled and convolved feature maps
are converged together with another convolution operation
that extracts the general variations. Hence, output from each
of the MKB units can be generalized as

O; = H(h1(O-1), 01), h2(O(i-1y, 62), h3(O(i-1), 63), On)
Vi={1,2,...,m} (10)
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where Oy = F; hy, ha, h3 represent convolutions with tem-
poral kernels of size 1, 3 and 5, respectively; H represents
the combined convolution while 61, 6;, 63, and 8y are their
respective parameters, and m is the total number of such MKB
units. After passing through series of multi kernel blocks,
the transformed feature map will incorporate more and more
generalized unimodal features with reduced temporal dimen-
sions. Finally, an output feature map is obtained from the final
multi-kernel block that contains the generalized temporal
representation of a particular EEG mode.

2) PROPOSED BIDIRECTIONAL LONG SHORT-TERM
MEMORY NETWORK (BILSTM)

The extracted generalized sequential representations of the
modes of the EEG frame obtained from the FCNN module
are processed together with the bidirectional LSTM network
(shown in Fig. 4). LSTM units [34] are proven to extract
long term temporal dependencies used in numerous sequence
processing applications. Generally, processing in traditional
LSTM units depend on the output of previous units and
information flows in one direction. Its improved variant is the
bi-directional LSTM units where two such layers of LSTM
memory cells process the sequence simultaneously in oppos-
ing directions [35]. In many applications, such operations
provide more temporal context over a longer time frame.
In the proposed BiLSTM module, two of such bidirectional
LSTM layers are stacked together. Generalized variational
features of different EEG modes undergo through further pro-
cessing with these LSTM layers that extract effective features
of higher levels considering long term inter-modal temporal
dependencies.

Hence, both the first forward and backward pass layer
process the feature sequence {xi, x2,...,xy} produced by
the FCNN blocks simultaneously. Each basic LSTM unit cell
is comprised of three special data manipulating structures
known as input, forget and output gate as outlined in Fig. 4b.
Here, o and tanh denote the logistic sigmoid and hyperbolic
tangent activation functions, respectively. The relations used
for calculating hidden state &; of a forward layer are given as
follows:

— =N - = —
ir =o(Wix X+ Winhe1+ b)) (11)
— - - — —

Jr =oWx X +Wgh1+ by) (12)

=2 — - - —

C,=tanh(Wex X+ Wep hm1 + be)  (13)

— — - =2
¢i=Ff0C+7,0C, (14)

N —

0 = o(Woxx + Woh h -1+ bo) (15)
7 =3, 0tanh(T,) (16)

In our stacked model, hidden states of first forward layer
and backward layer are concatenated and passed on to both
the secondary forward and backward LSTM layers for more
processing of inter-modal temporal relations. These sec-
ondary hidden layers further explore the feature space to pro-
duce a sequence of feature vectors for forward and backward

102359



IEEE Access

T. Mahmud et al.: Sleep Apnea Detection From Variational Mode Decomposed EEG Signal

Output layer

Addition Layer

Concat
Second Forward Layer

Cus

Second Backward Layer

Concat

s}o0ig WIS

First Backward Layer

tanh
Layer d2

o tanh

Input layer X

(a)

Layer d1

(b) ©

FIGURE 4. Schematic representation of (a) the proposed double layer bidirectional LSTM network, (b) LSTM unit block, and (c) densely connected layers.

pass layers, respectively. Finally, after concatenating cor-
responding feature vectors obtained from each secondary
forward and backward pass LSTM unit, all of these feature
vectors are added together to produce the final output feature
vector. Therefore, stack of bidirectional LSTM layers con-
verge all the temporal inter-modal features of different modes
of respective EEG frame into a resultant feature vector that
contains the global temporal representation of that particular
frame.

3) DENSELY CONNECTED LAYERS AND CLASSIFIERS

The resultant temporal feature vector is needed to be con-
verged into the final prediction of apnea incident. Series
of densely connected layers are used to exploit the global
relationships across all the extracted temporal features as
shown in Fig. 4c. This can be given by

di=ocWidi—1 +bij) Viell, 2,3} a7

where d; represents the output of the i-th densely connected
layer with W; weight matrix and b; bias vector, o represents
the activation function and dyp is the input feature vector.
In total, three densely connected layers are stacked in series
for converging the output feature vector of stacked LSTM
units toward the final prediction. Finally, the output obtained
from the final densely connected layer with single node is
mapped into the final prediction using sigmoid activation
function, which is given by

sigmoid(x) =

18
14e* (18)
IIl. RESULTS
In this section, results obtained from extensive experimenta-
tion on various publicly available databases will be discussed
and analyzed from diverse perspectives.

A. DATABASE

The proposed method was applied on three public datasets
to validate the applicability and robustness of the proposed
scheme in subject independent scenario.
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1) ST. VINCENT's UNIVERSITY HOSPITAL/UNIVERSITY
COLLEGE DUBLIN SLEEP APNEA DATABASE [36]

This is a large publicly available database used in a num-
ber of other studies. It contains overnight polysomnogram
recordings of 4 female and 21 male patients with various
Apnea-Hypopnea Index (AHI). The signals were obtained
using the Jaeger-Toennies system (Erich Jaeger GmbH, Ger-
many). EEG recordings were collected at 128 Hz. Starting
and ending of all the apnea events are manually annotated in
the polysomnogram recordings by sleep specialists according
to standard scoring rules [37]. Although the dataset con-
tains various common physiological signals for every patient
including EOG, EMG, and EEG, we have focused solely
on EEG for its ease of collection without disturbing the
patient during sleep, and decomposed the signal after dc
offset removal and normalization of the data.

2) YOU SNOOZE YOU WIN - THE PhysioNet COMPUTING IN
CARDIOLOGY CHALLENGE 2018 [38]

Data for this challenge were contributed by the Massachusetts
General Hospital’s (MGH) Computational Clinical Neuro-
physiology Laboratory (CCNL), and the Clinical Data Ani-
mation Laboratory (CDAC). The sleep stages of the subjects
were annotated by clinical staff at the MGH according to
the American Academy of Sleep Medicine (AASM) manual.
In line with the objective of this paper, only the EEG signals
were extracted and pre-processed by removing DC offset and
normalizing. In this database, the collected EEG signals were
sampled at a rate of 200 Hz.

3) MIT-BIH POLYSOMNOGRAPHIC DATABASE [39]

This database is a collection of recordings of multiple phys-
iologic signals during sleep. Subjects were monitored in
Boston’s Beth Israel Hospital Sleep Laboratory for evaluation
of chronic obstructive sleep apnea syndrome. It contains over
80 hours’ worth of polysomnographic recordings, each with
an ECG signal annotated beat-by-beat, and EEG and respira-
tion signals annotated with respect to sleep stages and apnea.
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For our study, only the EEG signals were extracted from the
dataset which had been digitized at a sampling rate of 250 Hz.

In this study, all the annotated apnea-hypopnea events
are considered as apnea. The extensive size and wide range
of AHI observed among the patients recorded in all the
above-mentioned datasets provide adequate opportunity for
extensive experimentation.

B. EXPERIMENTAL SETUP
Different hyper-parameters of the network are chosen through
experimentation for better performance. Adam optimizer is
employed for optimization of the network during training
phase. Intel® Xeon® D — 1653N CPU @2.80GHz with
12M Cache and 8 cores along with 48 GB RAM is used
for experimentation. For hardware acceleration, 1x NVIDIA
RTX 2080 Ti GPU having with 4608 CUDA cores running
1770 MHz with 24 GB GDDR6 memory is deployed.
Subject-independent k-fold cross-validation scheme is
employed for evaluation of performance measures. In this
scheme, total number of patients is divided into k-subfolds.
Hence, in a single stage, all the patients in (k — 1) subfolds
are considered for training while the patients in the remaining
subfold are used for evaluation by applying the optimum
model for the subfold. This process is repeated for k times
such that each patient is considered in one of the test-folds
and finally, the performance measures are averaged.

C. PERFORMANCE EVALUATION

Traditional metrics are used for evaluating the performance
of the proposed scheme, such as accuracy, sensitivity and
specificity as described in equations below:

TP + TN
Accuracy (Acc.) = x 100 (19)
TP + FP + TN + FN
Sensitivity (Sen.) = ———— x 100 20
ensitivity (Sen.) TP+FNX (20)
Specificity (Spec.) = ———— x 100 21
pecificity (Spec.) TN + FP X 21)
TP
F1 Score = ———— (22)

TP + (FP + FN)

Since a number of empirical parameters are used in the
proposed scheme, all the experimentations are carried out
in a systematic way to achieve the optimum value of dif-
ferent parameters. The raw EEG signals are divided into
number of frames with uniform length and overlapping in
between subsequent frames. With an increase of frame length,
the EEG frame contains information over a larger interval
that facilitates the apnea detection process though it increases
computational complexity along with. Taking both issues into
consideration and depending on the available ground truth,
the proposed method employs a relatively large frame length
of 10 seconds for database [36], [38] and 30 seconds for
database [39].

In the subject-independent cross-validation scheme, some
frames of different patients are considered in the train-
ing and evaluation fold. Results obtained from different
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cross-validation schemes with the varying number of folds
are summarized in Table 1. With an increasing number of
folds, more data are available for a single training stage that
provides better performance. It should be noticed that the best
performance is achieved in the leave-one-out cross-validation
scheme. However, considerable performance is achieved even
with a 3-fold cross-validation scheme that contains a sig-
nificantly smaller number of data for each training stage
compared to the best performing leave-one-out scheme. This
proves the robustness of the scheme that can learn the rep-
resentations of apnea events using a significantly smaller
amount of training data.

TABLE 1. Performance of the proposed method in different
subject-independent cross-validation schemes.

K-fold Accuracy Sensitivity Specificity F1 Score

3 fold 90.04 89.29 90.84 0.9020

7 fold 91.01 91.19 89.95 0.9086
Leave one out 93.22 91.71 93.79 0.9276

Each frame of EEG data is decomposed into a number
of mode-functions that are processed in parallel and the
extracted features from each mode are jointly optimized later.
In Table 2, the effect of the traditional bandpass filtering
decomposition method of EEG data is compared with the
VMD along with the no decomposition of raw data. The
results reported in the first row of Table 2 correspond to
the proposed end-to-end DL architecture without utilizing
the VMD, which is denoted as Proposed Method (only end-
to-end). The results reported in the second and third rows
of Table 2 correspond to the combination of the proposed
end-to-end DL network with the bandpass filtering decom-
position and the VMD, respectively, denoted as Proposed
Method (end-to-end with bandpass) and Proposed Method
(end-to-end with VMD). It should be noted that adaptive
VMD provides higher average accuracy compared to the tra-
ditional scheme of band-pass filtering and no-decomposition,
respectively, when these are integrated with the proposed
scheme. Such improvements signify the effectiveness of the
use of VMD in combination with the traditional end-to-end
deep learning approaches. As the VMD adaptively adjusts
the mode center frequency, it provides more opportunity
to extract the general feature variations in the EEG signal
introduced for the apnea events in the patient-independent
scenario.

TABLE 2. Effect of different eeg band decomposition schemes on the
proposed method.

Proposed Method Acc. Sen. Spec. | F1 Score
Only end-to-end 91.83 | 89.22 | 91.85 0.9060
End-to-end with Band Pass 90.2 89.45 86.65 0.8850
End-to-end with VMD 93.22 | 91.71 | 93.79 0.9276

In Fig. 5, the effect of the number of variational mode
functions (VMFs) that are used in the VMD algorithm is
shown. It is clearly visible that with the increasing number
of mode functions, the proposed scheme seems to perform
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TABLE 3. Subject-specific cross-validation performance obtained using
proposed method (database- [36]).

TABLE 4. Subject-specific cross-validation performance obtained using
proposed method (database- [38]).

Patient ID Accuracy | Sensitivity | Specificity | F1 Score Patient ID | Accuracy | Sensitivity | Specificity | F1 Score
UCDDB002 92.79 93.59 91.85 0.93397 tr03-0005 87.77 68.42 99.75 0.81
UCDDB003 92.34 96.67 87.62 0.92925 tr03-0029 98.62 90.00 99.33 0.91
UCDDB005 94.92 92.43 97.51 0.94888 tr03-0078 94.81 91.50 97.53 0.94
UCDDB006 92.77 94.27 90.53 0.93986 tr03-0079 89.02 95.89 83.81 0.88
UCDDB007 90.6 92.58 89.33 0.88503 tr03-0083 94.83 94.20 96.68 0.96
UCDDB008 95.06 91.67 98.72 0.95062 tr03-0086 93.35 90.35 95.74 0.92
UCDDB009 93.77 83.41 98.94 0.89911 tr03-0087 92.75 79.55 96.64 0.83
UCDDB010 96.31 97.51 87.11 0.97908 tr03-0092 91.73 98.20 72.13 0.95
UCDDBO011 88.81 87.18 89.17 0.73913 tr03-0100 93.66 68.12 98.95 0.79
UCDDB012 93.14 85.78 99.05 0.91763 tr03-0103 97.92 100.00 97.64 0.92
UCDDB013 98.52 96.70 99.76 0.98150 tr03-0134 90.41 99.35 80.34 0.92
UCDDB015 96.29 90.50 99.12 0.94118 tr03-0135 89.90 84.48 96.64 0.90
UCDDBO017 96.82 96.61 97.00 0.96614 tr03-0141 89.95 85.86 95.73 0.91
UCDDB019 94.08 87.64 99.20 0.92914 tr03-0146 87.90 95.48 83.21 0.86
UCDDB020 88.46 89.89 86.57 0.89842 tr03-0152 98.13 97.93 98.44 0.98
UCDDB021 90.27 85.78 96.41 0.91057 tr03-0166 95.07 91.83 98.44 0.95
UCDDB022 95.26 94.76 95.58 0.94090 tr03-0167 94.49 97.33 79.03 0.97
UCDDB023 93.82 98.14 90.32 0.93441 tr03-0179 95.81 98.90 93.76 0.95
UCDDB024 94.70 97.88 91.02 0.95196 tr03-0184 89.32 95.94 83.64 0.89
UCDDB026 93.28 88.44 97.90 0.92779 tr03-0187 90.99 88.03 93.52 0.90
UCDDB028 85.52 84.39 86.78 0.86014 tr03-0212 95.76 99.04 71.43 0.98

Average 93.22 91.71 93.79 0.9276 tr03-0216 97.89 97.71 98.30 0.98
tr03-0241 89.53 92.65 80.49 0.93
tr03-0251 97.73 98.45 97.07 0.98
% tr03-0256 91.52 48.51 98.82 0.62
o tr03-0257 93.30 94.12 90.07 0.96
tr03-0267 95.64 95.59 95.70 0.96
2o Average 93.25 90.28 91.59 0.91
‘j“é
é 20 TABLE 5. Subject-specific cross-validation performance obtained using
g .  Accuracy proposed method (database- [39]).
g 9¢ W Sensitivity
E Specificity Patient ID | Accuracy | Sensitivity | Specificity | F1 Score
586 slp01 95.04 83.78 100.00 0.91
slp02 89.66 83.53 98.33 0.90
84 slp03 90.38 92.27 86.08 0.93
slp04 96.88 97.28 95.79 0.98
82 ) ] slp14 94.67 96.20 93.33 0.94
} t > 0 sIp16 8791 93.40 77.98 091
VME Number sIp32 82778 36.67 77.05 0.86
o ) o sip37 99.08 100.00 98.09 0.99
FIG;JR: 5. \_Iarlatlonl;l:f ?erf:rmance fodr dlf;erent number of variational SIpds 8671 3950 7821 001
mode functions (VMFs) in the proposed scheme. SIp59 39,06 3736 5303 003
slp60 92.36 85.42 95.41 0.87
slp61 74.60 61.38 93.20 0.74
. . . slp66 90.25 89.60 91.35 0.92
bf:tter and the best performance is attained with 5 modes. For SIp67 3335 9310 7136 083
higher number of modes, performance gradually decreases Average 89.41 89.24 87.30 0.90

for introducing frequent variations in mode-frequencies
which make it difficult to adapt in the patient-independent
scenario.

Performance of the proposed scheme on different subjects
in the subject-independent leave-one-out cross-validation
scheme for databases [36], [38] and [39] are provided
in Tables 3, 4 and 5, respectively. After close observation
of all the performance metrics obtained for different sub-
jects, it is to be noted that the proposed scheme provides
consistent performance irrespective of the subjects. It further
proves the robustness of the method that provides significant
performance even for unknown subjects in evaluation-phase.
Moreover, all the evaluation metrics provide comparable per-
formance that represent the balanced performance of this
scheme in both apnea and non-apnea frames.
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Stack of bidirectional LSTM layers is introduced for fur-
ther processing of the temporal features obtained from the
FCNN module with different modes. In Table 6, the effect
of different number of nodes in the LSTM units of each
bidirectional LSTM layer is investigated and summarized.
The model provides optimum performance in most cases with
128 and 256 nodes in the LSTM units of first and second
Bi-LSTM layers, respectively. With more number of nodes,
the LSTM units employ more memory units that can extract
longer temporal dependencies of inter-modal features. How-
ever, with a large number of nodes, the network gets more
intricate as well which makes the convergence difficult for
vanishing gradient and overfitting issues.
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TABLE 6. Effect of different number of nodes in the stack of bidirectional
LSTM layers.

Node Number | Accuracy | Sensitivity | Specificity | F1 Score
[128, 256] 93.22 91.71 93.79 0.9276
[128, 128] 92.39 92.53 92.37 0.9264
[256, 256] 92.60 90.51 92.36 0.9154

After complete training and optimization, apnea frames
are predicted for each unknown subject. The conditions
affecting the quality of collected EEG signal may be quite
different for each sleep center and the staff administering
the process introducing difficulty in apnea prediction. Fur-
thermore, naturally each subject exhibits unique biological
and physiological characteristics leading to variations in the
phenomena experienced during sleep apnea events. These
changes may not be properly reflected in networks trained on
other patients. Incorporating these patient specific informa-
tion into the scheme can help the network to adapt and tailor
its response to better accommodate each subject. Though in
clinical scenario this would require manual annotation of a
segment of the data, this can still reduce the burden on pro-
fessionals and speed up the diagnosis process significantly.
To explore this effect, a semi-supervised approach is explored
where in the training phase, 30% and 50% of the data of
the subject under consideration is included. As illustrated
in Table 7, the insights gained from the new data boosts
the prediction capabilities of the network. Utilizing a larger
portion of the newly recruited subject’s data is not feasible.

TABLE 7. Effect of overlap of test subjects in the training set.

Overlap | Accuracy | Sensitivity | Specificity | F1 Score
0% 93.22 91.71 93.79 0.9276
30% 94.88 94.53 93.19 0.9406
50% 95.54 95.35 93.00 0.9440

In Table 8, the proposed scheme is compared with other
state-of-the-art methods of automated apnea detection using
singular channel EEG based schemes. While considering
the comparisons, it must be noted that most of these
approaches reported performance in a subject-dependent
manner keeping data from same subject in training and testing
set. These approaches are generally based on handcrafted
feature extraction process along with traditional shallow
classifier that makes the apnea detection task very diffi-
cult in a subject-independent scenario. As these features
undergo significant variations with random perturbations of
the high-frequency EEG data due to noises and other arti-
facts, such hand-crafted features aren’t enough to extract
the general feature variations that are introduced for apnea
events. Bhattacharjee ef al. used traditional band division of
EEG data [21] as well as VMD [22] with rician modeling of
entropy and log-variance features and proved the precedence
of VMD of EEG signal while detecting apnea. However, it is
to be noted that such handcrafted feature extractors aren’t
enough to provide considerable performance. Zhou et al. [19]

VOLUME 9, 2021

TABLE 8. Comparison with other existing approaches.

Average Average Average

Methods Accuraq%(%) Sensitivit%l( %) Speciﬁcit?f(%)
Zhou et al. [19] 59.98 55.39 65.21
Wafaa et al. [41] 67.92 51.18 81.77
Bhattacharjee et al. [22] 80.18 85.38 74.19
Tanvir et al. [40] 88.22 85.52 88.97
Proposed (end to end) 91.83 89.22 91.85
Proposed 93.22 91.71 93.79

introduced a unique method to predict sleep apnea by
analysing detrended fluctuation for feature extraction. This
unique method also suffered from similar limitations. In our
previous work [40], an end-to-end fully connected convo-
lutional network incorporating residual units was proposed
to automate the feature extraction process using full band
EEG data. By using the end-to-end network, it provides
better performance than [19], [41] and [22], thereby proves
the advantage of deep learning in the prediction of sleep
apnea. However it has lack of architectural variations in the
CNN module to process the long term temporal variations
of apnea events in EEG data along with the additional com-
plexity of operating with EEG data in raw form. Due to
the application of more sophisticated architectural blocks
along with Bi-LSTM modules, the proposed end-to-end DL
network outperforms the previous approaches even without
using the VMD. However, It is clearly observed that the
proposed method (end-to-end DL with VMD) provides the
best achievable performance in all of the evaluation metrics
compared to the other approaches reported in the table. To be
precise, the sensitivity has been improved by more than 2%
which is significant for any disease diagnosis scheme.

IV. DISCUSSION
In this study, an automated sleep apnea frame detection
scheme is proposed using a deep fully convolutional-BiLSTM
neural network for the subject-independent test scenario.
It outperforms the existing apneic frame detection approaches
significantly in all performance metrics using only sin-
gle channel EEG signal. Consistently high accuracy and
F1 scores are obtained for all three databases which have
different properties such as sampling rate, data collection
procedures and scoring standards. Two major reasons for
getting very satisfactory performances are (1) utilizing the
VMD operated input data and (2) employing the proposed
end-to-end deep learning network. Instead of directly using
the raw EEG data, the variational mode decomposed input
EEG data are used. The advantages of using variational mode
decomposed EEG signals in an end-to-end deep learning
network are summarized as follows:

o improved performance with minimal computational

overhead,
« better representation of the apnea events for gaining
better generalization with the deep neural network, and

« improving explainability of the achieved performance.

According to Table 8, it is observed that the use of VMD
in combination with the proposed end-to-end deep learning
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network offers relatively better performance compared to the
other methods. Such improvements signify the effectiveness
of the use of VMD in combination with the traditional end-
to-end deep learning approaches. Moreover, VMD increases
the computational overhead minimally to gain better perfor-
mance compared to the end-to-end deep learning approaches.
Generally, neural activity varies during non-apnea and apnea
periods, which is reflected in different EEG frequency bands.
These changes are more distinct in the variational mode
decomposed signals as the center frequencies of the modes
in the VMD are adaptively calculated, it allows to capture
the center frequency shift due to variation of neurological
activity and reduces the burden on the proposed end-to-end
deep neural network model to learn the complex relationships
on its own. Hence, VMD facilitates the optimization process
of the deep neural network for converging to the optimal solu-
tion by extracting more effective features. Furthermore, VMD
facilitates the interpretability of the achieved performance
by extracting the effects of the different frequency modes
in the overall recognition performance. It can be observed
from the results that the inter-modal information learned
from the decomposed EEG modes generated through VMD
helped improve the classification performance. The statistical
significance of the improvement is proven by performing a
paired T-test where a p-value of 0.0329 is obtained.

Use of dilated causal convolutions with the LSTM mod-
ules helps the proposed end-to-end deep learning network
extract the general pattern of EEG variations for apnea events.
As explained earlier, the stack of bidirectional LSTM layers
offer a global temporal representation of a particular frame
utilizing the temporal inter-modal features of different modes
of respective EEG frame. However, further improvement of
the proposed apnea detection scheme can be achieved by
incorporating effective learning from other relevant appli-
cations into the proposed scheme using non-conventional
learning mechanism called ‘meta-learning’ and other sim-
ilar transfer learning based schemes. The basic idea of
meta-learning is to effectively transfer knowledge from sev-
eral similar tasks for extracting the general representation to
learn a new task with fewer training samples. In [42], this
mechanism was used for sleep stage classification task by
adopting a transfer learning based technique to utilize sleep
staging knowledge acquired from a large dataset to classify
frames of unseen new subjects. As such knowledge-transfer
based scheme from relevant other applications is beyond the
scope of this study, it is left as a potential future work. It is to
be noted that a major limitation inherent to most of the sleep
apnea detection methods using EEG signal is the dependency
on availability of a large amount of data of any new subject.
In clinical scenario, when diagnosing a new subject, there will
not be pre-existing annotated frames of such large volume
rendering the methods infeasible and impractical for real
life applications. Only a patient independent scheme where
a network is trained on data of already diagnosed patients
can be employed in real life situation. In addition, as can be
seen in the semi-supervised approach of this paper and as
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evidenced by the results obtained in [43], such patient depen-
dent approaches can produce misleading overestimation of
the prediction accuracy. The proposed subject independent
method does not suffer from these drawbacks and is suitable
for practical deployment.

V. LIMITATIONS OF THE STUDY

While the results for individual datasets show promising per-
formance, there are some limitations that need to be acknowl-
edged. Training the proposed model requires a significant
number of normal and apneic EEG frames from various
patients. Reduction in the number of frames in the training set
results in slight declination in the performance, as can be seen
by comparing the patient independent cross validation results
of dataset- [39] and dataset- [36]. As the number of patients
in [36] was higher than the latter, the model seems to perform
better for this dataset than dataset- [39]. However, this might
not be a problem anymore due to the easy access to different
public datasets. Another minor issue to be acknowledged is
the absence of transfer learning from relevant other applica-
tions in the proposed model, as our goal was to analyze the
advantage of using variational mode decomposed EEG data
on an end-to-end deep learning network, while restricting the
use of bio-signals to only one type (EEG signal). Lastly, our
current study only considers the binary classification between
sleep apnea frames and normal EEG frames without detecting
the type of apnea. We have left the detection of multiclass
apnea frames as well the addition of meta-learning or other
transfer learning based approaches in the proposed method
for future studies.

VI. CONCLUSION

In this paper, an automated sleep apnea frame detection
scheme is proposed using deep fully convolutional-BiLSTM
neural network for the subject-independent test scenario.
For efficient processing of raw EEG data, variational mode
decomposition is adopted for introducing adaptive variations
in center mode frequencies. It is shown that such decompo-
sition contributes considerably towards extracting the sub-
ject independent feature variations for apnea events resulting
in substantial performance improvements compared to the
raw EEG data processing. Furthermore, VMD facilitates the
interpretability of the achieved performance by extracting
the effects of the different frequency modes in the overall
recognition performance. To automate the process of fea-
ture extraction as well as to analyze the long term temporal
variations in the EEG data, the proposed network utilizes
dilated causal convolutions with long-short term memory
modules effectively that is proven to extract the general
pattern of EEG variations for apneic episodes irrespective
of subjects. Through experimentation, individual parameters
of the proposed method are varied and optimal values are
found that provide satisfactory prediction performance using
the proposed scheme. Consistent performance is achieved
for all the individual subjects in subject independent cross
validation scheme. Moreover, for achieving further efficiency
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in the prediction of unknown EEG frames, a semi-supervised
algorithm is introduced that increases the apnea detection
performance by leveraging insight gained about the individ-
ual subject’s conditions. Despite using separate subjects in
the training and evaluation phase, significantly higher per-
formance is achieved using the proposed scheme in all the
evaluation metrics that ensures the applicability and robust-
ness of this method for practical applications of sleep apnea
occurrence predictions.
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