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ABSTRACT Workplace-related stressors, economic strain, and lack of access to educational and basic needs
have exacerbated feelings of stress in the United States. Ongoing stress can result in an increased risk of
cardiovascular, musculoskeletal, and mental health disorders. Similarly, workplace stress can translate to a
decrease in employee productivity and higher costs associated with employee absenteeism in an organization.
Detecting stress and the events that correlate with stress during a workday is the first step to addressing its
negative effects on health and wellbeing. Although there are a variety of techniques for stress detection
using physiological signals, there is still limited research on the ability of behavioral measures to improve
the performance of stress detection algorithms. In this study, we evaluated the feasibility of detecting stress
using deep learning, a subfield of machine learning, on a small data set consisting of electrodermal activity,
skin temperature, and heart rate measurements, in combination with self-reported anxiety and stress. The
model was able to detect stress periods with 96% accuracy when using the combined wearable device and
survey data, compared to the wearable device dataset alone (88% accuracy). Creating multi-dimensional
datasets that include both wearable device data and ratings of perceived stress could help correlate stress-
inducing events with feelings of stress at the individual level and help reduce intra-individual variabilities
due to the subjective nature of the stress response.

INDEX TERMS Deep learning, perceived anxiety, perceived stress, stress detection model, TSST,
wrist-worn wearable.

I. INTRODUCTION

Stress, anxiety, and depression are the most common mental
health issues in America [1]. An estimated 55% of individ-
uals in the United States experience daily moderate to high
stress, with workplace stress significantly contributing to the
mental health crisis [1], [2]. Factors such as longer work
hours, high work demands, low salaries, and job insecurity
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for workers are likely to cause the negative physical, behav-
ioral, and psychological reactions associated with perceived
stress in the global workforce [3], [4]. In the U.S., 65% of
employees cite work as a significant source of stress [5],
and previous research suggests that the physical environ-
ment can also contribute to perceived feelings of stress [6].
Factors within the built environment, including light [7],
temperature [8], and most notably, sound [7], [9]-[14] have
been shown to impact occupants’ stress levels and overall
well-being.
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Stress encompasses a series of physiological and behav-
ioral reactions in response to new, uncertain, uncontrollable,
or unpredictable situations [15]. Stress exists in three dif-
ferent forms: acute, episodic acute, and chronic [16], [17].
Most people experience acute stress occasionally during their
everyday life, and because it is short-term, it is not considered
to be harmful to one’s health. Episodic acute stress refers
to acute stress that occurs more frequently [17], [18], while
chronic stress refers to stress sustained for a long period
of time [19]. Both episodic acute and chronic stress can
have detrimental effects on an individual’s physical and psy-
chological health [20], [21]. Chronic stress can negatively
impact sleep quality, lead to weight gain, and increase the
risk of depression, high blood pressure, and cardiovascular
disease [22].

Eliminating stress altogether is an unlikely outcome of
workplace interventions. However, it may be possible to
encourage employees to adopt appropriate stress-coping
strategies that alleviate stress and build resiliency to avoid
serious health consequences. It is imperative that individuals
become aware of the level of stress they are experiencing, as a
step toward effectively managing such stress in the future.
In recognition of this, there have been numerous attempts
to quantitatively measure an individual’s stress levels, which
are dictated by the autonomic nervous system (ANS). The
ANS regulates body functions such as heart rate, respiration,
and digestion. In the presence of an event that the body
perceives as a threat, the hypothalamus activates the sympa-
thetic branch of the autonomic nervous system (SNS). SNS
activation results in the body’s arousal and acceleration of
the body functions (‘““fight or flight” response) [23]. Sus-
tained exposure to a stressor further leads to the release of
glucocorticoids into the systemic circulation, which keeps the
body on high alert [24], [25]. Following the stressful event,
the parasympathetic branch of the autonomic nervous system
reduces hormone production, resulting in the slowing down
of body functions [23].

Video-cameras and audio recorders have been used
to identify stress by extracting semantic, phonetic, and
facial features that can be related to arousal or stressful
events [26]-[29], whereas behavioral tracking methods con-
sisting of questionnaires have been used to collect and
aggregate subjective ratings of varying psychological states,
anxiety, and stress [30], [31]. More recently, subtle digital
technologies such as features detected from smartphone use
and wearable devices have also gradually become an attrac-
tive means to detect stress features in a non-invasive manner.
These newer technologies serve as an alternative to images
and sound collected via video- cameras and audio systems,
whose privacy implications can be more serious and evident
to users [32]-[35].

Smartphones and wearables allow for the convenient, low-
cost and continuous measurement and storage of multiple
physiological signals using microelectromechanical systems
(MEMS) (i.e., Electrodermal activity (EDA), photoplethys-
mography (PPG), and acceleration sensors) to measure phys-
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iological signs of stress [32], [36]-[40]. New developments in
artificial intelligence (AI) and machine learning (ML), such
as deep learning methodologies have opened up the possi-
bility of uncovering unique patterns in the data [41], [42],
and have provided researchers with the tools to analyze large
amounts of data to understand the complex and dynamic
stress response and its intra and interindividual variabil-
ity [43]-[47].

The combination of multidimensional data from these digi-
tal technologies, as well as contextual, behavioral, and demo-
graphic information, can provide more evidence about the
nature, individual signs, and sources of the stress response,
thus providing the foundations for better stress identification
tools [48].

Previous work in stress detection using wearable sensor
data streams has shown that electrodermal activity (EDA)
and heart rate (HR) changes are frequently used physiological
signals for stress recognition [32].

Villarejo et al. [49], were able to correctly classify a
stress state from a non-stress state with a 76% success
rate using EDA as the main predictor after inducing stress
through different tasks that required mental effort. Simi-
larly, Zangroniz et al. [S0] and Amalan et al. [51], showed
that supervised learning models using data from wear-
able devices collecting solely EDA were able to differ-
entiate between a stressful and calm condition with 89%
and 93% accuracy, respectively. Zangroniz et al. [50], and
Amalan et al. [51], induced stress using a database of high
arousal photographs and the Trier Social Stress Test (TSST),
respectively. Setz et al. [52] also demonstrated an 82.8%
maximum accuracy in discriminating stress from cognitive
load using only EDA features, while Kurniawan et al. [53],
and Anusha et al. [54], achieved a 75% precision and 85%
accuracy in acute stress classification using only EDA and
complex classifiers.

In addition to EDA, the combination of EDA and heart
rate (HR) and EDA and heart rate variability (HRV) fea-
tures have been extensively used to distinguish stressful
events [55]-[61]. De Santos Sierra et al. previously demon-
strated a 99% accuracy in stress discrimination when using
a database of EDA and HR signals collected during two
stressful tasks: hyperventilation and speech preparation,
in combination with conventional machine learning algo-
rithms [62], and fuzzy expert systems [63]. Similarly, Healey
and Picard [64] showed that EDA and HR are closely cor-
related, and accurate predictors of stress levels for those
driving a vehicle, and demonstrated a 97% accuracy when
differentiating among three different levels of drivers’ stress,
corresponding to rest, highway and city driving conditions.
There have also been numerous attempts at improving the
performance of stress detection systems by combining EDA
and HRV measurements. Sandulescu et al. [65], were able to
classify stressful from non-stressful situations using EDA and
HRV signals collected with a wrist-worn wearable with 82%
accuracy. Similarly, Martinez et al. [66], were able to classify
different levels of stress (high, medium, low) using EDA and
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HRV with a resulting F-measure score of 0.984, 0.970, and
0.943, respectively. Goumopoulos and Menti [67], showed
that EDA and HRV features are also valid stress indicators
for the senior population, and have the ability to discriminate
between calm (baseline) and stressful events. The reliabil-
ity and reproducibility of EDA and HRV measures for the
assessment of autonomic nervous system dysfunction have
also been demonstrated before by Posada-Quintero et al. [68],
and Ghiasi et al. [69].

Although most of these stress detection algorithms show
a high accuracy for monitoring stress in controlled settings,
the classification accuracy drops to 70-80% when assess-
ing stress in real-life environments [70]-[72]. Some of the
main reasons for poor detection performance include the
unknown situational context of the user, the data quality
of non-obtrusive devices, confounding factors such as limb
movement and physical activity, improper sensor placement,
and a limited battery life [32]. In addition, people experi-
ence stress differently. The differential ways in which the
body responds to stress poses difficulties when building a
stress discrimination algorithm that relies solely on auto-
nomic activity indicators such as heart rate, skin conduc-
tance, and heart rate variability, to correctly identify stress
events for the broader population [73]. Traditional methods
for measuring stress include weighted instruments such as
questionnaires and periodic self-reports [67]. Although these
methods are considered to be the “gold standard” for stress
assessment, they can be time-consuming and burdensome
for the individual to complete [74]. Nevertheless, periodic
self-reports are currently the most appropriate method to
ground-truth stressful events [75]. Studies on the potential
for combining physiological data from wearable devices with
subjective stress data are fairly limited [32], [67], [75], and
thus, the impact of self-report behavioral measures (i.e., those
collected via questionnaires) on the performance of stress
detection algorithms remains largely unexplored.

This paper addresses the limitation in the existing literature
by comparing stress detection performance of a deep learning
model, a state-of-the-art machine learning approach, using
1) data from a wrist-worn-sensor collecting physiological
data in a semi-restricted setting and 2) the physiological data
collected with the wrist- worn sensor in combination with
behavioral data.

We also explored the potential issues that arise with data
collection quality, feature extraction, and classification when
wrist-worn-wearables are used to detect stress in a laboratory
setting. In this study, we collected data from validated self-
assessment measures of perceived stress and anxiety. In order
to measure physiological stress response, we collected sali-
vary cortisol samples and raw electrodermal activity, skin
temperature, and heart rate data from study participants,
using the Empatica E4 wristband (Empatica Inc., Boston,
MA, USA) and used simple and complex classifiers to dis-
tinguish between stress and non-stress periods during the
Trier Social Stress Test protocol (TSST), a validated stress
induction method. The study was conducted in a simulated
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waiting area and conference room inside the Well Living Lab.
This semi-restricted but naturalistic environment allowed us
to capture participants’ unbiased reactions while controlling
and monitoring some of the environmental conditions in
the experimental space. By holding this waiting area and
conference room constant across each of our participants’
experiences, we tried to eliminate the potential for environ-
mental parameters just prior to, and during the intervention,
to differentially impact outcomes seen in our stress measure-
ments, thus strengthening the internal validity of the study,
and the ability to attribute changes in the stress response to
our intervention.

Il. MATERIALS AND METHODS

A. TRIER SOCIAL STRESS TEST (TSST)

The Trier Social Stress Test (TSST) was used to reliably
induce mental stress in study participants throughout the
study. The TSST is a widely used laboratory procedure that
has been shown to reliably induce physiologically measurable
stress responses in individuals [76]. For the TSST, partici-
pants are placed in a simulated, socially evaluative situation
during which their physiological and psychological stress
responses are measured. The test is divided into three sec-
tions. The first section is a 45-minute rest period where
researchers collect baseline levels of stress. The rest period is
immediately followed by a 15-minute stress induction period
which is further subdivided into three, 5S-minute phases: an
anticipatory phase where participants prepare for upcoming
tests; a presentation phase where participants are asked to
give a recorded speech before a panel of judges who do not
emote or react while being recorded with a video camera
and microphone, and a mental arithmetic phase during which
participants are asked to count backwards in odd-numbered
increments. The final section of the test is a 60-minute recov-
ery period, during which participants are debriefed and asked
to relax. This recovery period was divided into two 30-min
segments (recovery 1 and recovery 2).

B. PHYSIOLOGICAL INDICATORS OF STRESS

1) SALIVARY CORTISOL AS A BIOMARKER FOR STRESS
Cortisol, known as ‘‘the stress hormone’’, has been used
in stress research for almost two decades, as researchers
have shown that cortisol levels increase within a short period
after the appearance of a stressor [25], [77]. To verify that
participants were stressed during the induction period of the
TSST, cortisol was collected at four different time points: just
before participants entered the testing room, at the end of the
stress induction period, after the first recovery period, and
after the second recovery period. Cortisol plays an essential
role in the body’s stress response and it is secreted by the
adrenal medulla [77]. Specifically, the release of cortisol in
response to stress leads to an increase in heart rate and blood
pressure among other physiological processes [78]. As a
result, cortisol is considered a reliable marker of stress and
can be measured in blood, saliva, and urine. Salivary cortisol
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has been primarily used in stress research due to its ease of
sampling as well as its non-invasive and inexpensive nature.

2) EMPATICA E4 WEARABLE DEVICE

The continuous monitoring of physiological signals was per-
formed using the Empatica E4 (Empatica Inc., Cambridge,
MA). The Empatica E4 is a unobtrusive wearable device for
physiological data acquisition [79]. It includes four embed-
ded sensors: a photoplethysmography (PPG) sensor, an elec-
trodermal activity (EDA) sensor, a 3-axis accelerometer, and
an optical thermometer. The EDA sensor can measure the
conductivity of the skin ranging from 0.01xS to 100uS,
and it has a sampling rate of 4Hz. The PPG sensor mea-
sures the volume change produced with every heartbeat using
light-based technology; pressure increases as the heart pumps
the blood into the systemic circulation creating a difference in
the amount of light absorbed by oxyhemoglobin. The sensor
measures the difference in the light reflected with sampling
every 64Hz. The temperature sensor uses an optical infrared
thermometer with a resolution of 0.02 °C. Lastly, the three-
axis accelerometer, measures the 3 axes of motion X, Y,
Z with a sampling rate of 32Hz. The E4 device is small (4cm
x 4cm), lightweight, and comfortable, and wearing it is as
easy as wearing a bracelet or a watch. The Empatica E4 allows
for data collection using either real-time streaming mode or
in- memory recording. For this study, data was collected using
the in-memory recording modality that allows for data being
stored in the device for up to 60 hours.

To assess markers of sympathetic activity that can help dis-
criminate stress events, electrodermal activity (EDA), heart
rate (HR), and skin temperature (ST) were collected through-
out the study period.

3) ELECTRODERMAL ACTIVITY

EDA is a measure of the variation in the electrical properties
of the skin due to internal or external stimuli, and it is linked
to the quantity of sweat secreted by the sweat glands [80].
Therefore, changes in skin conductance have been shown
to be a measure of emotional arousal and cognitive load,
as the sweat glands in the skin are directly innervated by
the sympathetic branch of the ANS [81]. The EDA complex
which includes a slow, changing component related to the
tonic shifts of electrical conductivity of the skin (SCL), and
a phasic component that reflects rapid changes contained in
the EDA signal (SCR) [82], has been extensively studied as
an indicator of autonomic nervous system activity [83].

4) HEART RATE

In addition to EDA, photoplethysmography (PPG) based met-
rics have also been wused in stress recognition
research [84]-[86]. PPG detects blood volume changes in
skin capillary beds associated with heart activity [60]. The
PPG signal is characterized by peaks and valleys that reflect
the systole and diastole phases of the cardiac cycle [87].
The most typical features extracted from the photoplethys-
mography waveforms are heart rate (HR) and heart rate
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variability (HRV). HR is defined as the number of times
the heart beats per minute, and it increases during stressful
events. [88]. HRV is the variation in time between consecutive
heartbeats [55]. The activation of the Autonomic Nervous
System (ANS) branches translates into a decrease in HRV
when there is sympathetic stimulation and an increase during
parasympathetic stimulation to restore homeostasis after a
stress-related event [55].

5) SKIN TEMPERATURE

Previous research in emotion recognition has shown that
under acute stress, the sympathetic nervous system trig-
gers peripheral vasoconstriction which results in short-term
changes in skin temperature (ST) from its normal range
of 32 to 35°C [89]-[93]. Although ST has the potential to
provide more information about the intensity of the stress
response, ST can also change in response to physical exer-
tion, the presence of an illness, and environmental conditions
such as temperature and humidity. Therefore, the use of skin
temperature as an indicator of acute stress is more suitable
for laboratory studies than in the field, unless some of the
above- mentioned aspects that also affect ST can be reliably
measured in external settings.

C. BEHAVIORAL MEASURES

Participants completed surveys regarding their stress and
anxiety throughout the study. The State-Trait Anxiety Inven-
tory (STAI) was used to measure two types of anxiety: an
individual’s general level of anxiety (Trait) and momentary
level of anxiety (State) [31]. Each anxiety type was self-
reported by participants using 20 items, each rated on a 4-
point Likert scale (e.g., from “Almost Never” to “Almost
Always”’). Both state and trait levels of anxiety were mea-
sured at the beginning of the experiment to establish a base-
line. Additional state levels of anxiety were measured imme-
diately following the stress induction period and after the full
recovery period.

The Perceived Stress Scale (PSS-10) [30] was used to
measure individuals’ stressful thoughts and feelings for the
month prior to the TSST and was asked at the beginning of the
experiment (baseline). The Perceived Stress Scale consists
of 10 questions assessing the frequency of stressful feelings
using a five-point Likert scale from O (“Never”) to 4 (*“Very
Often”).

To measure subjective “in the moment” feelings of
stress, participants were asked to rate their stress using one,
seven-point Likert scale item 1 (“Not at all stressed) to 7
(“Extremely stressed’”) at four different time points: just
before entering the testing room, at the end of the stress
induction period, after the first recovery period, and after
the second recovery period.

D. OVERVIEW OF THE STUDY DESIGN

For this study, approved by the Mayo Clinic Institutional
Review Board, eighteen healthy subjects (11 Female, 7 Male;
Mean Age = 26.67, SD Age = 4.12), with no history
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FIGURE 1. Experiment schedule and data collection details.

of depression, anxiety or mood disorders, no history of
drug/alcohol abuse or tobacco use, and women who were
not pregnant, were recruited to participate in a single, 2-hour
testing session (1:30 pm — 3:30 pm). All subjects read and
signed the informed consent form prior to participating in the
study.

Two subjects were ultimately excluded from the study due
to missing salivary cortisol or wearable data. The testing
session took place at the Well Living Lab (WLL), a modular
space that can be reconfigured to simulate a variety of indoor
environments [94]-[96]. The lab space was reconfigured as
a waiting room and a conference room. Prior to the start
of the study, subjects were asked to meet with the study
coordinator to capture a comprehensive profile of the subject
including demographics and health information to understand
the participant’s general state of physical and mental health
prior to enrollment in the study. On the day of the study,
at the start of the session, each participant was asked to fill
out a baseline survey (PSS and STAI) to establish a reference
point for tracking behaviors and physiology (See Fig. 1).
Subsequently, participants were outfitted with an Empatica
E4 device to be worn throughout the entirety of the study.
Participants were also asked to provide salivary cortisol using
a Salivette collection kit (Salivette® - Sarstedt, Germany),
twice at four separate time points during the experimental
session (baseline, at the end of the stress induction period, and
at the end of each of the recovery periods), for a total of 8 sali-
vary samples per participant. At each salivary cortisol sample
collection, subjects were asked to rate their stress levels using
a subjective “in the moment™ stress scale. In addition, and
prior to the start of the stress procedure, participants were
asked to fill out the perceived stress scale (PSS). Building
system setpoints (temperature, humidity, and lighting) in the
lab space were kept constant during the study.

An overview of the measurement and intervention sched-
ules can be observed in Fig. 1.

E. DATA MANAGEMENT AND MACHINE LEARNING
FRAMEWORK

1) DATA PREPARATION AND PRE-PROCESSING

Raw data from the Empatica E4 devices were downloaded

after each experimental session and prepared for analysis in
MATLAB® and R®. Heart rate and skin conductivity were
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TABLE 1. Description of data pipelines.

Data Pipeline Description
This data pipeline read the raw data from data lake,
enriched the data by standardizing the date
Survey and

formats, and adding the source data file identifier.
The resulting processed data was stored in MS
SQL table.

This data pipeline read the raw data from data lake,

enriched the data by adding subject identifiers,

EDA, ST,and  standardizing the date formats, and adding the
HR source data file identifier. The data pipeline also
labeled the phases based on the TSST timestamps.

demographics

calculated for the baseline, stress procedure, and two recovery
periods. An initial visual inspection of the data was conducted
to identify and remove incorrect or unrealistic EDA and HR
calculations (over 200 and under 40 beats per minute) from
the data set. The data was also interpolated to account for
differences in sensor sampling rates.

The salivary cortisol samples were analyzed using an
enzyme immunoassay kit by the Mayo Clinic Medical Labo-
ratories.

Two types of data stores were used as part of the frame-
work: Microsoft® Data Lake and the SQL database. Once
the data was pre-processed and imported, enriched data was
stored in the Microsoft® SQL database. Automated data
pipelines were written in C#NET programming language to
upload the data to Azure Data Lake for further processing
using front end tools such as Jupyter notebooks [97] for
analysis, and Tableau [98] for data visualization. For the deep
learning analysis, the data were flattened and extracted as
CSV files before being read by the model. Google Colab
was utilized, and the files were available to the model via
our secure document storage database. Data pipelines are
described in Table. 1.

2) TECHNICAL ARCHITECTURE

In this study, we implemented a full, end-to-end utilization
of the Well Living Lab’s machine learning framework and
ecosystem (Fig. 2). This framework allowed us to automate
the data management, processing, analysis, and building of a
deep learning model.

Once the data was loaded in the database, various permuta-
tions of datasets were created by writing SQL statements and
storing the new datasets in new tables (see Fig. 3).

The deep learning model was designed to predict whether
a subject was experiencing stress in a binary classification
format (stress or no stress detected). The phases of the TSST
protocol were used to manually label the dataset into stress
and non-stress periods. For each subject, the baseline and
recovery periods were labeled as non-stress, and the segments
of the stress procedure (the anticipation, speech, and mental
arithmetic task) were merged and labeled as stress regions.
Two sets of features were used as inputs to the neural net-
work. The first set of features (feature set 1) consisted of
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FIGURE 2. Well Living Lab (WLL) machine learning ecosystem.

signals collected using the Empatica E4 wearable (heart rate,
electrodermal activity, and temperature). The second set of
features (feature set 2) consisted of data from the wearable
combined with subjective information (perceived stress and
anxiety ratings).

Statistical analyses were conducted in parallel to the deep
learning analyses to assess effect size and variable importance
using semi-parametric methods. The aim of this structured
analysis was to 1) assess predictors of a stress response inde-
pendently of one another in a multivariate space, as well as
2) to provide some degree of interpretability for the patterns
being detected by the deep learning algorithms.

3) STATISTICAL ANALYSIS
In order to evaluate the underlying relationships between the
physiological and behavioral variables of interest and the
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Trier Social Stress Test, two sets of independent regression
models were implemented.

The first set of models reduced the data to the mean level
of each HR and EDA predictor of interest for each phase and
participant. This reduction resulted in five observations per
participant for each of these physiological variables. Survey
data were already collected once during each study phase,
and therefore were not reduced. Using each physiological
variable of interest as the response, independent univariate
mixed-effects logistic regression models were fit using the
study phase as the predictor. Measurements taken during the
baseline period served as the reference level for study phase.
A random intercept was included for each participant, and
there was no random slope implemented.

The second set of regression models used the full physio-
logical data collected for each participant. Univariate logistic
generalized estimating equation models were fit to each of
the predictors of interest, using the TSST phase as the binary
response. Sequential observations for a given participant
were assumed to be correlated following an autoregressive
time-series association. Standard errors were computed using
the robust Eicker-Huber-White estimator [99].

A follow-up multivariate logistic generalized estimating
equation (GEE) model was fit using all predictors of interest.
Similar to the univariate models, the within-subject covari-
ance was assumed to be autoregressive, and errors were com-
puted using the Eicker-Huber-White estimator.

4) DEEP LEARNING MODEL FOR STRESS DETECTION

Detection of mental stress has previously been performed
using machine learning methods, such as support vector
machine and k-means clustering [32]. However, these meth-
ods require performing feature extraction on behavioral
measurements and physiological signals, which may not
be appropriate for the construction of prediction models
when working with large amounts of data and, furthermore,
unnecessary with the development of deep learning tech-
nology [100]. In addition, deep learning methods are more
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FIGURE 4. Diagram of the proposed neural network with physiological
data as inputs. The diagram was generated using keras utility tool.
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appropriately capable of handling granular repeated measures
data than traditional methods.

In this analysis, we aimed at training a binary classifi-
cation neural network using Keras 2.0 [101], with Tensor-
flow implementation (Google Brain, Mountain View, CA,
USA). The model was developed using the functional API
of Keras, which links all or part of the inputs directly to the
output layer, allowing the neural network to determine deep
patterns (using the deep path) and simple rules (using the
short path) [102]. The functional API can also handle models
with various inputs and outputs, shared layers, and non-linear
topologies [102]. We developed two neural networks with
various input layers. The models were designed to receive
data from three different physiological signals (EDA, HR, and
Temperature) collected using a wrist-worn wearable as well
as self-ratings of stress and anxiety. The physiological data
collected through the different segments of the TSST were
used as the only inputs for one model, while the physiological
signals in combination with the behavioral measurements
were used as inputs to the second deep learning model. The
neural network was designed to detect stress by discriminat-
ing between stress and non-stress periods.

The network was developed using dense and dropout lay-
ers as shown in Fig. 4. Dense layers are layers of neurons,
in which each neuron is connected to the neurons of the previ-
ous layer [103], while dropout layers are regularization layers
that help prevent overfitting [104]. The models consisted of
a fully connected network structure with two layers. The
inputs (physiological and behavioral data) were normalized
and concatenated into one vector, which was fed to a hidden
dense layer with 32 neurons.

Each neuron used a Rectified Linear Unit (ReLLU) activa-
tion function (1).

ReLU = max (0, x) (1)

We ran all the inputs for the model specifying to Keras how
to connect the layers together (see Fig. 5). The layers in a
Keras model are connected pairwise by specifying where the
inputs come from when defining each new layer.
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We subsequently created a concatenation layer to concate-
nate the input and the output of the hidden layer. Our output
layer had a single neuron, as we wanted to classify a stressed
vs. non-stressed state, using a sigmoid activation function (2).

1

Sigmoid(x) = dre™ 2)
To configure the model for training, the training and test
sets were defined using a 70/30 split. The experimental data
was not present in more than one set simultaneously. We used
the Adam optimizer [105] with a 0.001 learning rate, and
a binary cross-entropy loss function to estimate the error
between true and predicted values. Epoch and batch size were
50 and 42, respectively for both models. To evaluate whether
subjective ratings of stress and anxiety improve stress recog-
nition above and beyond what could be predicted from data
collected from wearables, we evaluated the classification
performance of the deep learning model using the following
metrics: accuracy (3), sensitivity (4), and specificity (5). The
classification was considered to be true positive (TP) if the
participant was stressed and was correctly predicted as being
stressed. On the contrary, the prediction was considered as
false negative (FN) if the participant was incorrectly clas-
sified as being non-stressed. False positives (FP) and true
negatives (TN) were determined in the same fashion. We had
67,458 instances labeled as stress and 409,078 instances

labeled as no-stress in the training set.

(N7p + N1v)
Accuracy = 3)
Ntp + Npy + Ny
N
Sensitivity = ($> x 100 @)
Nrp + Ngy
Specificity = (N#) x 100 5)
N7N + Npp

Accuracy provides information about the fraction of
instances that were correctly classified by the algorithm. Sen-
sitivity provides information about the number of instances
labelled as stress that were scored correctly. Specificity pro-
vides information about the fraction of non- stress instances
that were classified correctly by the model.
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FIGURE 6. Raw (a) heart rate and (b) electrodermal activity values for all
participants during the two-hour session. The lines indicate the different
phases of the TSST.

Ill. RESULTS

A. PHYSIOLOGICAL AND BEHAVIORAL RESPONSES TO
INDUCED STRESS

The measurements of the electrodermal activity (EDA) and
heart rate (HR) across all subjects on each stage of the TSST
(baseline, stress procedure, and the first and second recovery
periods) are shown in Fig. 6(a) and (b), respectively. The
mean EDA during the baseline, stress procedure, recovery 1,
and recovery 2 periods were 0.46, 2.23, 1.02, and 0.53 uS,
respectively. Similarly, the mean HR during the baseline,
TSST, recovery 1 and recovery 2 periods were 69.9, 81.4,
69.8, 68.7 BPM, respectively.

To measure the relationship between the physiological and
self-reported data, the time periods of the averaged self-
ratings of stress using an ““in the moment” stress scale, and
the subjective ratings of state anxiety values are illustrated in
Fig. 7(a) and (b). The boxplots feature the data distribution
based on the minimum, first quartile, median, third quartile,
and maximum.

The variation in cortisol levels of all participants who
underwent the Trier Social Stress Test is shown in Fig. 8. The

102060

TABLE 2. Model effects predicting average physiological variables by
study phase, relative to the baseline phase.

Stress Tasks
B 95% CI p-value
Heart Rate 11.50  (7.51-15.45) <0.001
Skin Temperature -0.21  (-0.67-0.25) 0.374
EDA 1.78 (1.19-2.37)  <0.001
Recovery 1
B 95% CI p-value
Heart Rate -0.14  (-4.10-3.83) 0.947

Skin Temperature -0.25 (-0.71 -0.21) 0.300

EDA 0.56  (-0.03-1.15) 0.071
Recovery 2
B 95% C1 p-value
Heart Rate -1.19 (-5.16-2.78) 0.564

Skin Temperature -0.19
EDA 0.07

(-0.65-027)  0.439
(-0.52-0.66)  0.817

mean values of cortisol across the study conditions were 97.3,
149.6, 167.7, and 112.9 nmol/L, for the baseline, stress tests,
and recovery 1 and recovery 2 periods, respectively. Corti-
sol levels did not temporally mirror the exact stress pattern
experienced by the study subjects such that cortisol increased
at the exact time a stressor was introduced. This result is
expected given the time lag between the transfer of cortisol
from the plasma to saliva; with peak cortisol production often
being achieved 15-30 min after the stress event [106], [107].

B. MEASURES AND STATISTICAL ANALYSIS

Linear mixed-effects models were fit using participant’s
average physiological measurements in each phase as the
response, with the study phase as the predictor of interest.
Model effects are given in Table. 2. Compared to the baseline,
participants had a higher average heart rate during the stress
phase, as well as EDA. Additionally, there was no difference
in any of these variables between the baseline and recovery
periods.

Similar mixed-effects models were implemented to evalu-
ate participant-reported stress and cortisol between the differ-
ent TSST phases (Table. 3). Participants gave higher ratings
of perceived stress immediately before and after the stress
procedure phase, compared to baseline (p < 0.001 for both).
This difference did not persist in either of the two recovery
phases. Participants’ reports of state anxiety were also higher
following stress tasks compared to baseline (p = 0.002)
but had no difference between the baseline and rest. More-
over, measured cortisol was higher immediately following
the stress procedure (p = 0.005) and in the first recovery
period (p = 0.001) compared to baseline. The cortisol levels
measured during the second recovery period did not differ
from baseline.
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FIGURE 7. Time course of the averaged (a) “in the moment stress” and
(b) state anxiety across the different phases of the TSST. The boxplots
feature the data distribution based on the minimum, first quartile,
median, third quartile, and maximum.

To further evaluate the continuous relationship between
stress and behavioral and physiological variables, a series
of logistic generalized estimating equations (GEE) were fit
using the full dataset of heart rate and electrodermal activity
measurements [108]. GEE is a semi-parametric approach that
allows to impose some structure to the data. Due to the tem-
poral nature of the data collection, sequential observations
for a participant were assumed to be correlated under an
autoregressive time series relationship. Table. 4 provides the
resulting odds ratios from these models. Effects not given for
the univariate models indicate that the model did not con-
verge, and no estimates could be generated; effects missing
from the multivariable model indicate that the inclusion of the
variable caused the model not to converge, and the variable
was excluded.

From the multivariate and univariate analysis, we find that
a I-point increase in the “in the moment” stress scale score
was associated with a 444% increase in the odds of being
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FIGURE 8. Time course of the averaged salivary cortisol across the
different phases of the TSST. The boxplots feature the data distribution
based on the minimum, first quartile, median, third quartile, and
maximum.

TABLE 3. Model effects predicting survey response and cortisol level by
study phase, relative to the baseline phase.

Stress Task Start

B 95% CI p-value
MSS 2.58 (1.93-3.23) <0.001
STAI - ---
Cortisol --- --- -

Stress Task End

B 95% CI p-value
MSS 1.87 (1.20-2.53) <0.001
STAI 9.50  (3.94-15.05) 0.002
Cortisol 52.3 (17.5-87.1) 0.005

Recovery 1

B 95% CI p-value
MSS -0.05  (-0.70 - 0.60) 0.876
STAI — —
Cortisol 68.6  (33.3-104.2) <0.001

Recovery 2

B 95% CI p-value
MSS -042  (-1.07-0.23) 0.215
STAI S35 (-8.63-2.31) 0.268
Cortisol 9.0 (-27.8-46.2) 0.639

stressed (OR = 5.43, p < 0.001). No other variables showed
a significant impact on predicting stress.

C. DEEP LEARNING ALGORITHM CLASSIFICATION

We compared the performance of the proposed model with
various input layers with two different sets of input variables.
A confusion matrix and loss functions were used to compare
classification ability in addition to the performance metrics
described in section II.
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TABLE 4. Model effects predicting stress phase.

Univariable Univariable
OR (95% CI)  p-value  OR (95% CI)  p-value
Heart Rate 1.002 0.466 1.004 0.514
(0.996, 1.008) (0.992, 1.016)
Skin - —
Temperature
EDA - -
MSS 5.438 <0.001 5.435 <0.001
(2.260, 13.060) (2.261, 13.068)
STAI 1.000 0.718 1.000 0.910
(0.999, 1.001) (0.997, 1.003)
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FIGURE 9. Loss function profiles for (a) feature set 1 and (b) feature set 2.

Fig. 9 shows the loss function graphs for the deep learn-
ing model with (a) the wearable only data and (b) the
wearable measurements in combination with self-reported
stress and anxiety as inputs. The loss function in this case
a cross-entropy loss function defines the error between the
estimated output (predicted labels) and the true output (true
labels) and therefore can be considered a measure of the accu-
racy of the model. Each graph represents the loss function for
training and test data sets. The x-axis represents the epoch or

102062

TABLE 5. Summary of performance metrics across all feature sets.

Sensitivity Specificity Accuracy (%)
Feature Set 1 0.2425 0.9876 88.72
Feature Set 2 0.7338 0.9959 96.05

the number of times the training data is passed through the
neural network, and the y-axis represents the loss. The closer
the loss value gets to zero, the more similar the estimated
value is to the true value and thus the more accurate the
model is. A comparison of our findings shows that the profile
for the model with feature set 2 (wearable + self-reports)
shows the loss value closest to zero. Table. 5 summarizes
the performance metrics across the two sets of features. The
combination of raw physiological metrics from the wearable
and subjective survey responses resulted in an improvement
in stress/non-stress classification, with 96% of the regions
identified correctly compared to 88% when only physiolog-
ical metrics were used as inputs to the model. Temperature,
heart rate, and skin conductance data were able to score only
24% of the stress periods correctly while the sensitivity of
the model was enhanced when subjective survey responses
were included in the feature set (sensitivity = 73%), as can
be seen in Table. 5. Specificity measures also showed a slight
improvement when using feature set 2.

IV. DISCUSSION

The study aimed to investigate the feasibility of using wrist-
worn wearable data, normally available through research-
grade and commercial off-the-shelf devices, together with
self-ratings of stress and anxiety to identify acute stress using
deep learning methods. Previous studies have demonstrated
the potential for wearable data streams of measures such
as EDA, HR, and HRV to detect acute stress events using
machine learning methods [51], [56], [57], [109]. In this
study, we compared the results of a deep learning model
using only wearable data and wearable in combination with
survey data to detect moments of stress. Psychological stress
was induced using the TSST protocol and the resulting sub-
jective stress and anxiety ratings, salivary cortisol levels,
and wearable- physiological parameters, across the different
experimental conditions: baseline, stress tasks, recovery 1,
and recovery 2 were used as inputs to a deep learning model
for stress recognition. Initial inspection of the data revealed
that participants felt more stressed in the anticipation, mental
arithmetic, and speech portion of the TSST compared to the
baseline and recovery periods. The skin conductivity and
heart rate values were on average 2.7 times and 16% higher in
the stress task than in any other condition (Fig. 6(a) and (b)),
while the skin temperature values did not significantly change
between the baseline, stress, and recovery periods. These
results are consistent with physiological reactivity to the
TSST shown in previous literature [51], [110], [111] and
indicate an activation of the hypothalamic-pituitary-adrenal
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axis and the sympathetic branch of the ANS during the stress
tasks [112]. Importantly, subjects’ perceived anxiety and ““in
the moment” stress levels were consistent with the wear-
able results (Fig. 7(a) and (b)). The mean STAI (state) and
“in the moment” stress scores were statistically significant
and differed across the various stages of the experiment.
These results are also consistent with previous studies that
have shown an association between subjective and objective
reactions to stress [113]. However, it is important to note
that although previous literature have introduced different
validated measures of perceived stress and anxiety as part of
the TSST, this study introduced a single question to assess “‘in
the moment” feelings of stress. Although this short question
has not been validated before, MMS scores were consistent
with physiological reactions (EDA and HR) to the TSST.

Cortisol levels were higher following the stress tasks,
specifically at the start of the first recovery period compared
to the other stages of the experiment (see Fig. 8). These results
are consistent and confirm that the salivary testing procedures
produced accurate results in this study, insofar as they align
with salivary cortisol fluctuations observed in previous stud-
ies using the TSST procedure, where salivary cortisol often
peaks 15-30 minutes after a stress event and then decreases
sharply [114]. Self-ratings of stress were higher during and
immediately after the stress procedure, indicating that cortisol
lags behind the self-ratings of stress and wearable measure-
ments.

To assess the associations of physiological and behavioral
measurements in the dataset with stress, we implemented
both a structured analysis, generalized estimating equations
(GEE), and unstructured analysis, deep learning. GEEs pro-
vide a semi-parametric approach that allows for the determi-
nation of effect sizes and importance from our variables of
interest while accounting for the within-participant correla-
tion and high frequency of data collection. By applying this
structure, we can derive variable-level interpretations of our
data that are not available under deep learning. However, this
model set failed to converge, which resulted in not having
interpretable results. In this case, we could not determine
the direction nor degree of the associations between certain
variables of interest and the stress event. This would suggest
that either our data did not provide sufficient information to
the model due to the low participant number, or possibly the
high degree of within-participant correlation did not follow
the imposed structure of the GEE.

In parallel to this analysis, we evaluated the feasibility
of using a deep learning approach for stress/non-stress clas-
sification. Deep learning methods have the ability to han-
dle data points that have significant associations with each
other and therefore remove some of the constraints that are
introduced when using GEE on multilevel correlated data.
In addition, these techniques are powerful enough to discover
unstructured patterns in the data even when working with rel-
atively small datasets consisting of numerical and categorical
inputs. As such, we expected to inform our analysis using this
method from the outset.
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We evaluated the classification performance on two differ-
ent sets of features. The binary classifier was able to achieve
an accuracy of 88% when only raw wearable data streams
were used as the input. However, contextual data such as
behavioral responses to stress and anxiety helped the model to
better predict stress segments in the data (accuracy = 96%).
The precision of the model was higher than the recall, indicat-
ing that the deep learning model was able to discriminate 96%
of the stress events with 73% of precision. Overall, our find-
ings indicated that the data from the wearable could further
be enhanced by including short survey responses regarding
stress and anxiety. Previous studies have shown that a combi-
nation of different physiological measurements improves the
ability of algorithms to correctly identify stress events [63],
[64], [115], [116]. However, few studies have also attempted
to detect stress using a combination of physiological and
behavioral responses. Kyriakou ef al. [117] were able to
demonstrate an 84% accuracy in stress detection when using
a rule-based approach based on skin temperature and elec-
trodermal activity in addition to perceived stress measures
collected through e-diaries and subject interviews [117]. Sim-
ilarly, Gjoreski et al. [47] developed a method to monitor
stress with a wrist-worn device using ecological momentary
assessment and a stress log together with a machine learning
approach. The method was able to detect 70% of stress events
with a 95% precision [47]. Smets et al. [48], have previ-
ously shown that there is an association between wearable-
measured physiological indicators and self-reported everyday
stress and have highlighted the importance of these multi-
dimensional data sets for stress detection given the person-to-
person variability. These results further build upon this body
of literature by demonstrating that self-report, alongside mea-
sures of physiological indicators of stress, further inform the
use of deep-learning models when detecting stress between
individuals. This study, however, is not without limitations.
The data collected here come from a relatively small sample
(18 participants) with a greater number of non-stress than
stress instances. This may have resulted in a class imbalance
problem which could have impacted the model performance
accuracy level [118]. In addition, the data collected in the
study has a high degree of variability which makes a standard
set of models inappropriate for handling this type of data and
highlights the importance of exploring unconstrained meth-
ods such as deep learning for stress discrimination. As such,
it is advisable that future research be conducted using these
measures and performing the TSST with a greater number
of participants, potentially building a more variable dataset.
Furthermore, the physiological data used in this study was
obtained from a research-grade wearable. Future work should
evaluate the performance of these types of models with
data from consumer wearable devices given their widespread
availability and their implications for use by the general
public as opposed to the research community. Additionally,
the dataset used in this study was the result of an induced
stress procedure, which allowed for a more careful analysis of
the stress response, but which simplified the stress detection
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task in comparison to what would be observed under field
conditions [47]. Future studies should perform analyses under
various stress conditions that more closely resemble day-to-
day stress experiences. The study presented in this manuscript
is a first step towards investigating the feasibility of using
data streams from wearable devices that reflect autonomic
nervous activity, specifically sympathetic activation, in com-
bination with subjective information of psychological states
(i.e., stress and anxiety ratings), to identify different levels of
mental stress in a non-invasive manner. Acute stress triggers
cardiovascular changes such as increased heart rate, skin
conductivity, and acceleration of other body functions. Addi-
tionally, experiencing stressful situations results in highly
subjective feelings (e.g., perceived stress and positive and
negative affect), dependent upon people’s personality and
mindset [114]. Building large multi-dimensional datasets that
include not only wearable data but also ratings of perceived
stress and anxiety, could help reduce the intra-individual
variabilities that come with the subjective and dual nature
of the stress response, as well as help correlate real-life
situations with perceptions of stress, and therefore aid in the
development of a more robust stress detection method.

Nowadays, commercial wearables such as the Apple Watch
(Apple Inc, Cupertino, CA), Fitbit (Alphabet Inc, San Fran-
cisco, CA), and the Halo band (Amazon.com Inc, Seattle,
WA) include PPG, and in some cases, EDA and ECG sensors.
Fitbit in particular uses primarily EDA for stress tracking.
The use of these types of sensors for emotion detection in
real-world environments is challenging, and the reliability of
the measurements could be improved by prompting the user
to indicate a true vs. a false stress event when the device
picks up on signs of stress. Implementing this type of strategy
for a limited period of time could help companies differ-
entiate stress moments from electronic or motion artifacts
and therefore help build algorithms that better understand
and discriminate particular individual daily stressors. Future
research will evaluate the reproducibility of this framework
in real-world scenarios using consumer-facing wearables.

V. CONCLUSION

The goal of this research was to assess the feasibility of
detecting stress events in a semi-restricted environment using
physiological and self-reported stress, anxiety data, and deep
learning methods. The measurements in the dataset came
from 18 subjects who underwent the Trier Social Stress Test
at the Well Living Lab. Our results are similar to those found
in the literature, and they suggest that mental stress increases
the levels of salivary cortisol, self-ratings of stress, heart
rate, and skin conductance. More importantly, these findings
show that deep learning methods allow for physiological and
behavioral measures, collected at vastly different frequencies,
to be combined into a single model that outperforms either
data type individually. However, this was a small and highly
correlated dataset and therefore a larger amount of data is
needed to confirm the obtained results and improve the clas-
sification performance. Nevertheless, this framework shows
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potential in terms of being able to rapidly collect stress and
anxiety ratings through different day-to-day activities that can
help correctly label physiological and other sensor data as
stress and non-stress and thus, contribute to the personaliza-
tion of this type of algorithm.
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